Skip to main content
Top
Published in: Journal of the International Society of Sports Nutrition 1/2012

Open Access 01-12-2012 | Research article

Influence of an alkalizing supplement on markers of endurance performance using a double-blind placebo-controlled design

Authors: Daniel P Heil, Erik A Jacobson, Stephanie M Howe

Published in: Journal of the International Society of Sports Nutrition | Issue 1/2012

Login to get access

Abstract

Background

Previous research has shown that ingestion of substances that enhance the body's hydrogen ion buffering capacity during high intensity exercise can improve exercise performance. The present study aimed to determine whether the chronic ingestion of an alkalizing supplement, which purports to enhance both intracellular and extracellular buffering capacity, could impact cardiorespiratory and performance markers in trained Nordic skiers.

Methods

Twenty-four skiers (12 men, 12 women), matched for upper body power (UBP), were split into treatment and placebo groups. The treatment group ingested Alka-Myte®-based alkalizing tablets (1 tablet/22.7 kg body mass/day) over seven successive days while the placebo group consumed placebo tablets (i.e., no Alka-Myte®) at the same dosage. Prior to tablet ingestion (i.e., pre-testing), both groups completed a constant power UBP test, three successive 10-sec UBP tests, and then a 60-sec UBP test. Next, skiers completed the 7-day ingestion of their assigned tablets followed immediately by a repeat of the same UBP tests (i.e., post-testing). Neither the skiers nor the researchers were aware of which tablets were being consumed by either group until after all testing was complete. Dependent measures for analysis included heart rate (HR), oxygen consumption (VO2), minute ventilation (VE), blood lactate (LA), as well as 10-sec (W10, W) and 60-sec (W60, W) UBP. All data were evaluated using a two-factor multivariate repeated measures ANOVA with planned contrasts for post-hoc testing (alpha = 0.05).

Results

Post-testing cardiorespiratory (HR, VO2, VE) and LA measures for the treatment group tended to be significantly lower when measured for both constant power and UBP60 tests, while measures of both 10-sec (W10: 229 to 243 W) and 60-sec UBP (W60: 190 to 198 W) were significantly higher (P < 0.05). In contrast, there were no significant changes for the placebo group (P > 0.05).

Conclusions

Following the 7-day loading phase of Alka-Myte®-based alkalizing tablets, trained Nordic skiers experienced significantly lower cardiorespiratory stress, lower blood lactate responses, and higher UBP measures. Thus, the use of this supplement appeared to impart an ergogenic benefit to the skiers that may be similar to the effects expected from consuming well-studied extracellular buffering agents such as sodium bicarbonate.
Appendix
Available only for authorised users
Literature
1.
go back to reference Linossier MT, Dormois D, Bregere P, Geyssant A, Denis C: Effect of sodium citrate on performance and metabolism of human skeletal muscle during supramaximal cycling exercise. Eur J Appl Physiol. 1997, 76: 48-54. 10.1007/s004210050211.CrossRef Linossier MT, Dormois D, Bregere P, Geyssant A, Denis C: Effect of sodium citrate on performance and metabolism of human skeletal muscle during supramaximal cycling exercise. Eur J Appl Physiol. 1997, 76: 48-54. 10.1007/s004210050211.CrossRef
2.
go back to reference Potteiger JA, Nickel GL, Webster MJ, Haub MD, Palmer RJ: Sodium citrate ingestion enhances 30 km cycling performance. Int J Sports Med. 1996, 17 (1): 7-11. 10.1055/s-2007-972800.CrossRefPubMed Potteiger JA, Nickel GL, Webster MJ, Haub MD, Palmer RJ: Sodium citrate ingestion enhances 30 km cycling performance. Int J Sports Med. 1996, 17 (1): 7-11. 10.1055/s-2007-972800.CrossRefPubMed
3.
go back to reference Raymer GH, Marsh GD, Kowalchuk JM, Thompson RT: Metabolic effects of induced alkalosis during progressive forearm exercise to fatigue. J Appl Physiol. 2004, 96: 2050-2056. 10.1152/japplphysiol.01261.2003.CrossRefPubMed Raymer GH, Marsh GD, Kowalchuk JM, Thompson RT: Metabolic effects of induced alkalosis during progressive forearm exercise to fatigue. J Appl Physiol. 2004, 96: 2050-2056. 10.1152/japplphysiol.01261.2003.CrossRefPubMed
4.
go back to reference Robergs RA, Ghiasvand F, Parker D: Biochemistry of exercise-induced metabolic acidosis. Am J Physiol Regul Integr Comp Physiol. 2004, 287: R502-R516. 10.1152/ajpregu.00114.2004.CrossRefPubMed Robergs RA, Ghiasvand F, Parker D: Biochemistry of exercise-induced metabolic acidosis. Am J Physiol Regul Integr Comp Physiol. 2004, 287: R502-R516. 10.1152/ajpregu.00114.2004.CrossRefPubMed
5.
go back to reference Cairns SP: Lactic acid and exercise performance - culprit or friend?. Sports Med. 2006, 36 (4): 279-291. 10.2165/00007256-200636040-00001.CrossRefPubMed Cairns SP: Lactic acid and exercise performance - culprit or friend?. Sports Med. 2006, 36 (4): 279-291. 10.2165/00007256-200636040-00001.CrossRefPubMed
6.
go back to reference Alsobrook NG, Heil DP: Upper body power as a determinant of classical cross-country skiing performance. Eur J Appl Physiol. 2009, 105 (4): 633-641. 10.1007/s00421-008-0943-z.CrossRefPubMed Alsobrook NG, Heil DP: Upper body power as a determinant of classical cross-country skiing performance. Eur J Appl Physiol. 2009, 105 (4): 633-641. 10.1007/s00421-008-0943-z.CrossRefPubMed
7.
go back to reference Nilsson JE, Holmberg HC, Tveit P, Hallen J: Effects of 20-s and 180-s double poling interval training in cross-country skiers. Eur J Appl Physiol. 2004, 92: 121-127. 10.1007/s00421-004-1042-4.CrossRefPubMed Nilsson JE, Holmberg HC, Tveit P, Hallen J: Effects of 20-s and 180-s double poling interval training in cross-country skiers. Eur J Appl Physiol. 2004, 92: 121-127. 10.1007/s00421-004-1042-4.CrossRefPubMed
8.
go back to reference Soper C, Hume PA: Reliability of power output during rowing changes with ergometer type and race distance. Sports Biomech. 2004, 3 (2): 237-248. 10.1080/14763140408522843.CrossRefPubMed Soper C, Hume PA: Reliability of power output during rowing changes with ergometer type and race distance. Sports Biomech. 2004, 3 (2): 237-248. 10.1080/14763140408522843.CrossRefPubMed
9.
go back to reference Pyne DB, Boston T, Martin DT, Logan A: Evaluation of the Lactate Pro blood lactate analyzer. Eur J Appl Physiol. 2000, 82: 112-116. 10.1007/s004210050659.CrossRefPubMed Pyne DB, Boston T, Martin DT, Logan A: Evaluation of the Lactate Pro blood lactate analyzer. Eur J Appl Physiol. 2000, 82: 112-116. 10.1007/s004210050659.CrossRefPubMed
10.
go back to reference Cohen J: Statistical Power Analysis for the Behavioral Sciences. 1988, Hillsdale, NJ: Lawrence Erlbaum Associates, 2 Cohen J: Statistical Power Analysis for the Behavioral Sciences. 1988, Hillsdale, NJ: Lawrence Erlbaum Associates, 2
11.
go back to reference Berger NJA, McNaughton LR, Keatley S, Wilkerson DP, Jones AM: Sodium bicarbonate ingestion alters the slow but not the fast phase of VO2 kinetics. Med Sci Sports Exerc. 2006, 38 (11): 1909-1917. 10.1249/01.mss.0000233791.85916.33.CrossRefPubMed Berger NJA, McNaughton LR, Keatley S, Wilkerson DP, Jones AM: Sodium bicarbonate ingestion alters the slow but not the fast phase of VO2 kinetics. Med Sci Sports Exerc. 2006, 38 (11): 1909-1917. 10.1249/01.mss.0000233791.85916.33.CrossRefPubMed
12.
go back to reference Kolkhort FW, Rezende RS, Levy SS, Buono MJ: Effects of sodium bicarbonate on VO2 kinetics during heavy exercise. Med Sci Sports Med. 2004, 36 (11): 1895-1899. 10.1249/01.MSS.0000145440.55346.28. Kolkhort FW, Rezende RS, Levy SS, Buono MJ: Effects of sodium bicarbonate on VO2 kinetics during heavy exercise. Med Sci Sports Med. 2004, 36 (11): 1895-1899. 10.1249/01.MSS.0000145440.55346.28.
13.
go back to reference Zoladz JA, Szkutnik Z, Duda K, Majerczak J, Korzeniewski B: Preexercise metabolic alkalosis induced via bicarbonate ingestion accelerates VO2 kinetics at the onset of a high-power-output exercise in humans. J Appl Physiol. 2005, 98: 895-904.CrossRefPubMed Zoladz JA, Szkutnik Z, Duda K, Majerczak J, Korzeniewski B: Preexercise metabolic alkalosis induced via bicarbonate ingestion accelerates VO2 kinetics at the onset of a high-power-output exercise in humans. J Appl Physiol. 2005, 98: 895-904.CrossRefPubMed
14.
go back to reference Williams MH: Bicarbonate Loading. Sports Sci Exchange. 1992, 36 (4): 1-4. Williams MH: Bicarbonate Loading. Sports Sci Exchange. 1992, 36 (4): 1-4.
15.
go back to reference Matson LG, Tran ZV: Effects of sodium bicarbonate ingestion on anaerobic performance: a meta-analytic review. Int J Sport Nutr. 1993, 3: 2-28.PubMed Matson LG, Tran ZV: Effects of sodium bicarbonate ingestion on anaerobic performance: a meta-analytic review. Int J Sport Nutr. 1993, 3: 2-28.PubMed
16.
go back to reference Van Montfoort MCE, Van Dieren L, Hopkins WG, Shearman JP: Effects of ingestion of bicarbonate, citrate, lactate, and chloride on sprint running. Med Sci Sports Exerc. 2004, 36 (7): 1239-1243. 10.1249/01.MSS.0000132378.73975.25.CrossRefPubMed Van Montfoort MCE, Van Dieren L, Hopkins WG, Shearman JP: Effects of ingestion of bicarbonate, citrate, lactate, and chloride on sprint running. Med Sci Sports Exerc. 2004, 36 (7): 1239-1243. 10.1249/01.MSS.0000132378.73975.25.CrossRefPubMed
17.
go back to reference Street D, Nielsen J-J, Bangsbo J, Juel C: Metabolic alkalosis reduces exercise-induced acidosis and potassium accumulation in human skeletal muscle interstitium. J Physiol. 2005, 566 (2): 481-489. 10.1113/jphysiol.2005.086801.PubMedCentralCrossRefPubMed Street D, Nielsen J-J, Bangsbo J, Juel C: Metabolic alkalosis reduces exercise-induced acidosis and potassium accumulation in human skeletal muscle interstitium. J Physiol. 2005, 566 (2): 481-489. 10.1113/jphysiol.2005.086801.PubMedCentralCrossRefPubMed
18.
go back to reference Clausen T: Na+K+ pump regulation in skeletal muscle contractility. Physiol Rev. 2003, 83: 1269-1324.CrossRefPubMed Clausen T: Na+K+ pump regulation in skeletal muscle contractility. Physiol Rev. 2003, 83: 1269-1324.CrossRefPubMed
19.
go back to reference Nielsen OB, Ortenblad N, Lamb GD, Stephenson DG: Excitability of the T-tubular system in rat skeletal muscle: roles of K+ and Na+ gradients and Na+-K+ pump activity. J Physiol. 2004, 557: 133-146. 10.1113/jphysiol.2003.059014.PubMedCentralCrossRefPubMed Nielsen OB, Ortenblad N, Lamb GD, Stephenson DG: Excitability of the T-tubular system in rat skeletal muscle: roles of K+ and Na+ gradients and Na+-K+ pump activity. J Physiol. 2004, 557: 133-146. 10.1113/jphysiol.2003.059014.PubMedCentralCrossRefPubMed
20.
go back to reference Juel C: Changes in interstitial K+ and pH during exercise: implications for blood flow regulation. Appl Physiol Nutr Metab. 2007, 32: 846-851. 10.1139/H07-065.CrossRefPubMed Juel C: Changes in interstitial K+ and pH during exercise: implications for blood flow regulation. Appl Physiol Nutr Metab. 2007, 32: 846-851. 10.1139/H07-065.CrossRefPubMed
Metadata
Title
Influence of an alkalizing supplement on markers of endurance performance using a double-blind placebo-controlled design
Authors
Daniel P Heil
Erik A Jacobson
Stephanie M Howe
Publication date
01-12-2012
Publisher
BioMed Central
DOI
https://doi.org/10.1186/1550-2783-9-8

Other articles of this Issue 1/2012

Journal of the International Society of Sports Nutrition 1/2012 Go to the issue