Skip to main content
Top
Published in: Journal of the International Society of Sports Nutrition 1/2012

Open Access 01-12-2012 | Research article

Low-protein vegetarian diet does not have a short-term effect on blood acid–base status but raises oxygen consumption during submaximal cycling

Authors: Enni-Maria Hietavala, Risto Puurtinen, Heikki Kainulainen, Antti A Mero

Published in: Journal of the International Society of Sports Nutrition | Issue 1/2012

Login to get access

Abstract

Background

Acid–base balance refers to the equilibrium between acids and bases in the human body. Nutrition may affect acid–base balance and further physical performance. With the help of PRAL (potential renal acid load), a low-protein vegetarian diet (LPVD) was designed to enhance the production of bases in body. The aim of this study was to investigate if LPVD has an effect on blood acid–base status and performance during submaximal and maximal aerobic cycling.

Methods

Nine healthy, recreationally active men (age 23.5 ± 3.4 yr) participated in the study and were randomly divided into two groups in a cross-over study design. Group 1 followed LPVD for 4 days and group 2 ate normally (ND) before performing a cycle ergometer test. The test included three 10-min stages at 40, 60 and 80% of VO2max. The fourth stage was performed at 100% of VO2max until exhaustion. After 10–16 days, the groups started a second 4-day diet, and at the end performed the similar ergometer test. Venous blood samples were collected at the beginning and at the end of both diet periods and after every stage cycled.

Results

Diet caused no significant difference in venous blood pH, strong ion difference (SID), total concentration of weak acids (Atot), partial pressure of CO2 (pCO2) or HCO3- at rest or during cycling between LPVD and ND. In the LPVD group, at rest SID significantly increased over the diet period (38.6 ± 1.8 vs. 39.8 ± 0.9, p=0.009). Diet had no significant effect on exercise time to exhaustion, but VO2 was significantly higher at 40, 60 and 80% of VO2max after LPVD compared to ND (2.03 ± 0.25 vs. 1.82 ± 0.21 l/min, p=0.035; 2.86 ± 0.36 vs. 2.52 ± 0.33 l/min, p<0.001 and 4.03 ± 0.50 vs. 3.54 ± 0.58 l/min, p<0.001; respectively).

Conclusion

There was no difference in venous blood acid–base status between a 4-day LPVD and ND. VO2 was increased during submaximal cycling after LPVD suggesting that the exercise economy was poorer. This had no further effect on maximal aerobic performance. More studies are needed to define how nutrition affects acid–base balance and performance.
Appendix
Available only for authorised users
Literature
1.
go back to reference Adrogué HE, Adrogué HJ: Acid–base physiology. Respir Care. 2001, 46 (4): 328-341.PubMed Adrogué HE, Adrogué HJ: Acid–base physiology. Respir Care. 2001, 46 (4): 328-341.PubMed
2.
go back to reference Vormann J, Goedecke T: Acid–base homeostasis: Latent acidosis as a cause of chronic diseases. Ganzheits Medizin. 2006, 18: 255-266. Vormann J, Goedecke T: Acid–base homeostasis: Latent acidosis as a cause of chronic diseases. Ganzheits Medizin. 2006, 18: 255-266.
3.
go back to reference Lindinger MI: Origins of [H+] changes in exercising skeletal muscle. Can J Appl Phys. 1995, 20 (3): 357-368. 10.1139/h95-028.CrossRef Lindinger MI: Origins of [H+] changes in exercising skeletal muscle. Can J Appl Phys. 1995, 20 (3): 357-368. 10.1139/h95-028.CrossRef
4.
go back to reference Weinstein Y, Magazanik A, Grodjinovsky A, Inbar O, Dlin RA, Stewart PA: Reexamination of Stewart’s quantitative analysis of acid–base status. Med Sci Sports Exerc. 1991, 23 (11): 1270-1275.CrossRefPubMed Weinstein Y, Magazanik A, Grodjinovsky A, Inbar O, Dlin RA, Stewart PA: Reexamination of Stewart’s quantitative analysis of acid–base status. Med Sci Sports Exerc. 1991, 23 (11): 1270-1275.CrossRefPubMed
6.
go back to reference Remer T: Influence of nutrition on acid–base balance – metabolic aspects. Eur J Nutr. 2001, 40: 214-220. 10.1007/s394-001-8348-1.CrossRefPubMed Remer T: Influence of nutrition on acid–base balance – metabolic aspects. Eur J Nutr. 2001, 40: 214-220. 10.1007/s394-001-8348-1.CrossRefPubMed
7.
go back to reference Remer T, Dimitriou T, Manz F: Dietary potential renal acid load and renal net acid excretion in healthy, free-living children and adolescents. Am J Clin Nutr. 2003, 77: 1255-1260.PubMed Remer T, Dimitriou T, Manz F: Dietary potential renal acid load and renal net acid excretion in healthy, free-living children and adolescents. Am J Clin Nutr. 2003, 77: 1255-1260.PubMed
8.
go back to reference Robergs RA, Ghiasvand F, Parker D: Biochemistry of exercise-induced metabolic acidosis. Am J Phys – Reg I. 2004, 287: R502-R516. Robergs RA, Ghiasvand F, Parker D: Biochemistry of exercise-induced metabolic acidosis. Am J Phys – Reg I. 2004, 287: R502-R516.
9.
go back to reference Mero AA, Keskinen KL, Malvela MT, Sallinen JM: Combined creatine and sodium bicarbonate supplementation enhances interval swimming. J Strength Cond Res. 2004, 18: 306-310.PubMed Mero AA, Keskinen KL, Malvela MT, Sallinen JM: Combined creatine and sodium bicarbonate supplementation enhances interval swimming. J Strength Cond Res. 2004, 18: 306-310.PubMed
10.
go back to reference Wilkes D, Gledhill N, Smyth R: Effect of acute induced metabolic alkalosis on 800-m racing time. Med Sci Sport Exer. 1983, 15: 277-280. 10.1249/00005768-198315040-00004.CrossRef Wilkes D, Gledhill N, Smyth R: Effect of acute induced metabolic alkalosis on 800-m racing time. Med Sci Sport Exer. 1983, 15: 277-280. 10.1249/00005768-198315040-00004.CrossRef
11.
go back to reference Ööpik V, Saaremets I, Medijainen L, Karelson K, Janson T, Timpmann S: Effects of sodium citrate ingestion before exercise on endurance performance in well trained college runners. Brit J Sport Med. 2003, 37: 485-489. 10.1136/bjsm.37.6.485.CrossRef Ööpik V, Saaremets I, Medijainen L, Karelson K, Janson T, Timpmann S: Effects of sodium citrate ingestion before exercise on endurance performance in well trained college runners. Brit J Sport Med. 2003, 37: 485-489. 10.1136/bjsm.37.6.485.CrossRef
12.
go back to reference McNaughton L, Thompson D: Acute versus chronic sodium bicarbonate ingestion and anaerobic work and power output. J Sport Med Phys Fit. 2001, 41 (4): 456-462. McNaughton L, Thompson D: Acute versus chronic sodium bicarbonate ingestion and anaerobic work and power output. J Sport Med Phys Fit. 2001, 41 (4): 456-462.
13.
go back to reference Maughan RJ, Greenhaff PL, Leiper JB, Ball D, Lambert CP, Gleeson M: Diet composition and the performance of high-intensity exercise. J Sport Sci. 1997, 15: 265-275. 10.1080/026404197367272.CrossRef Maughan RJ, Greenhaff PL, Leiper JB, Ball D, Lambert CP, Gleeson M: Diet composition and the performance of high-intensity exercise. J Sport Sci. 1997, 15: 265-275. 10.1080/026404197367272.CrossRef
14.
go back to reference Greenhaff PL, Gleeson M, Maughan RJ: The effects of dietary manipulation on blood acid–base status and the performance of high intensity exercise. Eur J Appl Physiol O. 1987, 56: 331-337. 10.1007/BF00690901.CrossRef Greenhaff PL, Gleeson M, Maughan RJ: The effects of dietary manipulation on blood acid–base status and the performance of high intensity exercise. Eur J Appl Physiol O. 1987, 56: 331-337. 10.1007/BF00690901.CrossRef
16.
go back to reference Durnin JVGA, Womersley J: Body fat assessed from total body density and its estimation from skinfold thickness: measurements on 481 men and women aged from 16 to 72 yr. Br J Nutr. 1974, 32: 77-97. 10.1079/BJN19740060.CrossRefPubMed Durnin JVGA, Womersley J: Body fat assessed from total body density and its estimation from skinfold thickness: measurements on 481 men and women aged from 16 to 72 yr. Br J Nutr. 1974, 32: 77-97. 10.1079/BJN19740060.CrossRefPubMed
17.
go back to reference Constable PD: Total weak acid concentration and effective dissociation constant of nonvolatile buffers in human plasma. J Appl Physiol. 2001, 91 (3): 1364-1371.PubMed Constable PD: Total weak acid concentration and effective dissociation constant of nonvolatile buffers in human plasma. J Appl Physiol. 2001, 91 (3): 1364-1371.PubMed
18.
go back to reference Greenhaff PL, Gleeson M, Whiting PH, Maughan RJ: Dietary composition and acid–base status: limiting factors in the performance of maximal exercise in man?. Eur J Appl Physiol O. 1987, 56: 444-450. 10.1007/BF00417773.CrossRef Greenhaff PL, Gleeson M, Whiting PH, Maughan RJ: Dietary composition and acid–base status: limiting factors in the performance of maximal exercise in man?. Eur J Appl Physiol O. 1987, 56: 444-450. 10.1007/BF00417773.CrossRef
19.
go back to reference Greenhaff PL, Gleeson M, Maughan RJ: The effects of a glycogen loading regimen on acid–base status and blood lactate concentration before and after a fixed period of high intensity exercise in man. Eur J Appl Physiol O. 1988, 57: 254-259. 10.1007/BF00640672.CrossRef Greenhaff PL, Gleeson M, Maughan RJ: The effects of a glycogen loading regimen on acid–base status and blood lactate concentration before and after a fixed period of high intensity exercise in man. Eur J Appl Physiol O. 1988, 57: 254-259. 10.1007/BF00640672.CrossRef
20.
go back to reference Schück O, Matoušovic K: Relation between pH and the strong ion difference (SID) in body fluids. Biom Pap. 2005, 149 (1): 69-73. 10.5507/bp.2005.007.CrossRef Schück O, Matoušovic K: Relation between pH and the strong ion difference (SID) in body fluids. Biom Pap. 2005, 149 (1): 69-73. 10.5507/bp.2005.007.CrossRef
21.
go back to reference Galloway SDR, Maughan RJ: The effects of induced alkalosis on the metabolic response to prolonged exercise in humans. Eur J Appl Physiol. 1996, 74: 384-389. 10.1007/BF02226936.CrossRef Galloway SDR, Maughan RJ: The effects of induced alkalosis on the metabolic response to prolonged exercise in humans. Eur J Appl Physiol. 1996, 74: 384-389. 10.1007/BF02226936.CrossRef
22.
go back to reference Van der Vusse GJ: Albumin as fatty acid transporter. Drug Metab Pharmacokinet. 2009, 24 (4): 300-307. 10.2133/dmpk.24.300.CrossRefPubMed Van der Vusse GJ: Albumin as fatty acid transporter. Drug Metab Pharmacokinet. 2009, 24 (4): 300-307. 10.2133/dmpk.24.300.CrossRefPubMed
23.
go back to reference Ballmer PE, McNurlan MA, Hulter HN, Anderson SE, Garlick PJ, Krapf R: Chronic metabolic acidosis decreases albumin synthesis and induces negative nitrogen balance in humans. J Clin Invest. 1995, 95: 39-45. 10.1172/JCI117668.PubMedCentralCrossRefPubMed Ballmer PE, McNurlan MA, Hulter HN, Anderson SE, Garlick PJ, Krapf R: Chronic metabolic acidosis decreases albumin synthesis and induces negative nitrogen balance in humans. J Clin Invest. 1995, 95: 39-45. 10.1172/JCI117668.PubMedCentralCrossRefPubMed
24.
go back to reference Zoladz JA, Szkutnik Z, Krzysztof D, Majerczak J, Korzeniewski B: Preexercise metabolic alkalosis induced via bicarbonate ingestion accelerates VO2 kinetics at the onset of a high-power-output exercise in humans. J Appl Phys. 2005, 98: 895-904. Zoladz JA, Szkutnik Z, Krzysztof D, Majerczak J, Korzeniewski B: Preexercise metabolic alkalosis induced via bicarbonate ingestion accelerates VO2 kinetics at the onset of a high-power-output exercise in humans. J Appl Phys. 2005, 98: 895-904.
25.
go back to reference Dersjant-Li Y, Verstegen MWA, Jansman A, Schulze H, Schrama JW, Verreth JA: Changes in oxygen content and acid–base balance in arterial and portal blood in response to the dietary electrolyte balance in pigs during a 9-h period after a meal. J Anim Sci. 2002, 80: 1233-1239.PubMed Dersjant-Li Y, Verstegen MWA, Jansman A, Schulze H, Schrama JW, Verreth JA: Changes in oxygen content and acid–base balance in arterial and portal blood in response to the dietary electrolyte balance in pigs during a 9-h period after a meal. J Anim Sci. 2002, 80: 1233-1239.PubMed
26.
go back to reference Irving BA, Patrie JT, Anderson SM, Watson-Winfield DD, Frick KI, Evans WS, Veldhuis JD, Weltman A: The effects of time following acute growth hormone administration on metabolic and power output measures during acute exercise. J Clin Endocrinol Metab. 2004, 89 (9): 4298-4305. 10.1210/jc.2004-0067.CrossRefPubMed Irving BA, Patrie JT, Anderson SM, Watson-Winfield DD, Frick KI, Evans WS, Veldhuis JD, Weltman A: The effects of time following acute growth hormone administration on metabolic and power output measures during acute exercise. J Clin Endocrinol Metab. 2004, 89 (9): 4298-4305. 10.1210/jc.2004-0067.CrossRefPubMed
Metadata
Title
Low-protein vegetarian diet does not have a short-term effect on blood acid–base status but raises oxygen consumption during submaximal cycling
Authors
Enni-Maria Hietavala
Risto Puurtinen
Heikki Kainulainen
Antti A Mero
Publication date
01-12-2012
Publisher
BioMed Central
DOI
https://doi.org/10.1186/1550-2783-9-50

Other articles of this Issue 1/2012

Journal of the International Society of Sports Nutrition 1/2012 Go to the issue