Skip to main content
Top
Published in: BMC Cancer 1/2024

Open Access 01-12-2024 | Research

LncRNA RPARP-AS1 promotes the progression of osteosarcoma cells through regulating lipid metabolism

Authors: Feng Cai, Luhua Liu, Yuan Bo, Wenjing Yan, Xuchang Tao, Yuanxiang Peng, Zhiping Zhang, Qi Liao, Yangyan Yi

Published in: BMC Cancer | Issue 1/2024

Login to get access

Abstract

Osteosarcoma (OS) is a highly malignant tumor, and its dysregulated lipid metabolism is associated with tumorigenesis and unfavorable prognosis. Interestingly, long noncoding RNAs (lncRNAs) have emerged as pivotal regulators of lipid metabolism, exerting notable impacts on tumor proliferation. Nevertheless, the involvement of RPARP-AS1, a novel lipid metabolism-associated lncRNA, remains unexplored in the context of OS. This study aims to identify functionally relevant lncRNAs impacting OS proliferation and lipid metabolism and seeks to shed light on the upstream regulatory mechanisms governing lipogenic enzyme activity. Based on comprehensive bioinformatic analysis and the establishment of a risk model, we identified seven lncRNAs significantly associated with clinical characteristics and lipid metabolism-related genes in patients with OS. Among these, RPARP-AS1 was selected for in-depth investigation regarding its roles in OS proliferation and lipid metabolism. Experimental techniques including RT-qPCR, Western blot, cell viability assay, assessment, and quantification of free fatty acids (FFAs) and triglycerides (TGs) were utilized to elucidate the functional significance of RPARP-AS1 in OS cells and validate its effects on lipid metabolism. Manipulation of RPARP-AS1 expression via ectopic expression or siRNA-mediated knockdown led to alterations in epithelial-mesenchymal transition (EMT) and expression of apoptosis-associated proteins, thereby influencing OS cell proliferation and apoptosis. Mechanistically, RPARP-AS1 was found to augment the expression of key lipogenic enzymes (FABP4, MAGL, and SCD1) and potentially modulate the Akt/mTOR pathway, thereby contributing to lipid metabolism (involving alterations in FFA and TG levels) in OS cells. Collectively, our findings establish RPARP-AS1 as a novel oncogene in OS cells and suggest its role in fostering tumor growth through the enhancement of lipid metabolism.
Appendix
Available only for authorised users
Literature
1.
go back to reference Miller BJ, Gao Y, Duchman KR. Socioeconomic measures influence survival in osteosarcoma: an analysis of the National Cancer Data Base. Cancer Epidemiol. 2017;49:112–7.PubMedCrossRef Miller BJ, Gao Y, Duchman KR. Socioeconomic measures influence survival in osteosarcoma: an analysis of the National Cancer Data Base. Cancer Epidemiol. 2017;49:112–7.PubMedCrossRef
2.
go back to reference Lettieri CK, Appel N, Labban N, Lussier DM, Blattman JN, Hingorani P. Progress and opportunities for immune therapeutics in osteosarcoma. Immunotherapy. 2016;8:1233–44.PubMedCrossRef Lettieri CK, Appel N, Labban N, Lussier DM, Blattman JN, Hingorani P. Progress and opportunities for immune therapeutics in osteosarcoma. Immunotherapy. 2016;8:1233–44.PubMedCrossRef
3.
4.
go back to reference Zhu R, Li X, Ma Y. miR-23b-3p suppressing PGC1alpha promotes proliferation through reprogramming metabolism in osteosarcoma. Cell Death Dis. 2019;10:381.PubMedPubMedCentralCrossRef Zhu R, Li X, Ma Y. miR-23b-3p suppressing PGC1alpha promotes proliferation through reprogramming metabolism in osteosarcoma. Cell Death Dis. 2019;10:381.PubMedPubMedCentralCrossRef
5.
go back to reference Wang X, Hu Z, Wang Z, Cui Y, Cui X. Angiopoietin-like protein 2 is an important facilitator of tumor proliferation, metastasis, angiogenesis and glycolysis in osteosarcoma. Am J Transl Res. 2019;11:6341–55.PubMedPubMedCentral Wang X, Hu Z, Wang Z, Cui Y, Cui X. Angiopoietin-like protein 2 is an important facilitator of tumor proliferation, metastasis, angiogenesis and glycolysis in osteosarcoma. Am J Transl Res. 2019;11:6341–55.PubMedPubMedCentral
6.
go back to reference Bian X, Liu R, Meng Y, Xing D, Xu D, Lu Z. Lipid metabolism and cancer. J Exp Med. 2021;218:e20201606.PubMedCrossRef Bian X, Liu R, Meng Y, Xing D, Xu D, Lu Z. Lipid metabolism and cancer. J Exp Med. 2021;218:e20201606.PubMedCrossRef
8.
go back to reference Ji Z, Shen Y, Feng X, Kong Y, Shao Y, Meng J, Zhang X, Yang G. Deregulation of lipid metabolism: the critical factors in ovarian cancer. Front Oncol. 2020;10:593017.PubMedPubMedCentralCrossRef Ji Z, Shen Y, Feng X, Kong Y, Shao Y, Meng J, Zhang X, Yang G. Deregulation of lipid metabolism: the critical factors in ovarian cancer. Front Oncol. 2020;10:593017.PubMedPubMedCentralCrossRef
9.
go back to reference Broadfield LA, Pane AA, Talebi A, Swinnen JV, Fendt SM. Lipid metabolism in cancer: New perspectives and emerging mechanisms. Dev Cell. 2021;56:1363–93.PubMedCrossRef Broadfield LA, Pane AA, Talebi A, Swinnen JV, Fendt SM. Lipid metabolism in cancer: New perspectives and emerging mechanisms. Dev Cell. 2021;56:1363–93.PubMedCrossRef
10.
11.
go back to reference Niemi RJ, Braicu EI, Kulbe H, Koistinen KM, Sehouli J, Puistola U, Maenpaa JU, Hilvo M. Ovarian tumours of different histologic type and clinical stage induce similar changes in lipid metabolism. Br J Cancer. 2018;119:847–54.PubMedPubMedCentralCrossRef Niemi RJ, Braicu EI, Kulbe H, Koistinen KM, Sehouli J, Puistola U, Maenpaa JU, Hilvo M. Ovarian tumours of different histologic type and clinical stage induce similar changes in lipid metabolism. Br J Cancer. 2018;119:847–54.PubMedPubMedCentralCrossRef
12.
go back to reference Hilvo M, Denkert C, Lehtinen L, Muller B, Brockmoller S, Seppanen-Laakso T, Budczies J, Bucher E, Yetukuri L, Castillo S, Berg E, Nygren H, Sysi-Aho M, et al. Novel theranostic opportunities offered by characterization of altered membrane lipid metabolism in breast cancer progression. Cancer Res. 2011;71:3236–45.PubMedCrossRef Hilvo M, Denkert C, Lehtinen L, Muller B, Brockmoller S, Seppanen-Laakso T, Budczies J, Bucher E, Yetukuri L, Castillo S, Berg E, Nygren H, Sysi-Aho M, et al. Novel theranostic opportunities offered by characterization of altered membrane lipid metabolism in breast cancer progression. Cancer Res. 2011;71:3236–45.PubMedCrossRef
13.
go back to reference Chen Y, Zhao B, Wang X. Tumor infiltrating immune cells (TIICs) as a biomarker for prognosis benefits in patients with osteosarcoma. BMC Cancer. 2020;20:1022.PubMedPubMedCentralCrossRef Chen Y, Zhao B, Wang X. Tumor infiltrating immune cells (TIICs) as a biomarker for prognosis benefits in patients with osteosarcoma. BMC Cancer. 2020;20:1022.PubMedPubMedCentralCrossRef
14.
go back to reference Zhu N, Hou J, Ma G, Guo S, Zhao C, Chen B. Co-expression network analysis identifies a gene signature as a predictive biomarker for energy metabolism in osteosarcoma. Cancer Cell Int. 2020;20:259.PubMedPubMedCentralCrossRef Zhu N, Hou J, Ma G, Guo S, Zhao C, Chen B. Co-expression network analysis identifies a gene signature as a predictive biomarker for energy metabolism in osteosarcoma. Cancer Cell Int. 2020;20:259.PubMedPubMedCentralCrossRef
15.
go back to reference Gromesova B, Kubaczkova V, Bollova B, Sedlarikova L. Sevcikova S [Potential of Long Non- coding RNA Molecules in Diagnosis of Tumors]. Klin Onkol. 2016;29:20–8.PubMedCrossRef Gromesova B, Kubaczkova V, Bollova B, Sedlarikova L. Sevcikova S [Potential of Long Non- coding RNA Molecules in Diagnosis of Tumors]. Klin Onkol. 2016;29:20–8.PubMedCrossRef
16.
go back to reference Thomson DW, Dinger ME. Endogenous microRNA sponges: evidence and controversy. Nat Rev Genet. 2016;17(5):272–83.PubMedCrossRef Thomson DW, Dinger ME. Endogenous microRNA sponges: evidence and controversy. Nat Rev Genet. 2016;17(5):272–83.PubMedCrossRef
17.
go back to reference Pu Y, Tan Y, Zang C, Zhao F, Cai C, Kong L, Deng H, Chao F, Xia R, Xie M, Ge F, Pan Y, Cai S, et al. LAMTOR5-AS1 regulates chemotherapy-induced oxidative stress by controlling the expression level and transcriptional activity of NRF2 in osteosarcoma cells. Cell Death Dis. 2021;12:1125.PubMedPubMedCentralCrossRef Pu Y, Tan Y, Zang C, Zhao F, Cai C, Kong L, Deng H, Chao F, Xia R, Xie M, Ge F, Pan Y, Cai S, et al. LAMTOR5-AS1 regulates chemotherapy-induced oxidative stress by controlling the expression level and transcriptional activity of NRF2 in osteosarcoma cells. Cell Death Dis. 2021;12:1125.PubMedPubMedCentralCrossRef
18.
go back to reference Ren Y, Zhao C, He Y, Min X, Xu H, Hu X. RPARP-AS1/miR125a-5p Axis Promotes Cell Proliferation, Migration and Invasion in Colon Cancer. Onco Targets Ther. 2021;14:5035–43.PubMedPubMedCentralCrossRef Ren Y, Zhao C, He Y, Min X, Xu H, Hu X. RPARP-AS1/miR125a-5p Axis Promotes Cell Proliferation, Migration and Invasion in Colon Cancer. Onco Targets Ther. 2021;14:5035–43.PubMedPubMedCentralCrossRef
19.
go back to reference Matboli M, Gadallah SH, Rashed WM, Hasanin AH, Essawy N, Ghanem HM, Eissa S. mRNA-miRNA-lncRNA Regulatory Network in Nonalcoholic Fatty Liver Disease. Int J Mol Sci. 2021;22:6770.PubMedPubMedCentralCrossRef Matboli M, Gadallah SH, Rashed WM, Hasanin AH, Essawy N, Ghanem HM, Eissa S. mRNA-miRNA-lncRNA Regulatory Network in Nonalcoholic Fatty Liver Disease. Int J Mol Sci. 2021;22:6770.PubMedPubMedCentralCrossRef
20.
go back to reference Zheng J, Zhao Z, Wan J, Guo M, Wang Y, Yang Z, Li Z, Ming L, Qin Z. N-6 methylation-related lncRNA is potential signature in lung adenocarcinoma and influences tumor microenvironment. J Clin Lab Anal. 2021;35:e23951.PubMedPubMedCentralCrossRef Zheng J, Zhao Z, Wan J, Guo M, Wang Y, Yang Z, Li Z, Ming L, Qin Z. N-6 methylation-related lncRNA is potential signature in lung adenocarcinoma and influences tumor microenvironment. J Clin Lab Anal. 2021;35:e23951.PubMedPubMedCentralCrossRef
21.
go back to reference Liu F, Wei Q, Liang Y, Yang Q, Huang C, Huang Q, Qin J, Pang L, Xu L, Zhong J. Effects of Gypenoside XLIX on fatty liver cell gene expression in vitro: a genome-wide analysis. Am J Transl Res. 2023;15:834–46.PubMedPubMedCentral Liu F, Wei Q, Liang Y, Yang Q, Huang C, Huang Q, Qin J, Pang L, Xu L, Zhong J. Effects of Gypenoside XLIX on fatty liver cell gene expression in vitro: a genome-wide analysis. Am J Transl Res. 2023;15:834–46.PubMedPubMedCentral
22.
go back to reference Crosby D, Bhatia S, Brindle KM, et al. Early detection of cancer. Science. 2022;375(6586):eaay9040.PubMedCrossRef Crosby D, Bhatia S, Brindle KM, et al. Early detection of cancer. Science. 2022;375(6586):eaay9040.PubMedCrossRef
23.
go back to reference Yang B, Li L, Tong G, et al. Circular RNA circ_001422 promotes the progression and metastasis of osteosarcoma via the miR-195-5p/FGF2/PI3K/Akt axis. J Exp Clin Cancer Res. 2021;40(1):1–24.CrossRef Yang B, Li L, Tong G, et al. Circular RNA circ_001422 promotes the progression and metastasis of osteosarcoma via the miR-195-5p/FGF2/PI3K/Akt axis. J Exp Clin Cancer Res. 2021;40(1):1–24.CrossRef
25.
go back to reference Wang C, Shi M, Ji J, Cai Q, Zhao Q, Jiang J, Liu J, Zhang H, Zhu Z, Zhang J. Stearoyl-CoA desaturase 1 (SCD1) facilitates the growth and anti-ferroptosis of gastric cancer cells and predicts poor prognosis of gastric cancer. Aging (Albany NY). 2020;12:15374–91.PubMedCrossRef Wang C, Shi M, Ji J, Cai Q, Zhao Q, Jiang J, Liu J, Zhang H, Zhu Z, Zhang J. Stearoyl-CoA desaturase 1 (SCD1) facilitates the growth and anti-ferroptosis of gastric cancer cells and predicts poor prognosis of gastric cancer. Aging (Albany NY). 2020;12:15374–91.PubMedCrossRef
26.
go back to reference Krycer JR, Sharpe LJ, Luu W, Brown AJ. The Akt-SREBP nexus: cell signaling meets lipid metabolism. Trends Endocrinol Metab. 2010;21:268–76.PubMedCrossRef Krycer JR, Sharpe LJ, Luu W, Brown AJ. The Akt-SREBP nexus: cell signaling meets lipid metabolism. Trends Endocrinol Metab. 2010;21:268–76.PubMedCrossRef
27.
go back to reference Christensen LL, True K, Hamilton MP, Nielsen MM, Damas ND, Damgaard CK, Ongen H, Dermitzakis E, Bramsen JB, Pedersen JS, Lund AH, Vang S, Stribolt K, et al. SNHG16 is regulated by the Wnt pathway in colorectal cancer and affects genes involved in lipid metabolism. Mol Oncol. 2016;10:1266–82.PubMedPubMedCentralCrossRef Christensen LL, True K, Hamilton MP, Nielsen MM, Damas ND, Damgaard CK, Ongen H, Dermitzakis E, Bramsen JB, Pedersen JS, Lund AH, Vang S, Stribolt K, et al. SNHG16 is regulated by the Wnt pathway in colorectal cancer and affects genes involved in lipid metabolism. Mol Oncol. 2016;10:1266–82.PubMedPubMedCentralCrossRef
28.
go back to reference Taniue K, Kurimoto A, Sugimasa H, Nasu E, Takeda Y, Iwasaki K, Nagashima T, Okada-Hatakeyama M, Oyama M, Kozuka-Hata H, Hiyoshi M, Kitayama J, Negishi L, et al. Long noncoding RNA UPAT promotes colon tumorigenesis by inhibiting degradation of UHRF1. Proc Natl Acad Sci U S A. 2016;113:1273–8.PubMedPubMedCentralCrossRefADS Taniue K, Kurimoto A, Sugimasa H, Nasu E, Takeda Y, Iwasaki K, Nagashima T, Okada-Hatakeyama M, Oyama M, Kozuka-Hata H, Hiyoshi M, Kitayama J, Negishi L, et al. Long noncoding RNA UPAT promotes colon tumorigenesis by inhibiting degradation of UHRF1. Proc Natl Acad Sci U S A. 2016;113:1273–8.PubMedPubMedCentralCrossRefADS
29.
go back to reference Cheng C, Geng F, Cheng X, Guo D. Lipid metabolism reprogramming and its potential targets in cancer. Cancer Commun (Lond). 2018;38:27.PubMed Cheng C, Geng F, Cheng X, Guo D. Lipid metabolism reprogramming and its potential targets in cancer. Cancer Commun (Lond). 2018;38:27.PubMed
30.
go back to reference Pope ED 3rd, Kimbrough EO, Vemireddy LP, Surapaneni PK, Copland JA 3rd, Mody K. Aberrant lipid metabolism as a therapeutic target in liver cancer. Expert Opin Ther Targets. 2019;23:473–83.PubMedPubMedCentralCrossRef Pope ED 3rd, Kimbrough EO, Vemireddy LP, Surapaneni PK, Copland JA 3rd, Mody K. Aberrant lipid metabolism as a therapeutic target in liver cancer. Expert Opin Ther Targets. 2019;23:473–83.PubMedPubMedCentralCrossRef
32.
go back to reference Hao Y, Li D, Xu Y, Ouyang J, Wang Y, Zhang Y, Li B, Xie L, Qin G. Investigation of lipid metabolism dysregulation and the effects on immune microenvironments in pan-cancer using multiple omics data. BMC Bioinformatics. 2019;20:195.PubMedPubMedCentralCrossRef Hao Y, Li D, Xu Y, Ouyang J, Wang Y, Zhang Y, Li B, Xie L, Qin G. Investigation of lipid metabolism dysregulation and the effects on immune microenvironments in pan-cancer using multiple omics data. BMC Bioinformatics. 2019;20:195.PubMedPubMedCentralCrossRef
33.
go back to reference Wang YN, Zeng ZL, Lu J, Wang Y, Liu ZX, He MM, Zhao Q, Wang ZX, Li T, Lu YX, Wu QN, Yu K, Wang F, et al. CPT1A-mediated fatty acid oxidation promotes colorectal cancer cell metastasis by inhibiting anoikis. Oncogene. 2018;37:6025–40.PubMedCrossRef Wang YN, Zeng ZL, Lu J, Wang Y, Liu ZX, He MM, Zhao Q, Wang ZX, Li T, Lu YX, Wu QN, Yu K, Wang F, et al. CPT1A-mediated fatty acid oxidation promotes colorectal cancer cell metastasis by inhibiting anoikis. Oncogene. 2018;37:6025–40.PubMedCrossRef
34.
go back to reference Gharpure KM, Pradeep S, Sans M, Rupaimoole R, Ivan C, Wu SY, Bayraktar E, Nagaraja AS, Mangala LS, Zhang X, Haemmerle M, Hu W, Rodriguez-Aguayo C, et al. FABP4 as a key determinant of metastatic potential of ovarian cancer. Nat Commun. 2018;9:2923.PubMedPubMedCentralCrossRefADS Gharpure KM, Pradeep S, Sans M, Rupaimoole R, Ivan C, Wu SY, Bayraktar E, Nagaraja AS, Mangala LS, Zhang X, Haemmerle M, Hu W, Rodriguez-Aguayo C, et al. FABP4 as a key determinant of metastatic potential of ovarian cancer. Nat Commun. 2018;9:2923.PubMedPubMedCentralCrossRefADS
35.
go back to reference Mukherjee A, Chiang CY, Daifotis HA, Nieman KM, Fahrmann JF, Lastra RR, Romero IL, Fiehn O, Lengyel E. Adipocyte-Induced FABP4 Expression in Ovarian Cancer Cells Promotes Metastasis and Mediates Carboplatin Resistance. Cancer Res. 2020;80:1748–61.PubMedPubMedCentralCrossRef Mukherjee A, Chiang CY, Daifotis HA, Nieman KM, Fahrmann JF, Lastra RR, Romero IL, Fiehn O, Lengyel E. Adipocyte-Induced FABP4 Expression in Ovarian Cancer Cells Promotes Metastasis and Mediates Carboplatin Resistance. Cancer Res. 2020;80:1748–61.PubMedPubMedCentralCrossRef
36.
go back to reference Seguin F, Carvalho MA, Bastos DC, Agostini M, Zecchin KG, Alvarez-Flores MP, Chudzinski-Tavassi AM, Coletta RD, Graner E. The fatty acid synthase inhibitor orlistat reduces experimental metastases and angiogenesis in B16–F10 melanomas. Br J Cancer. 2012;107:977–87.PubMedPubMedCentralCrossRef Seguin F, Carvalho MA, Bastos DC, Agostini M, Zecchin KG, Alvarez-Flores MP, Chudzinski-Tavassi AM, Coletta RD, Graner E. The fatty acid synthase inhibitor orlistat reduces experimental metastases and angiogenesis in B16–F10 melanomas. Br J Cancer. 2012;107:977–87.PubMedPubMedCentralCrossRef
37.
go back to reference Zaytseva YY, Rychahou PG, Gulhati P, Elliott VA, Mustain WC, O’Connor K, Morris AJ, Sunkara M, Weiss HL, Lee EY, Evers BM. Inhibition of fatty acid synthase attenuates CD44-associated signaling and reduces metastasis in colorectal cancer. Cancer Res. 2012;72:1504–17.PubMedPubMedCentralCrossRef Zaytseva YY, Rychahou PG, Gulhati P, Elliott VA, Mustain WC, O’Connor K, Morris AJ, Sunkara M, Weiss HL, Lee EY, Evers BM. Inhibition of fatty acid synthase attenuates CD44-associated signaling and reduces metastasis in colorectal cancer. Cancer Res. 2012;72:1504–17.PubMedPubMedCentralCrossRef
38.
go back to reference Vivas-Garcia Y, Falletta P, Liebing J, Louphrasitthiphol P, Feng Y, Chauhan J, Scott DA, Glodde N, Chocarro-Calvo A, Bonham S, Osterman AL, Fischer R, Ronai Z, et al. Lineage-Restricted Regulation of SCD and Fatty Acid Saturation by MITF Controls Melanoma Phenotypic Plasticity. Mol Cell. 2020;77:120-37 e9.PubMedCrossRef Vivas-Garcia Y, Falletta P, Liebing J, Louphrasitthiphol P, Feng Y, Chauhan J, Scott DA, Glodde N, Chocarro-Calvo A, Bonham S, Osterman AL, Fischer R, Ronai Z, et al. Lineage-Restricted Regulation of SCD and Fatty Acid Saturation by MITF Controls Melanoma Phenotypic Plasticity. Mol Cell. 2020;77:120-37 e9.PubMedCrossRef
39.
go back to reference Tang Y, Tang R, Tang M, Huang P, Liao Z, Zhou J, Zhou L, Su M, Chen P, Jiang J, Hu Y, Zhou Y, Liao Q, et al. LncRNA DNAJC3-AS1 Regulates Fatty Acid Synthase via the EGFR Pathway to Promote the Progression of Colorectal Cancer. Front Oncol. 2020;10:604534.PubMedCrossRef Tang Y, Tang R, Tang M, Huang P, Liao Z, Zhou J, Zhou L, Su M, Chen P, Jiang J, Hu Y, Zhou Y, Liao Q, et al. LncRNA DNAJC3-AS1 Regulates Fatty Acid Synthase via the EGFR Pathway to Promote the Progression of Colorectal Cancer. Front Oncol. 2020;10:604534.PubMedCrossRef
40.
go back to reference Wang C, Meng X, Zhou Y, Yu J, Li Q, Liao Z, Gu Y, Han J, Linghu S, Jiao Z, Wang T, Zhang CY, Chen X. Long Noncoding RNA CTD-2245E15.3 Promotes Anabolic Enzymes ACC1 and PC to Support Non-Small Cell Lung Cancer Growth. Cancer Res. 2021;81:3509–24.PubMedCrossRef Wang C, Meng X, Zhou Y, Yu J, Li Q, Liao Z, Gu Y, Han J, Linghu S, Jiao Z, Wang T, Zhang CY, Chen X. Long Noncoding RNA CTD-2245E15.3 Promotes Anabolic Enzymes ACC1 and PC to Support Non-Small Cell Lung Cancer Growth. Cancer Res. 2021;81:3509–24.PubMedCrossRef
41.
go back to reference Shang C, Wang W, Liao Y, Chen Y, Liu T, Du Q, Huang J, Liang Y, Liu J, Zhao Y, Guo L, Hu Z, Yao S. LNMICC Promotes Nodal Metastasis of Cervical Cancer by Reprogramming Fatty Acid Metabolism. Cancer Res. 2018;78:877–90.PubMedCrossRef Shang C, Wang W, Liao Y, Chen Y, Liu T, Du Q, Huang J, Liang Y, Liu J, Zhao Y, Guo L, Hu Z, Yao S. LNMICC Promotes Nodal Metastasis of Cervical Cancer by Reprogramming Fatty Acid Metabolism. Cancer Res. 2018;78:877–90.PubMedCrossRef
42.
go back to reference Yu Y, Dong JT, He B, Zou YF, Li XS, Xi CH, Yu Y. LncRNA SNHG16 induces the SREBP2 to promote lipogenesis and enhance the progression of pancreatic cancer. Future Oncol. 2019;15:3831–44.PubMedCrossRef Yu Y, Dong JT, He B, Zou YF, Li XS, Xi CH, Yu Y. LncRNA SNHG16 induces the SREBP2 to promote lipogenesis and enhance the progression of pancreatic cancer. Future Oncol. 2019;15:3831–44.PubMedCrossRef
43.
go back to reference Li Y, Zhao J, Chen R, Chen S, Xu Y, Cai W. Integration of clinical and transcriptomics reveals programming of the lipid metabolism in gastric cancer. BMC Cancer. 2022;22:955.PubMedPubMedCentralCrossRef Li Y, Zhao J, Chen R, Chen S, Xu Y, Cai W. Integration of clinical and transcriptomics reveals programming of the lipid metabolism in gastric cancer. BMC Cancer. 2022;22:955.PubMedPubMedCentralCrossRef
44.
go back to reference Zhao S, Cheng L, Shi Y, Li J, Yun Q, Yang H. MIEF2 reprograms lipid metabolism to drive progression of ovarian cancer through ROS/AKT/mTOR signaling pathway. Cell Death Dis. 2021;12:18.PubMedPubMedCentralCrossRef Zhao S, Cheng L, Shi Y, Li J, Yun Q, Yang H. MIEF2 reprograms lipid metabolism to drive progression of ovarian cancer through ROS/AKT/mTOR signaling pathway. Cell Death Dis. 2021;12:18.PubMedPubMedCentralCrossRef
45.
go back to reference Liu H, Zong C, Sun J, Li H, Qin G, Wang X, Zhu J, Yang Y, Xue Q, Liu X. Bioinformatics analysis of lncRNAs in the occurrence and development of osteosarcoma. Transl Pediatr. 2022;11:1182–98.PubMedPubMedCentralCrossRef Liu H, Zong C, Sun J, Li H, Qin G, Wang X, Zhu J, Yang Y, Xue Q, Liu X. Bioinformatics analysis of lncRNAs in the occurrence and development of osteosarcoma. Transl Pediatr. 2022;11:1182–98.PubMedPubMedCentralCrossRef
46.
go back to reference Bu X, Liu J, Ding R, Li Z. Prognostic Value of a Pyroptosis-Related Long Noncoding RNA Signature Associated with Osteosarcoma Microenvironment. J Oncol. 2021;2021:2182761.PubMedPubMedCentralCrossRef Bu X, Liu J, Ding R, Li Z. Prognostic Value of a Pyroptosis-Related Long Noncoding RNA Signature Associated with Osteosarcoma Microenvironment. J Oncol. 2021;2021:2182761.PubMedPubMedCentralCrossRef
47.
go back to reference Li S, Yang H, Li W, Liu JY, Ren LW, Yang YH, Ge BB, Zhang YZ, Fu WQ, Zheng XJ, Du GH, Wang JH. ADH1C inhibits progression of colorectal cancer through the ADH1C/PHGDH /PSAT1/serine metabolic pathway. Acta Pharmacol Sin. 2022;43:2709–22.PubMedPubMedCentralCrossRef Li S, Yang H, Li W, Liu JY, Ren LW, Yang YH, Ge BB, Zhang YZ, Fu WQ, Zheng XJ, Du GH, Wang JH. ADH1C inhibits progression of colorectal cancer through the ADH1C/PHGDH /PSAT1/serine metabolic pathway. Acta Pharmacol Sin. 2022;43:2709–22.PubMedPubMedCentralCrossRef
48.
go back to reference Chang JS, Straif K, Guha N. The role of alcohol dehydrogenase genes in head and neck cancers: a systematic review and meta-analysis of ADH1B and ADH1C. Mutagenesis. 2012;27:275–86.PubMedCrossRef Chang JS, Straif K, Guha N. The role of alcohol dehydrogenase genes in head and neck cancers: a systematic review and meta-analysis of ADH1B and ADH1C. Mutagenesis. 2012;27:275–86.PubMedCrossRef
49.
go back to reference Zimta AA, Cenariu D, Irimie A, Magdo L, Nabavi SM, Atanasov AG, Berindan-Neagoe I. The Role of Nrf2 Activity in Cancer Development and Progression. Cancers (Basel). 2019;11:1755.PubMedCrossRef Zimta AA, Cenariu D, Irimie A, Magdo L, Nabavi SM, Atanasov AG, Berindan-Neagoe I. The Role of Nrf2 Activity in Cancer Development and Progression. Cancers (Basel). 2019;11:1755.PubMedCrossRef
50.
go back to reference Li M, Liu Z, Song J, Wang T, Wang H, Wang Y, Guo J. Identification of Down-Regulated ADH1C is Associated With Poor Prognosis in Colorectal Cancer Using Bioinformatics Analysis. Front Mol Biosci. 2022;9:791249.PubMedPubMedCentralCrossRef Li M, Liu Z, Song J, Wang T, Wang H, Wang Y, Guo J. Identification of Down-Regulated ADH1C is Associated With Poor Prognosis in Colorectal Cancer Using Bioinformatics Analysis. Front Mol Biosci. 2022;9:791249.PubMedPubMedCentralCrossRef
51.
52.
go back to reference Chen Q, Li F, Gao Y, Xu G, Liang L, Xu J. Identification of Energy Metabolism Genes for the Prediction of Survival in Hepatocellular Carcinoma. Front Oncol. 2020;10:1210.PubMedPubMedCentralCrossRef Chen Q, Li F, Gao Y, Xu G, Liang L, Xu J. Identification of Energy Metabolism Genes for the Prediction of Survival in Hepatocellular Carcinoma. Front Oncol. 2020;10:1210.PubMedPubMedCentralCrossRef
53.
go back to reference Li Z, Liu L, Feng C, Qin Y, Xiao J, Zhang Z, Ma L. LncBook 2.0: integrating human long non-coding RNAs with multi-omics annotations. Nucleic Acids Res. 2023;51:D186–91.PubMedCrossRef Li Z, Liu L, Feng C, Qin Y, Xiao J, Zhang Z, Ma L. LncBook 2.0: integrating human long non-coding RNAs with multi-omics annotations. Nucleic Acids Res. 2023;51:D186–91.PubMedCrossRef
54.
go back to reference Ramsay IS, Ma S, Fisher M, Loewy RL, Ragland JD, Niendam T, Carter CS, Vinogradov S. Model selection and prediction of outcomes in recent onset schizophrenia patients who undergo cognitive training. Schizophr Res Cogn. 2018;11:1–5.PubMedCrossRef Ramsay IS, Ma S, Fisher M, Loewy RL, Ragland JD, Niendam T, Carter CS, Vinogradov S. Model selection and prediction of outcomes in recent onset schizophrenia patients who undergo cognitive training. Schizophr Res Cogn. 2018;11:1–5.PubMedCrossRef
Metadata
Title
LncRNA RPARP-AS1 promotes the progression of osteosarcoma cells through regulating lipid metabolism
Authors
Feng Cai
Luhua Liu
Yuan Bo
Wenjing Yan
Xuchang Tao
Yuanxiang Peng
Zhiping Zhang
Qi Liao
Yangyan Yi
Publication date
01-12-2024
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2024
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-024-11901-x

Other articles of this Issue 1/2024

BMC Cancer 1/2024 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine