Skip to main content
Top
Published in: European Spine Journal 10/2009

01-10-2009 | Original Article

Local and global subaxial cervical spine biomechanics after single-level fusion or cervical arthroplasty

Authors: Michael A. Finn, Darrel S. Brodke, Michael Daubs, Alpesh Patel, Kent N. Bachus

Published in: European Spine Journal | Issue 10/2009

Login to get access

Abstract

An experimental in vitro biomechanical study was conducted on human cadaveric spines to evaluate the motion segment (C4–C5) and global subaxial cervical spine motion after placement of a cervical arthroplasty device (Altia TDI™,Amedica, Salt Lake City, UT) as compared to both the intact spine and a single-level fusion. Six specimens (C2–C7) were tested in flexion/extension, lateral bending, and axial rotation under a ± 1.5 Nm moment with a 100 N axial follower load. Following the intact spine was tested; the cervical arthroplasty device was implanted at C4–C5 and tested. Then, a fusion using lateral mass fixation and an anterior plate was simulated and tested. Stiffness and range of motion (ROM) data were calculated. The ROM of the C4–C5 motion segment with the arthroplasty device was similar to that of the intact spine in flexion/extension and slightly less in lateral bending and rotation, while the fusion construct allowed significantly less motion in all directions. The fusion construct caused broader effects of increasing motion in the remaining segments of the subaxial cervical spine, whereas the TDI did not alter the adjacent and remote motion segments. The fusion construct was also far stiffer in all motion planes than the intact motion segment and the TDI, while the artificial disc treated level was slightly stiffer than the intact segment. The Altia TDI allows for a magnitude of motion similar to that of the intact spine at the treated and adjacent levels in the in vitro setting.
Literature
3.
go back to reference Baba H, Furusawa N, Imura S, Kawahara N, Tsuchiya H, Tomita K (1993) Late radiographic findings after anterior cervical fusion for spondylotic myeloradiculopathy. Spine 18:2167–2173PubMedCrossRef Baba H, Furusawa N, Imura S, Kawahara N, Tsuchiya H, Tomita K (1993) Late radiographic findings after anterior cervical fusion for spondylotic myeloradiculopathy. Spine 18:2167–2173PubMedCrossRef
4.
go back to reference Bertagnoli R, Yue JJ, Pfeiffer F, Fenk-Mayer A, Lawrence JP, Kershaw T, Nanieva R (2005) Early results after ProDisc-C cervical disc replacement. J Neurosurg Spine 2:403–410PubMedCrossRef Bertagnoli R, Yue JJ, Pfeiffer F, Fenk-Mayer A, Lawrence JP, Kershaw T, Nanieva R (2005) Early results after ProDisc-C cervical disc replacement. J Neurosurg Spine 2:403–410PubMedCrossRef
6.
go back to reference Cherubino P, Benazzo F, Borromeo U, Perle S (1990) Degenerative arthritis of the adjacent spinal joints following anterior cervical spinal fusion: clinicoradiologic and statistical correlations. Ital J Orthop Traumatol 16:533–543PubMed Cherubino P, Benazzo F, Borromeo U, Perle S (1990) Degenerative arthritis of the adjacent spinal joints following anterior cervical spinal fusion: clinicoradiologic and statistical correlations. Ital J Orthop Traumatol 16:533–543PubMed
7.
go back to reference Cloward RB (1958) The anterior approach for removal of ruptured cervical disks. J Neurosurg 15:602–617PubMedCrossRef Cloward RB (1958) The anterior approach for removal of ruptured cervical disks. J Neurosurg 15:602–617PubMedCrossRef
9.
go back to reference Cummins BH, Robertson JT, Gill SS (1998) Surgical experience with an implanted artificial cervical joint. J Neurosurg 88:943–948PubMedCrossRef Cummins BH, Robertson JT, Gill SS (1998) Surgical experience with an implanted artificial cervical joint. J Neurosurg 88:943–948PubMedCrossRef
11.
go back to reference DiAngelo DJ, Foley KT, Morrow BR, Schwab JS, Song J, German JW, Blair E (2004) In vitro biomechanics of cervical disc arthroplasty with the ProDisc-C total disc implant. Neurosurg Focus 17(3):E7PubMed DiAngelo DJ, Foley KT, Morrow BR, Schwab JS, Song J, German JW, Blair E (2004) In vitro biomechanics of cervical disc arthroplasty with the ProDisc-C total disc implant. Neurosurg Focus 17(3):E7PubMed
14.
go back to reference Fernstrom U (1966) Arthroplasty with intercorporal endoprothesis in herniated disc and in painful disc. Acta Chir Scand Suppl 357:154–159PubMed Fernstrom U (1966) Arthroplasty with intercorporal endoprothesis in herniated disc and in painful disc. Acta Chir Scand Suppl 357:154–159PubMed
16.
go back to reference Goffin J, Van Calenbergh F, van Loon J, Casey A, Kehr P, Liebig K, Lind B, Logroscino C, Sgrambiglia R, Pointillart V (2003) Intermediate follow-up after treatment of degenerative disc disease with the Bryan cervical disc prosthesis: single-level and bi-level. Spine 28:2673–2678. doi:10.1097/01.BRS.0000099392.90849.AA PubMedCrossRef Goffin J, Van Calenbergh F, van Loon J, Casey A, Kehr P, Liebig K, Lind B, Logroscino C, Sgrambiglia R, Pointillart V (2003) Intermediate follow-up after treatment of degenerative disc disease with the Bryan cervical disc prosthesis: single-level and bi-level. Spine 28:2673–2678. doi:10.​1097/​01.​BRS.​0000099392.​90849.​AA PubMedCrossRef
18.
go back to reference Hilibrand AS, Carlson GD, Palumbo MA, Jones PK, Bohlman HH (1999) Radiculopathy and myelopathy at segments adjacent to the site of a previous anterior cervical arthrodesis. J Bone Joint Surg Am 81:519–528PubMed Hilibrand AS, Carlson GD, Palumbo MA, Jones PK, Bohlman HH (1999) Radiculopathy and myelopathy at segments adjacent to the site of a previous anterior cervical arthrodesis. J Bone Joint Surg Am 81:519–528PubMed
20.
go back to reference Katsuura A, Hukuda S, Saruhashi Y, Mori K (2001) Kyphotic malalignment after anterior cervical fusion is one of the factors promoting the degenerative process in adjacent intervertebral levels. Eur Spine J 10:320–324. doi:10.1007/s005860000243 PubMedCrossRef Katsuura A, Hukuda S, Saruhashi Y, Mori K (2001) Kyphotic malalignment after anterior cervical fusion is one of the factors promoting the degenerative process in adjacent intervertebral levels. Eur Spine J 10:320–324. doi:10.​1007/​s005860000243 PubMedCrossRef
22.
28.
go back to reference Rhyne AL, Siddiqui F, Darden BV (2005) Incidence of post-operative dysphagia following total cervical disc replacement versus anterior cervical discectomy and fusion with instrumentation (abstract). In: 33rd Annual Cervical Spine Research Society, San Diego Rhyne AL, Siddiqui F, Darden BV (2005) Incidence of post-operative dysphagia following total cervical disc replacement versus anterior cervical discectomy and fusion with instrumentation (abstract). In: 33rd Annual Cervical Spine Research Society, San Diego
29.
go back to reference Smith GW, Robinson RA (1958) The treatment of certain cervical–spine disorders by anterior removal of the intervertebral disc and interbody fusion. J Bone Joint Surg Am 40-A:607–624PubMed Smith GW, Robinson RA (1958) The treatment of certain cervical–spine disorders by anterior removal of the intervertebral disc and interbody fusion. J Bone Joint Surg Am 40-A:607–624PubMed
30.
go back to reference Swank ML, Lowery GL, Bhat AL, McDonough RF (1997) Anterior cervical allograft arthrodesis and instrumentation: multilevel interbody grafting or strut graft reconstruction. Eur Spine J 6:138–143. doi:10.1007/BF01358747 PubMedCrossRef Swank ML, Lowery GL, Bhat AL, McDonough RF (1997) Anterior cervical allograft arthrodesis and instrumentation: multilevel interbody grafting or strut graft reconstruction. Eur Spine J 6:138–143. doi:10.​1007/​BF01358747 PubMedCrossRef
31.
go back to reference Urban JP, Holm S, Maroudas A, Nachemson A (1982) Nutrition of the intervertebral disc: effect of fluid flow on solute transport. Clin Orthop Relat Res (170):296–302 Urban JP, Holm S, Maroudas A, Nachemson A (1982) Nutrition of the intervertebral disc: effect of fluid flow on solute transport. Clin Orthop Relat Res (170):296–302
32.
go back to reference Urban JP, Holm S, Maroudas A, Nachemson A (1977) Nutrition of the intervertebral disk: an in vivo study of solute transport. Clin Orthop Relat Res (129):101–114 Urban JP, Holm S, Maroudas A, Nachemson A (1977) Nutrition of the intervertebral disk: an in vivo study of solute transport. Clin Orthop Relat Res (129):101–114
33.
go back to reference Wigfield C, Gill S, Nelson R, Langdon I, Metcalf N, Robertson J (2002) Influence of an artificial cervical joint compared with fusion on adjacent-level motion in the treatment of degenerative cervical disc disease. J Neurosurg 96:17–21PubMed Wigfield C, Gill S, Nelson R, Langdon I, Metcalf N, Robertson J (2002) Influence of an artificial cervical joint compared with fusion on adjacent-level motion in the treatment of degenerative cervical disc disease. J Neurosurg 96:17–21PubMed
35.
go back to reference Wigfield CC, Skrzypiec D, Jackowski A, Adams MA (2003) Internal stress distribution in cervical intervertebral discs: the influence of an artificial cervical joint and simulated anterior interbody fusion. J Spinal Disord Tech 16:441–449. doi:10.1097/00024720-200310000-00002 PubMedCrossRef Wigfield CC, Skrzypiec D, Jackowski A, Adams MA (2003) Internal stress distribution in cervical intervertebral discs: the influence of an artificial cervical joint and simulated anterior interbody fusion. J Spinal Disord Tech 16:441–449. doi:10.​1097/​00024720-200310000-00002 PubMedCrossRef
Metadata
Title
Local and global subaxial cervical spine biomechanics after single-level fusion or cervical arthroplasty
Authors
Michael A. Finn
Darrel S. Brodke
Michael Daubs
Alpesh Patel
Kent N. Bachus
Publication date
01-10-2009
Publisher
Springer-Verlag
Published in
European Spine Journal / Issue 10/2009
Print ISSN: 0940-6719
Electronic ISSN: 1432-0932
DOI
https://doi.org/10.1007/s00586-009-1085-7

Other articles of this Issue 10/2009

European Spine Journal 10/2009 Go to the issue