Skip to main content
Top
Published in: BMC Public Health 1/2022

Open Access 01-12-2022 | Research

Low leptin levels are associated with elevated physical activity among lean school children in rural Tanzania

Authors: Christine Ludwig, Nadja Knoll-Pientka, Akwilina Mwanri, Celina Erfle, Vincent Onywera, Mark S. Tremblay, Judith Bühlmeier, Agnes Luzak, Maike Ferland, Holger Schulz, Lars Libuda, Johannes Hebebrand

Published in: BMC Public Health | Issue 1/2022

Login to get access

Abstract

Background

In Sub-Saharan African countries, rapid urbanization and increasing socio-economic status are associated with a transition to decreased physical activity (PA). A more sedentary lifestyle is linked to increased body fat leading to increments in leptin levels. Since rodent and human studies in high-income countries have shown that starvation-induced hypoleptinemia triggers high PA, efforts are warranted to pursue the hypothesis that low leptin levels in lean children of low- and middle-income countries (LMIC) are also associated with high PA.

Methods

In this cross-sectional study, we assessed seven-day PA with triaxial accelerometry (ActiGraph GT3X) among 223 primary school children (9 to 12 years of age) in rural Tanzania. Moderate-to-vigorous PA (MVPA) and total accelerometer counts per day were outcome variables. Leptin was determined using enzyme linked immunosorbent assay tests from dried blood spots. Anthropometric assessments were conducted and food insecurity and socio-demographic data were gathered using semi-structured interviews.

Results

In this sample of school children in rural Tanzania, leptin concentrations (median: 0.91 ng/mL, P25: 0.55, P75: 1.69), body mass index z-scores (median: -1.35, P25: -1.93, P75: -0.82), and height-for-age-z-scores (median: -1.16, P25: -1.96, P75: -0.61) were low. In contrast, PA levels were high with a median MVPA time of 119 min/day. Linear regression confirmed that leptin levels were negatively associated with MVPA (beta: -18.1; 95%CI: -29.7; -6.5; p = 0.002) and total accelerometer counts (beta: -90,256; 95%CI: -154,146; -26,365; p = 0.006). Children residing in areas with better infrastructure had lower MVPA levels (p < 0.001) and tended to have higher leptin levels (p = 0.062) than children residing in areas only reachable via dirt roads.

Conclusion

Our cross-sectional field study is the first that supports the hypothesis of low leptin levels as a potential endocrine trigger of high PA in lean children of a LMIC. We observed early signs of a PA transition towards a less active lifestyle in a subgroup residing in areas with better infrastructure that concomitantly tended to have higher leptin concentrations. Considering that area-dependent PA differences were more pronounced among girls than boys, whereas differences in leptin levels were less pronounced, not only biological, but also external factors explain PA transition.
Appendix
Available only for authorised users
Literature
1.
go back to reference Duncan GE, Goldberg J, Noonan C, Moudon AV, Hurvitz P, Buchwald D. Unique Environmental Effects on Physical Activity Participation: A Twin Study. PLoS One. 2008;3(4)e2019.PubMedPubMedCentralCrossRef Duncan GE, Goldberg J, Noonan C, Moudon AV, Hurvitz P, Buchwald D. Unique Environmental Effects on Physical Activity Participation: A Twin Study. PLoS One. 2008;3(4)e2019.PubMedPubMedCentralCrossRef
2.
go back to reference Oliveira A, Moreira C, Abreu S, Mota J, Santos R. Environmental determinants of physical activity in children: A systematic review. Arch Exerc Health Dis. 2014;1(4):254–61.CrossRef Oliveira A, Moreira C, Abreu S, Mota J, Santos R. Environmental determinants of physical activity in children: A systematic review. Arch Exerc Health Dis. 2014;1(4):254–61.CrossRef
3.
go back to reference Muthuri SK, Wachira LJM, Leblanc AG, Francis CE, Sampson M, Onywera VO, et al. Temporal trends and correlates of physical activity, sedentary behaviour, and physical fitness among school-aged children in Sub-Saharan Africa: a systematic review. Int J Environ Res Public Health. 2014;11(3):3327–59.PubMedPubMedCentralCrossRef Muthuri SK, Wachira LJM, Leblanc AG, Francis CE, Sampson M, Onywera VO, et al. Temporal trends and correlates of physical activity, sedentary behaviour, and physical fitness among school-aged children in Sub-Saharan Africa: a systematic review. Int J Environ Res Public Health. 2014;11(3):3327–59.PubMedPubMedCentralCrossRef
4.
5.
go back to reference Prista A, Nhantumbo L, Saranga S, Lopes V, Maia J, Seabra AE, et al. Physical Activity Assessed by Accelerometry in Rural African School-Age Children and Adolescents. Pediatr Exerc Sci. 2009;21(4):384–99.PubMedCrossRef Prista A, Nhantumbo L, Saranga S, Lopes V, Maia J, Seabra AE, et al. Physical Activity Assessed by Accelerometry in Rural African School-Age Children and Adolescents. Pediatr Exerc Sci. 2009;21(4):384–99.PubMedCrossRef
6.
go back to reference Onywera VO, Adamo KB, Sheel AW, Waudo JN, Boit MK, Tremblay M. Emerging evidence of the physical activity transition in Kenya. J Phys Act Health. 2012;9(4):554–62.PubMedCrossRef Onywera VO, Adamo KB, Sheel AW, Waudo JN, Boit MK, Tremblay M. Emerging evidence of the physical activity transition in Kenya. J Phys Act Health. 2012;9(4):554–62.PubMedCrossRef
7.
go back to reference Baratta M. Leptin--from a signal of adiposity to a hormonal mediator in peripheral tissues. Med Sci Monit Int Med J Exp Clin Res. 2002;8(12):RA282-292. Baratta M. Leptin--from a signal of adiposity to a hormonal mediator in peripheral tissues. Med Sci Monit Int Med J Exp Clin Res. 2002;8(12):RA282-292.
8.
go back to reference Friedman JM, Halaas JL. Leptin and the regulation of body weight in mammals. Nature. 1998;395(6704):763–70.PubMedCrossRef Friedman JM, Halaas JL. Leptin and the regulation of body weight in mammals. Nature. 1998;395(6704):763–70.PubMedCrossRef
10.
go back to reference Soliman AT, Yasin M, Kassem A. Leptin in pediatrics: A hormone from adipocyte that wheels several functions in children. Indian J Endocrinol Metab. 2012;16(Suppl 3):S577–87.PubMedPubMedCentralCrossRef Soliman AT, Yasin M, Kassem A. Leptin in pediatrics: A hormone from adipocyte that wheels several functions in children. Indian J Endocrinol Metab. 2012;16(Suppl 3):S577–87.PubMedPubMedCentralCrossRef
12.
go back to reference Exner C, Hebebrand J, Remschmidt H, Wewetzer C, Ziegler A, Herpertz S, et al. Leptin suppresses semi-starvation induced hyperactivity in rats: implications for anorexia nervosa. Mol Psychiatry. 2000;5(5):476–81.PubMedCrossRef Exner C, Hebebrand J, Remschmidt H, Wewetzer C, Ziegler A, Herpertz S, et al. Leptin suppresses semi-starvation induced hyperactivity in rats: implications for anorexia nervosa. Mol Psychiatry. 2000;5(5):476–81.PubMedCrossRef
13.
go back to reference Hillebrand JJG, Koeners MP, de Rijke CE, Kas MJH, Adan RAH. Leptin treatment in activity-based anorexia. Biol Psychiatry. 2005;58(2):165–71.PubMedCrossRef Hillebrand JJG, Koeners MP, de Rijke CE, Kas MJH, Adan RAH. Leptin treatment in activity-based anorexia. Biol Psychiatry. 2005;58(2):165–71.PubMedCrossRef
14.
go back to reference Bartness TJ, Keen-Rhinehart E, Dailey MJ, Teubner BJ. Neural and hormonal control of food hoarding. Am J Physiol Regul Integr Comp Physiol. 2011;301(3):R641-655.PubMedPubMedCentralCrossRef Bartness TJ, Keen-Rhinehart E, Dailey MJ, Teubner BJ. Neural and hormonal control of food hoarding. Am J Physiol Regul Integr Comp Physiol. 2011;301(3):R641-655.PubMedPubMedCentralCrossRef
15.
go back to reference Fernandes MFA, Matthys D, Hryhorczuk C, Sharma S, Mogra S, Alquier T, et al. Leptin Suppresses the Rewarding Effects of Running via STAT3 Signaling in Dopamine Neurons. Cell Metab. 2015;22(4):741–9.PubMedCrossRef Fernandes MFA, Matthys D, Hryhorczuk C, Sharma S, Mogra S, Alquier T, et al. Leptin Suppresses the Rewarding Effects of Running via STAT3 Signaling in Dopamine Neurons. Cell Metab. 2015;22(4):741–9.PubMedCrossRef
16.
go back to reference Föcker M, Timmesfeld N, Scherag S, Bühren K, Langkamp M, Dempfle A, et al. Screening for anorexia nervosa via measurement of serum leptin levels. J Neural Transm Vienna. 2011;118(4):571–8.PubMedCrossRef Föcker M, Timmesfeld N, Scherag S, Bühren K, Langkamp M, Dempfle A, et al. Screening for anorexia nervosa via measurement of serum leptin levels. J Neural Transm Vienna. 2011;118(4):571–8.PubMedCrossRef
17.
18.
go back to reference Hebebrand J, Milos G, Wabitsch M, Teufel M, Führer D, Bühlmeier J, et al. Clinical Trials Required to Assess Potential Benefits and Side Effects of Treatment of Patients With Anorexia Nervosa With Recombinant Human Leptin. Front Psychol. 2019;10:769.PubMedPubMedCentralCrossRef Hebebrand J, Milos G, Wabitsch M, Teufel M, Führer D, Bühlmeier J, et al. Clinical Trials Required to Assess Potential Benefits and Side Effects of Treatment of Patients With Anorexia Nervosa With Recombinant Human Leptin. Front Psychol. 2019;10:769.PubMedPubMedCentralCrossRef
19.
go back to reference Casper RC, Voderholzer U, Naab S, Schlegl S. Increased urge for movement, physical and mental restlessness, fundamental symptoms of restricting anorexia nervosa? Brain Behav. 2020;10(3)e01556.PubMedPubMedCentralCrossRef Casper RC, Voderholzer U, Naab S, Schlegl S. Increased urge for movement, physical and mental restlessness, fundamental symptoms of restricting anorexia nervosa? Brain Behav. 2020;10(3)e01556.PubMedPubMedCentralCrossRef
20.
go back to reference Holtkamp K, Herpertz-Dahlmann B, Hebebrand K, Mika C, Kratzsch J, Hebebrand J. Physical activity and restlessness correlate with leptin levels in patients with adolescent anorexia nervosa. Biol Psychiatry. 2006;60(3):311–3.PubMedCrossRef Holtkamp K, Herpertz-Dahlmann B, Hebebrand K, Mika C, Kratzsch J, Hebebrand J. Physical activity and restlessness correlate with leptin levels in patients with adolescent anorexia nervosa. Biol Psychiatry. 2006;60(3):311–3.PubMedCrossRef
21.
go back to reference Milos G, Antel J, Kaufmann LK, Barth N, Koller A, Tan S, et al. Short-term metreleptin treatment of patients with anorexia nervosa: rapid on-set of beneficial cognitive, emotional, and behavioral effects. Transl Psychiatry. 2020;10(1):303.PubMedPubMedCentralCrossRef Milos G, Antel J, Kaufmann LK, Barth N, Koller A, Tan S, et al. Short-term metreleptin treatment of patients with anorexia nervosa: rapid on-set of beneficial cognitive, emotional, and behavioral effects. Transl Psychiatry. 2020;10(1):303.PubMedPubMedCentralCrossRef
22.
go back to reference Antel J, Tan S, Grabler M, Ludwig C, Lohkemper D, Brandenburg T, et al. Rapid amelioration of anorexia nervosa in a male adolescent during metreleptin treatment including recovery from hypogonadotropic hypogonadism. Eur Child Adolesc Psychiatry. 2021;1–7. Antel J, Tan S, Grabler M, Ludwig C, Lohkemper D, Brandenburg T, et al. Rapid amelioration of anorexia nervosa in a male adolescent during metreleptin treatment including recovery from hypogonadotropic hypogonadism. Eur Child Adolesc Psychiatry. 2021;1–7.
23.
go back to reference Jiménez-Pavón D, Ortega FB, Artero EG, Labayen I, Vicente-Rodriguez G, Huybrechts I, et al. Physical activity, fitness, and serum leptin concentrations in adolescents. J Pediatr. 2012;160(4):598–603.e2.PubMedCrossRef Jiménez-Pavón D, Ortega FB, Artero EG, Labayen I, Vicente-Rodriguez G, Huybrechts I, et al. Physical activity, fitness, and serum leptin concentrations in adolescents. J Pediatr. 2012;160(4):598–603.e2.PubMedCrossRef
24.
go back to reference Platat C, Wagner A, Klumpp T, Schweitzer B, Simon C. Relationships of physical activity with metabolic syndrome features and low-grade inflammation in adolescents. Diabetologia. 2006;49(9):2078–85.PubMedCrossRef Platat C, Wagner A, Klumpp T, Schweitzer B, Simon C. Relationships of physical activity with metabolic syndrome features and low-grade inflammation in adolescents. Diabetologia. 2006;49(9):2078–85.PubMedCrossRef
25.
go back to reference Martinez-Gomez D, Eisenmann JC, Gomez-Martinez S, Veses A, Romeo J, Veiga OL, et al. Associations of physical activity and fitness with adipocytokines in adolescents: the AFINOS Study. Nutr Metab Cardiovasc Dis NMCD. 2012;22(3):252–9.PubMedCrossRef Martinez-Gomez D, Eisenmann JC, Gomez-Martinez S, Veses A, Romeo J, Veiga OL, et al. Associations of physical activity and fitness with adipocytokines in adolescents: the AFINOS Study. Nutr Metab Cardiovasc Dis NMCD. 2012;22(3):252–9.PubMedCrossRef
26.
go back to reference Plonka M, Toton-Morys A, Adamski P, Suder A, Bielanski W, Dobrzanska MJ, et al. Association of the physical activity with leptin blood serum level, body mass indices and obesity in schoolgirls. J Physiol Pharmacol Off J Pol Physiol Soc. 2011;62(6):647–56. Plonka M, Toton-Morys A, Adamski P, Suder A, Bielanski W, Dobrzanska MJ, et al. Association of the physical activity with leptin blood serum level, body mass indices and obesity in schoolgirls. J Physiol Pharmacol Off J Pol Physiol Soc. 2011;62(6):647–56.
27.
go back to reference Remmel L, Tillmann V, Purge P, Lätt E, Jürimäe J. Associations of serum leptin, ghrelin and peptide YY levels with physical activity and cardiorespiratory fitness in adolescent boys with different BMI values. Biol Sport. 2017;34(4):345–52.PubMedPubMedCentralCrossRef Remmel L, Tillmann V, Purge P, Lätt E, Jürimäe J. Associations of serum leptin, ghrelin and peptide YY levels with physical activity and cardiorespiratory fitness in adolescent boys with different BMI values. Biol Sport. 2017;34(4):345–52.PubMedPubMedCentralCrossRef
28.
go back to reference Haapala EA, Väistö J, Ihalainen JK, González CT, Leppänen MH, Veijalainen A, et al. Associations of physical activity, sedentary time, and diet quality with biomarkers of inflammation in children. Eur J Sport Sci. 2021;0(0):1–10. Haapala EA, Väistö J, Ihalainen JK, González CT, Leppänen MH, Veijalainen A, et al. Associations of physical activity, sedentary time, and diet quality with biomarkers of inflammation in children. Eur J Sport Sci. 2021;0(0):1–10.
29.
go back to reference Romon M, Lafay L, Bresson JL, Oppert J-M, Borys J-M, Kettaneh A, et al. Relationships between physical activity and plasma leptin levels in healthy children: the Fleurbaix-Laventie Ville Santé II Study. Int J Obes Relat Metab Disord J Int Assoc Study Obes. 2004;28(10):1227–32.CrossRef Romon M, Lafay L, Bresson JL, Oppert J-M, Borys J-M, Kettaneh A, et al. Relationships between physical activity and plasma leptin levels in healthy children: the Fleurbaix-Laventie Ville Santé II Study. Int J Obes Relat Metab Disord J Int Assoc Study Obes. 2004;28(10):1227–32.CrossRef
30.
go back to reference Cicchella A, Stefanelli C, Jürimäe T, Saar M, Purge P. Moderate physical activity correlates with elevated leptin in physically active 10–12-year-old boys with normal BMI. Percept Mot Skills. 2013;117(2):358–66.PubMedCrossRef Cicchella A, Stefanelli C, Jürimäe T, Saar M, Purge P. Moderate physical activity correlates with elevated leptin in physically active 10–12-year-old boys with normal BMI. Percept Mot Skills. 2013;117(2):358–66.PubMedCrossRef
31.
go back to reference Metcalf BS, Jeffery AN, Hosking J, Voss LD, Sattar N, Wilkin TJ. Objectively measured physical activity and its association with adiponectin and other novel metabolic markers: a longitudinal study in children (EarlyBird 38). Diabetes Care. 2009;32(3):468–73.PubMedPubMedCentralCrossRef Metcalf BS, Jeffery AN, Hosking J, Voss LD, Sattar N, Wilkin TJ. Objectively measured physical activity and its association with adiponectin and other novel metabolic markers: a longitudinal study in children (EarlyBird 38). Diabetes Care. 2009;32(3):468–73.PubMedPubMedCentralCrossRef
32.
go back to reference Cashin, Kristen, Oot, Lesley. Guide to Anthropometry: A Practical Tool for Program Planners, Managers, and Implementers. Washington. DC. Food and Nutrition Technical Assistance III Project (FANTA)/ FHI 360. Washington. DC. Food and Nutrition Technical Assistance III Project (FANTA)/ FHI 360; 2018. Cashin, Kristen, Oot, Lesley. Guide to Anthropometry: A Practical Tool for Program Planners, Managers, and Implementers. Washington. DC. Food and Nutrition Technical Assistance III Project (FANTA)/ FHI 360. Washington. DC. Food and Nutrition Technical Assistance III Project (FANTA)/ FHI 360; 2018.
35.
go back to reference Choi L, Liu Z, Matthews CE, Buchowski MS. Validation of Accelerometer Wear and Nonwear Time Classification Algorithm. Med Sci Sports Exerc. 2011;43(2):357–64.PubMedPubMedCentralCrossRef Choi L, Liu Z, Matthews CE, Buchowski MS. Validation of Accelerometer Wear and Nonwear Time Classification Algorithm. Med Sci Sports Exerc. 2011;43(2):357–64.PubMedPubMedCentralCrossRef
36.
go back to reference Migueles JH, Cadenas-Sanchez C, Ekelund U, Delisle Nyström C, Mora-Gonzalez J, Löf M, et al. Accelerometer Data Collection and Processing Criteria to Assess Physical Activity and Other Outcomes: A Systematic Review and Practical Considerations. Sports Med Auckl NZ. 2017;47(9):1821–45.CrossRef Migueles JH, Cadenas-Sanchez C, Ekelund U, Delisle Nyström C, Mora-Gonzalez J, Löf M, et al. Accelerometer Data Collection and Processing Criteria to Assess Physical Activity and Other Outcomes: A Systematic Review and Practical Considerations. Sports Med Auckl NZ. 2017;47(9):1821–45.CrossRef
37.
go back to reference Romanzini M, Petroski EL, Ohara D, Dourado AC, Reichert FF. Calibration of ActiGraph GT3X, Actical and RT3 accelerometers in adolescents. Eur J Sport Sci. 2014;14(1):91–9.PubMedCrossRef Romanzini M, Petroski EL, Ohara D, Dourado AC, Reichert FF. Calibration of ActiGraph GT3X, Actical and RT3 accelerometers in adolescents. Eur J Sport Sci. 2014;14(1):91–9.PubMedCrossRef
39.
go back to reference Armstrong T, Bull F. Development of the World Health Organization Global Physical Activity Questionnaire (GPAQ). J Public Health. 2006;14(2):66–70.CrossRef Armstrong T, Bull F. Development of the World Health Organization Global Physical Activity Questionnaire (GPAQ). J Public Health. 2006;14(2):66–70.CrossRef
40.
go back to reference Adamo KB, Sheel AW, Onywera V, Waudo J, Boit M, Tremblay MS. Child obesity and fitness levels among Kenyan and Canadian children from urban and rural environments: a KIDS-CAN Research Alliance Study. Int J Pediatr Obes IJPO Off J Int Assoc Study Obes. 2011;6(2–2):e225–232. Adamo KB, Sheel AW, Onywera V, Waudo J, Boit M, Tremblay MS. Child obesity and fitness levels among Kenyan and Canadian children from urban and rural environments: a KIDS-CAN Research Alliance Study. Int J Pediatr Obes IJPO Off J Int Assoc Study Obes. 2011;6(2–2):e225–232.
41.
go back to reference Ballard, TJ, Kepple AW, Cafiero C. The food insecurity experience scale. Development of a global standard for monitoring hunger worldwide. Rome: Food and Agriculture Organization of the United Nations; 2013. Ballard, TJ, Kepple AW, Cafiero C. The food insecurity experience scale. Development of a global standard for monitoring hunger worldwide. Rome: Food and Agriculture Organization of the United Nations; 2013.
42.
go back to reference Sirico F, Bianco A, D’Alicandro G, Castaldo C, Montagnani S, Spera R, et al. Effects of Physical Exercise on Adiponectin, Leptin, and Inflammatory Markers in Childhood Obesity: Systematic Review and Meta-Analysis. Child Obes Print. 2018;14(4):207–17.CrossRef Sirico F, Bianco A, D’Alicandro G, Castaldo C, Montagnani S, Spera R, et al. Effects of Physical Exercise on Adiponectin, Leptin, and Inflammatory Markers in Childhood Obesity: Systematic Review and Meta-Analysis. Child Obes Print. 2018;14(4):207–17.CrossRef
43.
go back to reference Racil G, Zouhal H, Elmontassar W, Ben Abderrahmane A, De Sousa MV, Chamari K, et al. Plyometric exercise combined with high-intensity interval training improves metabolic abnormalities in young obese females more so than interval training alone. Appl Physiol Nutr Metab Physiol Appl Nutr Metab. 2016;41(1):103–9.CrossRef Racil G, Zouhal H, Elmontassar W, Ben Abderrahmane A, De Sousa MV, Chamari K, et al. Plyometric exercise combined with high-intensity interval training improves metabolic abnormalities in young obese females more so than interval training alone. Appl Physiol Nutr Metab Physiol Appl Nutr Metab. 2016;41(1):103–9.CrossRef
44.
go back to reference Vasconcellos F, Seabra A, Cunha F, Montenegro R, Penha J, Bouskela E, et al. Health markers in obese adolescents improved by a 12-week recreational soccer program: a randomised controlled trial. J Sports Sci. 2016;34(6):564–75.PubMedCrossRef Vasconcellos F, Seabra A, Cunha F, Montenegro R, Penha J, Bouskela E, et al. Health markers in obese adolescents improved by a 12-week recreational soccer program: a randomised controlled trial. J Sports Sci. 2016;34(6):564–75.PubMedCrossRef
45.
go back to reference Karacabey K. The effect of exercise on leptin, insulin, cortisol and lipid profiles in obese children. J Int Med Res. 2009;37(5):1472–8.PubMedCrossRef Karacabey K. The effect of exercise on leptin, insulin, cortisol and lipid profiles in obese children. J Int Med Res. 2009;37(5):1472–8.PubMedCrossRef
46.
go back to reference Fedewa MV, Hathaway ED, Ward-Ritacco CL, Williams TD, Dobbs WC. The Effect of Chronic Exercise Training on Leptin: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Sports Med. 2018;48(6):1437–50.PubMedCrossRef Fedewa MV, Hathaway ED, Ward-Ritacco CL, Williams TD, Dobbs WC. The Effect of Chronic Exercise Training on Leptin: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Sports Med. 2018;48(6):1437–50.PubMedCrossRef
47.
go back to reference Carrera O, Adan RAH, Gutierrez E, Danner UN, Hoek HW, van Elburg AA, et al. Hyperactivity in anorexia nervosa: warming up not just burning-off calories. PloS One. 2012;7(7)e41851.PubMedPubMedCentralCrossRef Carrera O, Adan RAH, Gutierrez E, Danner UN, Hoek HW, van Elburg AA, et al. Hyperactivity in anorexia nervosa: warming up not just burning-off calories. PloS One. 2012;7(7)e41851.PubMedPubMedCentralCrossRef
48.
go back to reference Hebebrand J, Exner C, Hebebrand K, Holtkamp C, Casper RC, Remschmidt H, et al. Hyperactivity in patients with anorexia nervosa and in semistarved rats: evidence for a pivotal role of hypoleptinemia. Physiol Behav. 2003;79(1):25–37.PubMedCrossRef Hebebrand J, Exner C, Hebebrand K, Holtkamp C, Casper RC, Remschmidt H, et al. Hyperactivity in patients with anorexia nervosa and in semistarved rats: evidence for a pivotal role of hypoleptinemia. Physiol Behav. 2003;79(1):25–37.PubMedCrossRef
49.
go back to reference Kelesidis T, Kelesidis I, Chou S, Mantzoros CS. Narrative Review: The Role of Leptin in Human Physiology: Emerging Clinical Applications. Ann Intern Med. 2010;152(2):93.PubMedPubMedCentralCrossRef Kelesidis T, Kelesidis I, Chou S, Mantzoros CS. Narrative Review: The Role of Leptin in Human Physiology: Emerging Clinical Applications. Ann Intern Med. 2010;152(2):93.PubMedPubMedCentralCrossRef
50.
go back to reference Upadhyay J, Farr OM, Mantzoros CS. The role of leptin in regulating bone metabolism. Metabolism. 2015;64(1):105–13.PubMedCrossRef Upadhyay J, Farr OM, Mantzoros CS. The role of leptin in regulating bone metabolism. Metabolism. 2015;64(1):105–13.PubMedCrossRef
51.
go back to reference Steene-Johannessen J, Hansen BH, Dalene KE, Kolle E, Northstone K, Møller NC, et al. Variations in accelerometry measured physical activity and sedentary time across Europe - harmonized analyses of 47,497 children and adolescents. Int J Behav Nutr Phys Act. 2020;17(1):38.PubMedPubMedCentralCrossRef Steene-Johannessen J, Hansen BH, Dalene KE, Kolle E, Northstone K, Møller NC, et al. Variations in accelerometry measured physical activity and sedentary time across Europe - harmonized analyses of 47,497 children and adolescents. Int J Behav Nutr Phys Act. 2020;17(1):38.PubMedPubMedCentralCrossRef
52.
go back to reference Ojiambo RM, Easton C, Casajús JA, Konstabel K, Reilly JJ, Pitsiladis Y. Effect of urbanization on objectively measured physical activity levels, sedentary time, and indices of adiposity in Kenyan adolescents. J Phys Act Health. 2012;9(1):115–23.PubMedCrossRef Ojiambo RM, Easton C, Casajús JA, Konstabel K, Reilly JJ, Pitsiladis Y. Effect of urbanization on objectively measured physical activity levels, sedentary time, and indices of adiposity in Kenyan adolescents. J Phys Act Health. 2012;9(1):115–23.PubMedCrossRef
53.
go back to reference Muthuri SK, Wachira LJM, Onywera VO, Tremblay MS. Correlates of objectively measured overweight/obesity and physical activity in Kenyan school children: results from ISCOLE-Kenya. BMC Public Health. 2014;14(1):436.PubMedPubMedCentralCrossRef Muthuri SK, Wachira LJM, Onywera VO, Tremblay MS. Correlates of objectively measured overweight/obesity and physical activity in Kenyan school children: results from ISCOLE-Kenya. BMC Public Health. 2014;14(1):436.PubMedPubMedCentralCrossRef
54.
go back to reference Guthold R, Stevens GA, Riley LM, Bull FC. Global trends in insufficient physical activity among adolescents: a pooled analysis of 298 population-based surveys with 1·6 million participants. Lancet Child Adolesc Health. 2020;4(1):23–35.PubMedPubMedCentralCrossRef Guthold R, Stevens GA, Riley LM, Bull FC. Global trends in insufficient physical activity among adolescents: a pooled analysis of 298 population-based surveys with 1·6 million participants. Lancet Child Adolesc Health. 2020;4(1):23–35.PubMedPubMedCentralCrossRef
55.
go back to reference Belcher BR, Chou C-P, Nguyen-Rodriguez ST, Hsu Y-W, Byrd-Williams CE, McClain AD, et al. Leptin predicts a decline in moderate to vigorous physical activity in minority female children at risk for obesity. Pediatr Obes. 2013;8(1):70–7.PubMedCrossRef Belcher BR, Chou C-P, Nguyen-Rodriguez ST, Hsu Y-W, Byrd-Williams CE, McClain AD, et al. Leptin predicts a decline in moderate to vigorous physical activity in minority female children at risk for obesity. Pediatr Obes. 2013;8(1):70–7.PubMedCrossRef
56.
go back to reference IBL INTERNATIONAL GMBH. Leptin ELISA. Enzyme immunoassay for the quantitative determination of human Leptin in human serum and plasma. Hamburg, Germany; 2016. IBL INTERNATIONAL GMBH. Leptin ELISA. Enzyme immunoassay for the quantitative determination of human Leptin in human serum and plasma. Hamburg, Germany; 2016.
58.
go back to reference Bobbert T, Mai K, Brechtel L, Schulte HM, Weger B, Pfeiffer AFH, et al. Leptin and Endocrine Parameters in Marathon Runners. Int J Sports Med. 2012;33(3):244–8.PubMedCrossRef Bobbert T, Mai K, Brechtel L, Schulte HM, Weger B, Pfeiffer AFH, et al. Leptin and Endocrine Parameters in Marathon Runners. Int J Sports Med. 2012;33(3):244–8.PubMedCrossRef
59.
go back to reference Briend A, Khara T, Dolan C. Wasting and stunting–similarities and differences: policy and programmatic implications. Food Nutr Bull. 2015;36(1 Suppl):S15-23.PubMedCrossRef Briend A, Khara T, Dolan C. Wasting and stunting–similarities and differences: policy and programmatic implications. Food Nutr Bull. 2015;36(1 Suppl):S15-23.PubMedCrossRef
60.
go back to reference Van Der Horst K, Paw MJCA, Twisk JWR, Van Mechelen W. A brief review on correlates of physical activity and sedentariness in youth. Med Sci Sports Exerc. 2007;39(8):1241–50.CrossRef Van Der Horst K, Paw MJCA, Twisk JWR, Van Mechelen W. A brief review on correlates of physical activity and sedentariness in youth. Med Sci Sports Exerc. 2007;39(8):1241–50.CrossRef
61.
go back to reference Blum WF, Juul A. Reference ranges of serum leptin. In: Blum WF, Kies W, editors. Leptin- the voice of adipose tissue. Heidelberg: Johann Ambrosius Verlag; 1997.CrossRef Blum WF, Juul A. Reference ranges of serum leptin. In: Blum WF, Kies W, editors. Leptin- the voice of adipose tissue. Heidelberg: Johann Ambrosius Verlag; 1997.CrossRef
62.
go back to reference Ministry of Health, Community Development, Gender, lderly and Children (MoHCDGEC) [Tanzania Mainland], Ministry of Health (MoH) [Zanzibar], National Bureau of Statistics (NBS), Office of the Chief Government Statistician (OCGS), and ICF. 2016. Tanzania Demographic and Health Survey and Malaria Indicator Survey (TDHS-MIS) 2015–16. Dar es Salaam, Tanzania, and Rockville, Maryland, USA: MoHCDGEC, MoH, NBS, OCGS, and ICF.; 2016. Available from: https://dhsprogram.com/pubs/pdf/FR321/FR321.pdf. Accessed 3 Jul 2018. Ministry of Health, Community Development, Gender, lderly and Children (MoHCDGEC) [Tanzania Mainland], Ministry of Health (MoH) [Zanzibar], National Bureau of Statistics (NBS), Office of the Chief Government Statistician (OCGS), and ICF. 2016. Tanzania Demographic and Health Survey and Malaria Indicator Survey (TDHS-MIS) 2015–16. Dar es Salaam, Tanzania, and Rockville, Maryland, USA: MoHCDGEC, MoH, NBS, OCGS, and ICF.; 2016. Available from: https://​dhsprogram.​com/​pubs/​pdf/​FR321/​FR321.​pdf. Accessed 3 Jul 2018.
63.
go back to reference FAO, Ifad, UNICEF, WFP and WHO. The State of Food Security and Nutrition in the World. Safeguarding against economic slowdowns and downturns. Rome: FAO; 2019. FAO, Ifad, UNICEF, WFP and WHO. The State of Food Security and Nutrition in the World. Safeguarding against economic slowdowns and downturns. Rome: FAO; 2019.
64.
go back to reference Rebacz E. Age at menarche in schoolgirls from Tanzania in light of socioeconomic and sociodemographic conditioning. Coll Antropol. 2009;33(1):23–9.PubMed Rebacz E. Age at menarche in schoolgirls from Tanzania in light of socioeconomic and sociodemographic conditioning. Coll Antropol. 2009;33(1):23–9.PubMed
65.
go back to reference Schaab M, Kratzsch J. The soluble leptin receptor. Best Pract Res Clin Endocrinol Metab. 2015;29(5):661–70.PubMedCrossRef Schaab M, Kratzsch J. The soluble leptin receptor. Best Pract Res Clin Endocrinol Metab. 2015;29(5):661–70.PubMedCrossRef
66.
go back to reference Traurig MT, Perez JM, Ma L, Bian L, Kobes S, Hanson RL, et al. Variants in the LEPR gene are nominally associated with higher BMI and lower 24-h energy expenditure in Pima Indians. Obes Silver Spring Md. 2012;20(12):2426–30.CrossRef Traurig MT, Perez JM, Ma L, Bian L, Kobes S, Hanson RL, et al. Variants in the LEPR gene are nominally associated with higher BMI and lower 24-h energy expenditure in Pima Indians. Obes Silver Spring Md. 2012;20(12):2426–30.CrossRef
67.
go back to reference Walsh S, Haddad C, Kostek M, Angelopoulos T, Clarkson P, Gordon P, et al. Leptin and Leptin Receptor Genetic Variants Associate with Habitual Physical Activity and the Arm Body Composition Response to Resistance Training. Gene. 2012;510(1):66–70.PubMedPubMedCentralCrossRef Walsh S, Haddad C, Kostek M, Angelopoulos T, Clarkson P, Gordon P, et al. Leptin and Leptin Receptor Genetic Variants Associate with Habitual Physical Activity and the Arm Body Composition Response to Resistance Training. Gene. 2012;510(1):66–70.PubMedPubMedCentralCrossRef
Metadata
Title
Low leptin levels are associated with elevated physical activity among lean school children in rural Tanzania
Authors
Christine Ludwig
Nadja Knoll-Pientka
Akwilina Mwanri
Celina Erfle
Vincent Onywera
Mark S. Tremblay
Judith Bühlmeier
Agnes Luzak
Maike Ferland
Holger Schulz
Lars Libuda
Johannes Hebebrand
Publication date
01-12-2022
Publisher
BioMed Central
Published in
BMC Public Health / Issue 1/2022
Electronic ISSN: 1471-2458
DOI
https://doi.org/10.1186/s12889-022-12949-9

Other articles of this Issue 1/2022

BMC Public Health 1/2022 Go to the issue