Skip to main content
Top
Published in: Journal of Translational Medicine 1/2016

Open Access 01-12-2016 | Research

Long noncoding RNA dysregulation in ischemic heart failure

Authors: Simona Greco, Germana Zaccagnini, Alessandra Perfetti, Paola Fuschi, Rea Valaperta, Christine Voellenkle, Serenella Castelvecchio, Carlo Gaetano, Nicoletta Finato, Antonio Paolo Beltrami, Lorenzo Menicanti, Fabio Martelli

Published in: Journal of Translational Medicine | Issue 1/2016

Login to get access

Abstract

Background

Long noncoding RNAs (lncRNAs) are non-protein coding transcripts regulating a variety of physiological and pathological functions. However, their implication in heart failure is still largely unknown. The aim of this study is to identify and characterize lncRNAs deregulated in patients affected by ischemic heart failure.

Methods

LncRNAs were profiled and validated in left ventricle biopsies of 18 patients affected by non end-stage dilated ischemic cardiomyopathy and 17 matched controls. Further validations were performed in left ventricle samples derived from explanted hearts of end-stage heart failure patients and in a mouse model of cardiac hypertrophy, obtained by transverse aortic constriction. Peripheral blood mononuclear cells of heart failure patients were also analyzed. LncRNA distribution in the heart was assessed by in situ hybridization. Function of the deregulated lncRNA was explored analyzing the expression of the neighbor mRNAs and by gene ontology analysis of the correlating coding transcripts.

Results

Fourteen lncRNAs were significantly modulated in non end-stage heart failure patients, identifying a heart failure lncRNA signature. Nine of these lncRNAs (CDKN2B-AS1/ANRIL, EGOT, H19, HOTAIR, LOC285194/TUSC7, RMRP, RNY5, SOX2-OT and SRA1) were also confirmed in end-stage failing hearts. Intriguingly, among the conserved lncRNAs, h19, rmrp and hotair were also induced in a mouse model of heart hypertrophy. CDKN2B-AS1/ANRIL, HOTAIR and LOC285194/TUSC7 showed similar modulation in peripheral blood mononuclear cells and heart tissue, suggesting a potential role as disease biomarkers. Interestingly, RMRP displayed a ubiquitous nuclear distribution, while H19 RNA was more abundant in blood vessels and was both cytoplasmic and nuclear. Gene ontology analysis of the mRNAs displaying a significant correlation in expression with heart failure lncRNAs identified numerous pathways and functions involved in heart failure progression.

Conclusions

These data strongly suggest lncRNA implication in the molecular mechanisms underpinning HF.
Appendix
Available only for authorised users
Literature
1.
go back to reference Hunt SA, Abraham WT, Marshall H, Feldman AM, Francis GS, Ganiats TG, Jessup M, Konstam MA, Mancini DM, Michl K, Oates JA, Peter S, Silver MA, Stevenson LW, Yancy CW, Antman EM, Smith SC, Adams CD, Anderson JL, David P, Fuster V, Halperin JL, Hiratzka LF, Hunt SA, Jacobs AK, Nishimura R, Ornato JP, Page RL, Riegel B. ACC/AHA practice guidelines ACC/AHA 2005 guideline update for the diagnosis and management of chronic heart failure in the adult. Circulation. 2005;112:154–235.CrossRef Hunt SA, Abraham WT, Marshall H, Feldman AM, Francis GS, Ganiats TG, Jessup M, Konstam MA, Mancini DM, Michl K, Oates JA, Peter S, Silver MA, Stevenson LW, Yancy CW, Antman EM, Smith SC, Adams CD, Anderson JL, David P, Fuster V, Halperin JL, Hiratzka LF, Hunt SA, Jacobs AK, Nishimura R, Ornato JP, Page RL, Riegel B. ACC/AHA practice guidelines ACC/AHA 2005 guideline update for the diagnosis and management of chronic heart failure in the adult. Circulation. 2005;112:154–235.CrossRef
2.
go back to reference Creemers EE, Wilde AA, Pinto YM. Heart failure: advances through genomics. Nat Rev Genet. 2011;12:357–62.CrossRefPubMed Creemers EE, Wilde AA, Pinto YM. Heart failure: advances through genomics. Nat Rev Genet. 2011;12:357–62.CrossRefPubMed
3.
go back to reference ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489:57–74.CrossRef ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489:57–74.CrossRef
4.
5.
go back to reference Greco S, Gorospe M, Martelli F. Noncoding RNA in age-related cardiovascular diseases. J Mol Cell Cardiol. 2015;83:142–55.CrossRefPubMed Greco S, Gorospe M, Martelli F. Noncoding RNA in age-related cardiovascular diseases. J Mol Cell Cardiol. 2015;83:142–55.CrossRefPubMed
6.
go back to reference van Rooij E, Olson EN. MicroRNA therapeutics for cardiovascular disease: opportunities and obstacles. Nat Rev Drug Discov. 2012;11:860–72.CrossRefPubMed van Rooij E, Olson EN. MicroRNA therapeutics for cardiovascular disease: opportunities and obstacles. Nat Rev Drug Discov. 2012;11:860–72.CrossRefPubMed
7.
go back to reference Almeida MI, Reis RM, Calin GA. MicroRNA history: discovery, recent applications, and next frontiers. Mutat Res. 2011;717:1–8.CrossRefPubMed Almeida MI, Reis RM, Calin GA. MicroRNA history: discovery, recent applications, and next frontiers. Mutat Res. 2011;717:1–8.CrossRefPubMed
8.
go back to reference Taft RJ, Pang KC, Mercer TR, Dinger M, Mattick JS. Non-coding RNAs: regulators of disease. J Pathol. 2010;220:126–39.CrossRefPubMed Taft RJ, Pang KC, Mercer TR, Dinger M, Mattick JS. Non-coding RNAs: regulators of disease. J Pathol. 2010;220:126–39.CrossRefPubMed
9.
go back to reference Dimmeler S, Marian AJ, Olson E, Thum T, Condorelli G. Long noncoding RNAs and microRNAs in cardiovascular pathophysiology. Circ Res. 2015;116:751–63.CrossRef Dimmeler S, Marian AJ, Olson E, Thum T, Condorelli G. Long noncoding RNAs and microRNAs in cardiovascular pathophysiology. Circ Res. 2015;116:751–63.CrossRef
11.
go back to reference Beltrami C, Angelini TG, Emanueli C. Noncoding RNAs in diabetes vascular complications. J Mol Cell Cardiol. 2014;89:1–9. Beltrami C, Angelini TG, Emanueli C. Noncoding RNAs in diabetes vascular complications. J Mol Cell Cardiol. 2014;89:1–9.
12.
go back to reference Di Salvo TG, Guo Y, Su YR, Clark T, Brittain E, Absi T, Maltais S, Hemnes A. Right ventricular long noncoding RNA expression in human heart failure. Pulm Circ. 2015;5:135–61.CrossRefPubMedPubMedCentral Di Salvo TG, Guo Y, Su YR, Clark T, Brittain E, Absi T, Maltais S, Hemnes A. Right ventricular long noncoding RNA expression in human heart failure. Pulm Circ. 2015;5:135–61.CrossRefPubMedPubMedCentral
13.
go back to reference Di Salvo TG, Yang KC, Brittain E, Absi T, Maltais S. Right ventricular myocardial biomarkers in human heart failure. J Card Fail. 2015;21:398–411.CrossRefPubMed Di Salvo TG, Yang KC, Brittain E, Absi T, Maltais S. Right ventricular myocardial biomarkers in human heart failure. J Card Fail. 2015;21:398–411.CrossRefPubMed
14.
go back to reference Matkovich SJ, Edwards JR, Grossenheider TC, Strong CDG, Ii GWD. Epigenetic coordination of embryonic heart transcription by dynamically regulated long noncoding RNAs. Proc Natl Acad Sci. 2014;111:1–6.CrossRef Matkovich SJ, Edwards JR, Grossenheider TC, Strong CDG, Ii GWD. Epigenetic coordination of embryonic heart transcription by dynamically regulated long noncoding RNAs. Proc Natl Acad Sci. 2014;111:1–6.CrossRef
15.
go back to reference Devaux Y, Zangrando J, Schroen B, Creemers EE, Pedrazzini T, Chang CP, Dorn GW 2nd, Thum T, Heymans S. Long noncoding RNAs in cardiac development and ageing. Nat Rev Cardiol. 2015;12:415–25.CrossRefPubMed Devaux Y, Zangrando J, Schroen B, Creemers EE, Pedrazzini T, Chang CP, Dorn GW 2nd, Thum T, Heymans S. Long noncoding RNAs in cardiac development and ageing. Nat Rev Cardiol. 2015;12:415–25.CrossRefPubMed
16.
go back to reference Ounzain S, Burdet F, Ibberson M, Pedrazzini T. Discovery and functional characterization of cardiovascular long noncoding RNAs. J Mol Cell Cardiol. 2015;89:17–26.CrossRefPubMed Ounzain S, Burdet F, Ibberson M, Pedrazzini T. Discovery and functional characterization of cardiovascular long noncoding RNAs. J Mol Cell Cardiol. 2015;89:17–26.CrossRefPubMed
17.
go back to reference Greco S, Fasanaro P, Castelvecchio S, D’Alessandra Y, Arcelli D, Di Donato M, Malavazos A, Capogrossi MC, Menicanti L, Martelli F. MicroRNA dysregulation in diabetic ischemic heart failure patients. Diabetes. 2012;61:1633–41.CrossRefPubMedPubMedCentral Greco S, Fasanaro P, Castelvecchio S, D’Alessandra Y, Arcelli D, Di Donato M, Malavazos A, Capogrossi MC, Menicanti L, Martelli F. MicroRNA dysregulation in diabetic ischemic heart failure patients. Diabetes. 2012;61:1633–41.CrossRefPubMedPubMedCentral
18.
19.
go back to reference Voellenkle C, van Rooij J, Cappuzzello C, Greco S, Arcelli D, Di Vito L, Melillo G, Rigolini R, Costa E, Crea F, Capogrossi MC, Napolitano M, Martelli F. MicroRNA signatures in peripheral blood mononuclear cells of chronic heart failure patients. Physiol Genom. 2010;42:420–6.CrossRef Voellenkle C, van Rooij J, Cappuzzello C, Greco S, Arcelli D, Di Vito L, Melillo G, Rigolini R, Costa E, Crea F, Capogrossi MC, Napolitano M, Martelli F. MicroRNA signatures in peripheral blood mononuclear cells of chronic heart failure patients. Physiol Genom. 2010;42:420–6.CrossRef
20.
go back to reference Hu P, Zhang D, Swenson L, Chakrabarti G, Abel ED, Litwin SE. Minimally invasive aortic banding in mice: effects of altered cardiomyocyte insulin signaling during pressure overload. Am J Physiol Heart Circ Physiol. 2003;285:H1261–9.CrossRefPubMed Hu P, Zhang D, Swenson L, Chakrabarti G, Abel ED, Litwin SE. Minimally invasive aortic banding in mice: effects of altered cardiomyocyte insulin signaling during pressure overload. Am J Physiol Heart Circ Physiol. 2003;285:H1261–9.CrossRefPubMed
21.
go back to reference Tanaka N, Dalton N, Mao L, Rockman HA, Peterson KL, Gottshall KR, Hunter JJ, Chien KR, Ross JJ. Transthoracic echocardiography in models of cardiac disease in the mouse. Circulation. 1996;94:1109–17.CrossRefPubMed Tanaka N, Dalton N, Mao L, Rockman HA, Peterson KL, Gottshall KR, Hunter JJ, Chien KR, Ross JJ. Transthoracic echocardiography in models of cardiac disease in the mouse. Circulation. 1996;94:1109–17.CrossRefPubMed
22.
go back to reference Greco S, De Simone M, Colussi C, Zaccagnini G, Fasanaro P, Pescatori M, Cardani R, Perbellini R, Isaia E, Sale P, Meola G, Capogrossi MC, Gaetano C, Martelli F. Common micro-RNA signature in skeletal muscle damage and regeneration induced by Duchenne muscular dystrophy and acute ischemia. FASEB J. 2009;23:3335–46.CrossRefPubMed Greco S, De Simone M, Colussi C, Zaccagnini G, Fasanaro P, Pescatori M, Cardani R, Perbellini R, Isaia E, Sale P, Meola G, Capogrossi MC, Gaetano C, Martelli F. Common micro-RNA signature in skeletal muscle damage and regeneration induced by Duchenne muscular dystrophy and acute ischemia. FASEB J. 2009;23:3335–46.CrossRefPubMed
23.
go back to reference Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods. 2001;25:402–8.CrossRefPubMed Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods. 2001;25:402–8.CrossRefPubMed
27.
go back to reference Cappuzzello C, Napolitano M, Arcelli D, Melillo G, Melchionna R, Di Vito L, Carlini D, Silvestri L, Brugaletta S, Liuzzo G, Crea F, Capogrossi MC. Gene expression profiles in peripheral blood mononuclear cells of chronic heart failure patients. Physiol Genom. 2009;38:233–40.CrossRef Cappuzzello C, Napolitano M, Arcelli D, Melillo G, Melchionna R, Di Vito L, Carlini D, Silvestri L, Brugaletta S, Liuzzo G, Crea F, Capogrossi MC. Gene expression profiles in peripheral blood mononuclear cells of chronic heart failure patients. Physiol Genom. 2009;38:233–40.CrossRef
28.
go back to reference Kittleson MM, Minhas KM, Irizarry RA, Ye SQ, Breton E, Conte JV, Tomaselli G, Garcia JGN, Hare JM, Kittleson MM, Minhas KM, Irizarry RA, Ye SQ, Edness G, Breton E, Conte JV, Tomaselli G, Garcia JGN, Hare JM, Ye SQ, Edness G, Breton E, Conte JV, Garcia JGN, Hare JM. Gene expression analysis of ischemic and nonischemic cardiomyopathy: shared and distinct genes in the development of heart failure. Physiol Genom. 2007;21:299–307.CrossRef Kittleson MM, Minhas KM, Irizarry RA, Ye SQ, Breton E, Conte JV, Tomaselli G, Garcia JGN, Hare JM, Kittleson MM, Minhas KM, Irizarry RA, Ye SQ, Edness G, Breton E, Conte JV, Tomaselli G, Garcia JGN, Hare JM, Ye SQ, Edness G, Breton E, Conte JV, Garcia JGN, Hare JM. Gene expression analysis of ischemic and nonischemic cardiomyopathy: shared and distinct genes in the development of heart failure. Physiol Genom. 2007;21:299–307.CrossRef
30.
go back to reference Menzel U. EMT: exact multinomial test: goodness-of-fit test for discrete multivariate data. R package version 1.1. 2013. Menzel U. EMT: exact multinomial test: goodness-of-fit test for discrete multivariate data. R package version 1.1. 2013.
32.
go back to reference Cugino D, Gianfagna F, Santimone I, de Gaetano G, Donati MB, Iacoviello L, Di Castelnuovo A. Type 2 diabetes and polymorphisms on chromosome 9p21: a meta-analysis. Nutr Metab Cardiovasc Dis. 2012;22:619–25.CrossRefPubMed Cugino D, Gianfagna F, Santimone I, de Gaetano G, Donati MB, Iacoviello L, Di Castelnuovo A. Type 2 diabetes and polymorphisms on chromosome 9p21: a meta-analysis. Nutr Metab Cardiovasc Dis. 2012;22:619–25.CrossRefPubMed
34.
go back to reference Lin H-F, Tsai P-C, Lin R-T, Khor G-T, Sheu S-H, Juo SHH. Sex differential genetic effect of chromosome 9p21 on subclinical atherosclerosis. PLoS ONE. 2010;5:e15124.CrossRefPubMedPubMedCentral Lin H-F, Tsai P-C, Lin R-T, Khor G-T, Sheu S-H, Juo SHH. Sex differential genetic effect of chromosome 9p21 on subclinical atherosclerosis. PLoS ONE. 2010;5:e15124.CrossRefPubMedPubMedCentral
35.
go back to reference Scheffold T, Kullmann S, Huge A, Binner P, Ochs HR, Schols W, Thale J, Motz W, Hegge FJ, Stellbrink C, Dorsel T, Gulker H, Heuer H, Dinh W, Stoll M, Haltern G. Six sequence variants on chromosome 9p21.3 are associated with a positive family history of myocardial infarction: a multicenter registry. BMC Cardiovasc Disord. 2011;11:9.CrossRefPubMedPubMedCentral Scheffold T, Kullmann S, Huge A, Binner P, Ochs HR, Schols W, Thale J, Motz W, Hegge FJ, Stellbrink C, Dorsel T, Gulker H, Heuer H, Dinh W, Stoll M, Haltern G. Six sequence variants on chromosome 9p21.3 are associated with a positive family history of myocardial infarction: a multicenter registry. BMC Cardiovasc Disord. 2011;11:9.CrossRefPubMedPubMedCentral
36.
go back to reference Garcia-Menendez L, Karamanlidis G, Kolwicz S, Tian R. Substrain specific response to cardiac pressure overload in C57BL/6 mice. Am J Physiol Heart Circ Physiol. 2013;305:H397–402.CrossRefPubMedPubMedCentral Garcia-Menendez L, Karamanlidis G, Kolwicz S, Tian R. Substrain specific response to cardiac pressure overload in C57BL/6 mice. Am J Physiol Heart Circ Physiol. 2013;305:H397–402.CrossRefPubMedPubMedCentral
37.
go back to reference Liu Y, Shen Y, Zhu J, Liu M, Li X, Chen Y, Kong X, Song G, Qian L. Cardiac-specific PID1 overexpression enhances pressure overload-induced cardiac hypertrophy in mice. Cell Physiol Biochem. 2015;35:1975–85.CrossRefPubMed Liu Y, Shen Y, Zhu J, Liu M, Li X, Chen Y, Kong X, Song G, Qian L. Cardiac-specific PID1 overexpression enhances pressure overload-induced cardiac hypertrophy in mice. Cell Physiol Biochem. 2015;35:1975–85.CrossRefPubMed
38.
go back to reference Di Stefano V, Zaccagnini G, Capogrossi MC, Martelli F. MicroRNAs as peripheral blood biomarkers of cardiovascular disease. Vasc Pharmacol. 2011;55:111–8.CrossRef Di Stefano V, Zaccagnini G, Capogrossi MC, Martelli F. MicroRNAs as peripheral blood biomarkers of cardiovascular disease. Vasc Pharmacol. 2011;55:111–8.CrossRef
40.
go back to reference Levsky JM, Singer RH. Fluorescence in situ hybridization: past, present and future. J Cell Sci. 2003;116(Pt 14):2833–8.CrossRefPubMed Levsky JM, Singer RH. Fluorescence in situ hybridization: past, present and future. J Cell Sci. 2003;116(Pt 14):2833–8.CrossRefPubMed
42.
go back to reference Bustin SA, Benes V, Nolan T, Pfaffl MW. Quantitative real-time RT-PCR–a perspective. J Mol Endocrinol. 2005;34:597–601.CrossRefPubMed Bustin SA, Benes V, Nolan T, Pfaffl MW. Quantitative real-time RT-PCR–a perspective. J Mol Endocrinol. 2005;34:597–601.CrossRefPubMed
43.
go back to reference Voellenkle C, Garcia-Manteiga JM, Pedrotti S, Perfetti A, De Toma I, Da Silva D, Maimone B, Greco S, Fasanaro P, Creo P, Zaccagnini G, Gaetano C, Martelli F. Implication of long noncoding RNAs in the endothelial cell response to hypoxia revealed by RNA-sequencing. Sci Rep. 2016;6:24141.CrossRefPubMedPubMedCentral Voellenkle C, Garcia-Manteiga JM, Pedrotti S, Perfetti A, De Toma I, Da Silva D, Maimone B, Greco S, Fasanaro P, Creo P, Zaccagnini G, Gaetano C, Martelli F. Implication of long noncoding RNAs in the endothelial cell response to hypoxia revealed by RNA-sequencing. Sci Rep. 2016;6:24141.CrossRefPubMedPubMedCentral
44.
go back to reference Berteaux N, Aptel N, Cathala G, Genton C, Coll J, Daccache A, Spruyt N, Hondermarck H, Dugimont T, Curgy J-J, Forne T, Adriaenssens E. A novel H19 antisense RNA overexpressed in breast cancer contributes to paternal IGF2 expression. Mol Cell Biol. 2008;28:6731–45.CrossRefPubMedPubMedCentral Berteaux N, Aptel N, Cathala G, Genton C, Coll J, Daccache A, Spruyt N, Hondermarck H, Dugimont T, Curgy J-J, Forne T, Adriaenssens E. A novel H19 antisense RNA overexpressed in breast cancer contributes to paternal IGF2 expression. Mol Cell Biol. 2008;28:6731–45.CrossRefPubMedPubMedCentral
45.
go back to reference van Heesch S, van Iterson M, Jacobi J, Boymans S, Essers PB, de Bruijn E, Hao W, MacInnes AW, Cuppen E, Simonis M. Extensive localization of long noncoding RNAs to the cytosol and mono- and polyribosomal complexes. Genome Biol. 2014;15:R6.CrossRefPubMedPubMedCentral van Heesch S, van Iterson M, Jacobi J, Boymans S, Essers PB, de Bruijn E, Hao W, MacInnes AW, Cuppen E, Simonis M. Extensive localization of long noncoding RNAs to the cytosol and mono- and polyribosomal complexes. Genome Biol. 2014;15:R6.CrossRefPubMedPubMedCentral
46.
go back to reference Greco S, Gorospe M, Martelli F. Noncoding RNA in age-related cardiovascular diseases. J Mol Cell Cardiol. 2015;83:142–55.CrossRefPubMed Greco S, Gorospe M, Martelli F. Noncoding RNA in age-related cardiovascular diseases. J Mol Cell Cardiol. 2015;83:142–55.CrossRefPubMed
47.
go back to reference Liu Q, Huang J, Zhou N, Zhang Z, Zhang A, Lu Z, Wu F, Mo Y-Y. LncRNA loc285194 is a p53-regulated tumor suppressor. Nucleic Acids Res. 2013;41:4976–87.CrossRefPubMedPubMedCentral Liu Q, Huang J, Zhou N, Zhang Z, Zhang A, Lu Z, Wu F, Mo Y-Y. LncRNA loc285194 is a p53-regulated tumor suppressor. Nucleic Acids Res. 2013;41:4976–87.CrossRefPubMedPubMedCentral
48.
go back to reference Chen J, Lui W-O, Vos MD, Clark GJ, Takahashi M, Schoumans J, Khoo SK, Petillo D, Lavery T, Sugimura J, Astuti D, Zhang C, Kagawa S, Maher ER, Larsson C, Alberts AS, Kanayama H, Teh BT. The t(1;3) breakpoint-spanning genes LSAMP and NORE1 are involved in clear cell renal cell carcinomas. Cancer Cell. 2003;4:405–13.CrossRefPubMed Chen J, Lui W-O, Vos MD, Clark GJ, Takahashi M, Schoumans J, Khoo SK, Petillo D, Lavery T, Sugimura J, Astuti D, Zhang C, Kagawa S, Maher ER, Larsson C, Alberts AS, Kanayama H, Teh BT. The t(1;3) breakpoint-spanning genes LSAMP and NORE1 are involved in clear cell renal cell carcinomas. Cancer Cell. 2003;4:405–13.CrossRefPubMed
49.
go back to reference Ng S, Bogu GK, Soh BS, Stanton LW. The long noncoding RNA RMST interacts with SOX2 to regulate neurogenesis. Mol Cell. 2013;51:349–59.CrossRefPubMed Ng S, Bogu GK, Soh BS, Stanton LW. The long noncoding RNA RMST interacts with SOX2 to regulate neurogenesis. Mol Cell. 2013;51:349–59.CrossRefPubMed
50.
go back to reference Louro R, Smirnova AS, Verjovski-almeida S. Genomics Long intronic noncoding RNA transcription: expression noise or expression choice? Genomics. 2009;93:291–8.CrossRefPubMed Louro R, Smirnova AS, Verjovski-almeida S. Genomics Long intronic noncoding RNA transcription: expression noise or expression choice? Genomics. 2009;93:291–8.CrossRefPubMed
52.
go back to reference Vlassov AV, Magdaleno S, Setterquist R, Conrad R. Biochimica et Biophysica Acta Exosomes: current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials. BBA Gen Subj. 2012;1820:940–8.CrossRef Vlassov AV, Magdaleno S, Setterquist R, Conrad R. Biochimica et Biophysica Acta Exosomes: current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials. BBA Gen Subj. 2012;1820:940–8.CrossRef
53.
go back to reference Loyer X, Vion AC, Tedgui A, Boulanger CM. Microvesicles as cell-cell messengers in cardiovascular diseases. Circ Res. 2014;114:345–53.CrossRefPubMed Loyer X, Vion AC, Tedgui A, Boulanger CM. Microvesicles as cell-cell messengers in cardiovascular diseases. Circ Res. 2014;114:345–53.CrossRefPubMed
54.
55.
go back to reference Marchese FP, Huarte M. Long non-coding RNAs and chromatin modifiers: their place in the epigenetic code. Epigenetics. 2014;9:21–6.CrossRefPubMed Marchese FP, Huarte M. Long non-coding RNAs and chromatin modifiers: their place in the epigenetic code. Epigenetics. 2014;9:21–6.CrossRefPubMed
56.
go back to reference Bhan A, Hussain I, Ansari KI, Kasiri S, Bashyal A, Mandal SS. Antisense transcript long noncoding RNA (lncRNA) HOTAIR is transcriptionally induced by estradiol. J Mol Biol. 2013;425:3707–22.CrossRefPubMedPubMedCentral Bhan A, Hussain I, Ansari KI, Kasiri S, Bashyal A, Mandal SS. Antisense transcript long noncoding RNA (lncRNA) HOTAIR is transcriptionally induced by estradiol. J Mol Biol. 2013;425:3707–22.CrossRefPubMedPubMedCentral
57.
go back to reference Carrion K, Dyo J, Patel V, Sasik R, Mohamed SA, Hardiman G, Nigam V. The long non-coding HOTAIR is modulated by cyclic stretch and WNT/b-CATENIN in human aortic valve cells and is a novel repressor of calcification genes. PLoS ONE. 2014;9:1–7.CrossRef Carrion K, Dyo J, Patel V, Sasik R, Mohamed SA, Hardiman G, Nigam V. The long non-coding HOTAIR is modulated by cyclic stretch and WNT/b-CATENIN in human aortic valve cells and is a novel repressor of calcification genes. PLoS ONE. 2014;9:1–7.CrossRef
58.
go back to reference Sano M, Schneider MD. Cyclins that don’t cycle–cyclin T/cyclin-dependent kinase-9 determines cardiac muscle cell size. Cell Cycle. 2003;2:99–104.CrossRefPubMed Sano M, Schneider MD. Cyclins that don’t cycle–cyclin T/cyclin-dependent kinase-9 determines cardiac muscle cell size. Cell Cycle. 2003;2:99–104.CrossRefPubMed
59.
go back to reference Holdt LM, Beutner F, Scholz M, Gielen S, Gabel G, Bergert H, Schuler G, Thiery J, Teupser D. ANRIL expression is associated with atherosclerosis risk at chromosome 9p21. Arter Thromb Vasc Biol. 2010;30:620–7.CrossRef Holdt LM, Beutner F, Scholz M, Gielen S, Gabel G, Bergert H, Schuler G, Thiery J, Teupser D. ANRIL expression is associated with atherosclerosis risk at chromosome 9p21. Arter Thromb Vasc Biol. 2010;30:620–7.CrossRef
60.
go back to reference Kotake Y, Nakagawa T, Kitagawa K, Suzuki S, Liu N, Kitagawa M, Xiong Y. Long non-coding RNA ANRIL is required for the PRC2 recruitment to and silencing of p15(INK4B) tumor suppressor gene. Oncogene. 2011;30:1956–62.CrossRefPubMed Kotake Y, Nakagawa T, Kitagawa K, Suzuki S, Liu N, Kitagawa M, Xiong Y. Long non-coding RNA ANRIL is required for the PRC2 recruitment to and silencing of p15(INK4B) tumor suppressor gene. Oncogene. 2011;30:1956–62.CrossRefPubMed
61.
go back to reference Yap KL, Li S, Munoz-Cabello AM, Raguz S, Zeng L, Mujtaba S, Gil J, Walsh MJ, Zhou M-M. Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a. Mol Cell. 2010;38:662–74.CrossRefPubMedPubMedCentral Yap KL, Li S, Munoz-Cabello AM, Raguz S, Zeng L, Mujtaba S, Gil J, Walsh MJ, Zhou M-M. Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a. Mol Cell. 2010;38:662–74.CrossRefPubMedPubMedCentral
62.
go back to reference Pilbrow AP, Folkersen L, Pearson JF, Brown CM, McNoe L, Wang NM, Sweet WE, Tang WHW, Black MA, Troughton RW, Richards AM, FrancoCereceda A, Gabrielsen A, Eriksson P, Moravec CS, Cameron VA. The chromosome 9p21.3 coronary heart disease risk allele is associated with altered gene expression in normal heart and vascular tissues. PLoS ONE. 2012;7:1–11.CrossRef Pilbrow AP, Folkersen L, Pearson JF, Brown CM, McNoe L, Wang NM, Sweet WE, Tang WHW, Black MA, Troughton RW, Richards AM, FrancoCereceda A, Gabrielsen A, Eriksson P, Moravec CS, Cameron VA. The chromosome 9p21.3 coronary heart disease risk allele is associated with altered gene expression in normal heart and vascular tissues. PLoS ONE. 2012;7:1–11.CrossRef
63.
go back to reference Holdt LM, Hoffmann S, Sass K, Langenberger D, Scholz M, Krohn K, Finstermeier K, Stahringer A, Wilfert W, Beutner F, Gielen S, Schuler G, Gabel G, Bergert H, Bechmann I, Stadler PF, Thiery J, Teupser D. Alu elements in ANRIL non-coding RNA at chromosome 9p21 modulate atherogenic cell functions through trans-regulation of gene networks. PLoS Genet. 2013;9:e1003588.CrossRefPubMedPubMedCentral Holdt LM, Hoffmann S, Sass K, Langenberger D, Scholz M, Krohn K, Finstermeier K, Stahringer A, Wilfert W, Beutner F, Gielen S, Schuler G, Gabel G, Bergert H, Bechmann I, Stadler PF, Thiery J, Teupser D. Alu elements in ANRIL non-coding RNA at chromosome 9p21 modulate atherogenic cell functions through trans-regulation of gene networks. PLoS Genet. 2013;9:e1003588.CrossRefPubMedPubMedCentral
64.
65.
go back to reference Cooper C, Vincett D, Yan Y, Hamedani MK, Myal Y, Leygue E. Steroid receptor RNA Activator bi-faceted genetic system: heads or tails? Biochimie. 2011;93:1973–80.CrossRefPubMed Cooper C, Vincett D, Yan Y, Hamedani MK, Myal Y, Leygue E. Steroid receptor RNA Activator bi-faceted genetic system: heads or tails? Biochimie. 2011;93:1973–80.CrossRefPubMed
66.
go back to reference Friedrichs F, Zugck C, Rauch G, Friedrichs F, Zugck C, Ivandic B, Weichenhan D, Mu M, Meder B, Eddine N, Mokhtari E, Regitz-zagrosek V, Hetzer R, Scha A, Schreiber S, Chen J, Neuhaus I, Ji R, Siemers NO, Frey N, Rottbauer W, Katus HA, Stoll M. HBEGF, SRA1, and IK: three cosegregating genes as determinants of cardiomyopathy. Genome Res. 2009;19:395–403.CrossRefPubMedPubMedCentral Friedrichs F, Zugck C, Rauch G, Friedrichs F, Zugck C, Ivandic B, Weichenhan D, Mu M, Meder B, Eddine N, Mokhtari E, Regitz-zagrosek V, Hetzer R, Scha A, Schreiber S, Chen J, Neuhaus I, Ji R, Siemers NO, Frey N, Rottbauer W, Katus HA, Stoll M. HBEGF, SRA1, and IK: three cosegregating genes as determinants of cardiomyopathy. Genome Res. 2009;19:395–403.CrossRefPubMedPubMedCentral
67.
go back to reference Lanz RB, Chua SS, Barron N, So BM, Demayo F, Malley BWO. Steroid receptor RNA activator stimulates proliferation as well as apoptosis in vivo. Mol Cell Biol. 2003;23:7163–76.CrossRefPubMedPubMedCentral Lanz RB, Chua SS, Barron N, So BM, Demayo F, Malley BWO. Steroid receptor RNA activator stimulates proliferation as well as apoptosis in vivo. Mol Cell Biol. 2003;23:7163–76.CrossRefPubMedPubMedCentral
68.
go back to reference Brunkow ME, Tilghman SM. Ectopic expression of the H19 gene in mice causes prenatal lethality. Genes Dev. 1991;5:1092–101.CrossRefPubMed Brunkow ME, Tilghman SM. Ectopic expression of the H19 gene in mice causes prenatal lethality. Genes Dev. 1991;5:1092–101.CrossRefPubMed
69.
go back to reference Lee JH, Gao C, Peng G, Greer C, Ren S, Wang Y, Xiao X. Analysis of transcriptome complexity through RNA sequencing in normal and failing murine hearts. Circ Res. 2011;109:1332–41.CrossRefPubMedPubMedCentral Lee JH, Gao C, Peng G, Greer C, Ren S, Wang Y, Xiao X. Analysis of transcriptome complexity through RNA sequencing in normal and failing murine hearts. Circ Res. 2011;109:1332–41.CrossRefPubMedPubMedCentral
70.
go back to reference Kim D, Zhang L, Dzau VJ, Pratt RE. H19, a developmentally regulated gene, is reexpressed in rat vascular smooth muscle cells after injury. J Clin Invest. 1994;93:355–60.CrossRefPubMedPubMedCentral Kim D, Zhang L, Dzau VJ, Pratt RE. H19, a developmentally regulated gene, is reexpressed in rat vascular smooth muscle cells after injury. J Clin Invest. 1994;93:355–60.CrossRefPubMedPubMedCentral
71.
go back to reference Ayesh S, Matouk I, Schneider T, Ohana P, Laster M, Al-Sharef W, De-Groot N, Hochberg A. Possible physiological role of H19 RNA. Mol Carcinog. 2002;35:63–74.CrossRefPubMed Ayesh S, Matouk I, Schneider T, Ohana P, Laster M, Al-Sharef W, De-Groot N, Hochberg A. Possible physiological role of H19 RNA. Mol Carcinog. 2002;35:63–74.CrossRefPubMed
72.
go back to reference Matouk IJ, Mezan S, Mizrahi A, Ohana P, Abu-lail R, Fellig Y, Galun E, Hochberg A. Biochimica et Biophysica Acta The oncofetal H19 RNA connection: hypoxia, p53 and cancer. BBA - Mol Cell Res. 2010;1803:443–51. Matouk IJ, Mezan S, Mizrahi A, Ohana P, Abu-lail R, Fellig Y, Galun E, Hochberg A. Biochimica et Biophysica Acta The oncofetal H19 RNA connection: hypoxia, p53 and cancer. BBA - Mol Cell Res. 2010;1803:443–51.
73.
go back to reference Devlin AM, Bottiglieri T, Domann FE, Lentz SR. Tissue-specific changes in H19 methylation and expression in mice with hyperhomocysteinemia. J Biol Chem. 2005;280:25506–11.CrossRefPubMed Devlin AM, Bottiglieri T, Domann FE, Lentz SR. Tissue-specific changes in H19 methylation and expression in mice with hyperhomocysteinemia. J Biol Chem. 2005;280:25506–11.CrossRefPubMed
74.
go back to reference Li L, Xie J, Zhang M, Wang S. Homocysteine harasses the imprinting expression of IGF2 and H19 by demethylation of differentially methylated region between IGF2/H19 genes. Acta Biochim Biophys Sin (Shanghai). 2009;41:464–71.CrossRef Li L, Xie J, Zhang M, Wang S. Homocysteine harasses the imprinting expression of IGF2 and H19 by demethylation of differentially methylated region between IGF2/H19 genes. Acta Biochim Biophys Sin (Shanghai). 2009;41:464–71.CrossRef
75.
go back to reference Gao W, Zhu M, Wang H, Zhao S, Zhao D, Yang Y, Wang Z-M, Wang F, Yang Z-J, Lu X, Wang L-S. Association of polymorphisms in long non-coding RNA H19 with coronary artery disease risk in a Chinese population. Mutat Res Mol Mech Mutagen. 2015;772:15–22.CrossRef Gao W, Zhu M, Wang H, Zhao S, Zhao D, Yang Y, Wang Z-M, Wang F, Yang Z-J, Lu X, Wang L-S. Association of polymorphisms in long non-coding RNA H19 with coronary artery disease risk in a Chinese population. Mutat Res Mol Mech Mutagen. 2015;772:15–22.CrossRef
76.
go back to reference Hernandez-Valero MA, Rother J, Gorlov I, Frazier M, Gorlova O. Interplay between polymorphisms and methylation in the H19/IGF2 gene region may contribute to obesity in Mexican-American children. J Dev Orig Health Dis. 2013;4:499–506.CrossRefPubMedPubMedCentral Hernandez-Valero MA, Rother J, Gorlov I, Frazier M, Gorlova O. Interplay between polymorphisms and methylation in the H19/IGF2 gene region may contribute to obesity in Mexican-American children. J Dev Orig Health Dis. 2013;4:499–506.CrossRefPubMedPubMedCentral
77.
go back to reference Tragante V, Barnes MR, Ganesh SK, Lanktree MB, Guo W, Franceschini N, Smith EN, Johnson T, Holmes MV, Padmanabhan S, Karczewski KJ, Almoguera B, Barnard J, Baumert J, Chang YPC, Elbers CC, Farrall M, Fischer ME, Gaunt TR, Gho JMIH, Gieger C, Goel A, Gong Y, Isaacs A, Kleber ME, Leach IM, McDonough CW, Meijs MFL, Melander O, Nelson CP, et al. Gene-centric meta-analysis in 87,736 individuals of European ancestry identifies multiple blood-pressure-related loci. Am J Hum Genet. 2014;94:349–60.CrossRefPubMedPubMedCentral Tragante V, Barnes MR, Ganesh SK, Lanktree MB, Guo W, Franceschini N, Smith EN, Johnson T, Holmes MV, Padmanabhan S, Karczewski KJ, Almoguera B, Barnard J, Baumert J, Chang YPC, Elbers CC, Farrall M, Fischer ME, Gaunt TR, Gho JMIH, Gieger C, Goel A, Gong Y, Isaacs A, Kleber ME, Leach IM, McDonough CW, Meijs MFL, Melander O, Nelson CP, et al. Gene-centric meta-analysis in 87,736 individuals of European ancestry identifies multiple blood-pressure-related loci. Am J Hum Genet. 2014;94:349–60.CrossRefPubMedPubMedCentral
78.
go back to reference Dizdaroglu M, Jaruga P, Birincioglu M, Rodriguez H. Free radical-induced damage to DNA: mechanisms and measurement. Free Radic Biol Med. 2002;32:1102–15.CrossRefPubMed Dizdaroglu M, Jaruga P, Birincioglu M, Rodriguez H. Free radical-induced damage to DNA: mechanisms and measurement. Free Radic Biol Med. 2002;32:1102–15.CrossRefPubMed
79.
go back to reference Conklin DJ, Guo Y, Jagatheesan G, Kilfoil PJ, Haberzettl P, Hill BG, Baba SP, Guo L, Wetzelberger K, Obal D, Rokosh DG, Prough RA, Prabhu SD, Velayutham M, Zweier JL, Hoetker JD, Riggs DW, Srivastava S, Bolli R, Bhatnagar A. Genetic deficiency of glutathione S-transferase p increases myocardial sensitivity to ischemia-reperfusion injury. Circ Res. 2015;117:437–49.CrossRefPubMed Conklin DJ, Guo Y, Jagatheesan G, Kilfoil PJ, Haberzettl P, Hill BG, Baba SP, Guo L, Wetzelberger K, Obal D, Rokosh DG, Prough RA, Prabhu SD, Velayutham M, Zweier JL, Hoetker JD, Riggs DW, Srivastava S, Bolli R, Bhatnagar A. Genetic deficiency of glutathione S-transferase p increases myocardial sensitivity to ischemia-reperfusion injury. Circ Res. 2015;117:437–49.CrossRefPubMed
80.
go back to reference Takemura G, Miyata S, Kawase Y, Okada H, Maruyama R, Fujiwara H. Autophagic degeneration and death of cardiomyocytes in heart failure. Autophagy. 2006;2:212–4.CrossRefPubMed Takemura G, Miyata S, Kawase Y, Okada H, Maruyama R, Fujiwara H. Autophagic degeneration and death of cardiomyocytes in heart failure. Autophagy. 2006;2:212–4.CrossRefPubMed
Metadata
Title
Long noncoding RNA dysregulation in ischemic heart failure
Authors
Simona Greco
Germana Zaccagnini
Alessandra Perfetti
Paola Fuschi
Rea Valaperta
Christine Voellenkle
Serenella Castelvecchio
Carlo Gaetano
Nicoletta Finato
Antonio Paolo Beltrami
Lorenzo Menicanti
Fabio Martelli
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2016
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-016-0926-5

Other articles of this Issue 1/2016

Journal of Translational Medicine 1/2016 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.