Skip to main content
Top
Published in: Drugs 4/2024

Open Access 04-04-2024 | Liraglutide | Leading Article

The Pharmacological Landscape for Fatty Change of the Pancreas

Author: Maxim S. Petrov

Published in: Drugs | Issue 4/2024

Login to get access

Abstract

The quest for medications to reduce intra-pancreatic fat deposition is now quarter a century old. While no specific medication has been approved for the treatment of fatty change of the pancreas, drug repurposing shows promise in reducing the burden of the most common disorder of the pancreas. This leading article outlines the 12 classes of medications that have been investigated to date with a view to reducing intra-pancreatic fat deposition. Information is presented hierarchically—from preclinical studies to retrospective findings in humans to prospective interventional studies to randomised controlled trials. This lays the grounds for shepherding the most propitious drugs into medical practice through well-designed basic science studies and adequately powered randomised controlled trials.
Literature
1.
go back to reference Petrov MS, Taylor R. Intra-pancreatic fat deposition: bringing hidden fat to the fore. Nat Rev Gastroenterol Hepatol. 2022;19:153–68.PubMedCrossRef Petrov MS, Taylor R. Intra-pancreatic fat deposition: bringing hidden fat to the fore. Nat Rev Gastroenterol Hepatol. 2022;19:153–68.PubMedCrossRef
2.
go back to reference Wong VW, Wong GL, Yeung DK, et al. Fatty pancreas, insulin resistance, and β-cell function: a population study using fat-water magnetic resonance imaging. Am J Gastroenterol. 2014;109:589–97.PubMedCrossRef Wong VW, Wong GL, Yeung DK, et al. Fatty pancreas, insulin resistance, and β-cell function: a population study using fat-water magnetic resonance imaging. Am J Gastroenterol. 2014;109:589–97.PubMedCrossRef
3.
go back to reference Lee Y, Hirose H, Ohneda M, et al. Beta-cell lipotoxicity in the pathogenesis of non-insulin-dependent diabetes mellitus of obese rats: impairment in adipocyte-beta-cell relationships. Proc Natl Acad Sci USA. 1994;91:10878–82.PubMedPubMedCentralCrossRef Lee Y, Hirose H, Ohneda M, et al. Beta-cell lipotoxicity in the pathogenesis of non-insulin-dependent diabetes mellitus of obese rats: impairment in adipocyte-beta-cell relationships. Proc Natl Acad Sci USA. 1994;91:10878–82.PubMedPubMedCentralCrossRef
4.
go back to reference Singh RG, Yoon HD, Wu LM, et al. Ectopic fat accumulation in the pancreas and its clinical relevance: a systematic review, meta-analysis, and meta-regression. Metabolism. 2017;69:1–13.PubMedCrossRef Singh RG, Yoon HD, Wu LM, et al. Ectopic fat accumulation in the pancreas and its clinical relevance: a systematic review, meta-analysis, and meta-regression. Metabolism. 2017;69:1–13.PubMedCrossRef
5.
go back to reference Taylor R, Al-Mrabeh A, Sattar N. Understanding the mechanisms of reversal of type 2 diabetes. Lancet Diabetes Endocrinol. 2019;7:726–36.PubMedCrossRef Taylor R, Al-Mrabeh A, Sattar N. Understanding the mechanisms of reversal of type 2 diabetes. Lancet Diabetes Endocrinol. 2019;7:726–36.PubMedCrossRef
6.
go back to reference Al-Mrabeh A, Zhyzhneuskaya SV, Peters C, et al. Hepatic lipoprotein export and remission of human type 2 diabetes after weight loss. Cell Metab. 2020;31:233–49.PubMedCrossRef Al-Mrabeh A, Zhyzhneuskaya SV, Peters C, et al. Hepatic lipoprotein export and remission of human type 2 diabetes after weight loss. Cell Metab. 2020;31:233–49.PubMedCrossRef
7.
go back to reference Ko J, Al-Ani Z, Long K, et al. Intra-pancreatic, liver, and skeletal muscle fat depositions in first attack of acute pancreatitis versus health. Am J Gastroenterol. 2022;117:1693–701.PubMedCrossRef Ko J, Al-Ani Z, Long K, et al. Intra-pancreatic, liver, and skeletal muscle fat depositions in first attack of acute pancreatitis versus health. Am J Gastroenterol. 2022;117:1693–701.PubMedCrossRef
8.
go back to reference Al-Ani Z, Ko J, Petrov MS. Intra-pancreatic fat deposition across the pancreatitis spectrum and the influence of gut hormones. Dig Liver Dis. 2023;55:1081–90.PubMedCrossRef Al-Ani Z, Ko J, Petrov MS. Intra-pancreatic fat deposition across the pancreatitis spectrum and the influence of gut hormones. Dig Liver Dis. 2023;55:1081–90.PubMedCrossRef
9.
go back to reference Ko J, Skudder-Hill L, Priya S, et al. Associations between intra-pancreatic fat deposition, pancreas size, and pancreatic enzymes in health and after an attack of acute pancreatitis. Obes Facts. 2022;15:70–82.PubMedCrossRef Ko J, Skudder-Hill L, Priya S, et al. Associations between intra-pancreatic fat deposition, pancreas size, and pancreatic enzymes in health and after an attack of acute pancreatitis. Obes Facts. 2022;15:70–82.PubMedCrossRef
10.
go back to reference Sreedhar UL, DeSouza SV, Park B, et al. A systematic review of intra-pancreatic fat deposition and pancreatic carcinogenesis. J Gastrointest Surg. 2020;24:2560–9.PubMedCrossRef Sreedhar UL, DeSouza SV, Park B, et al. A systematic review of intra-pancreatic fat deposition and pancreatic carcinogenesis. J Gastrointest Surg. 2020;24:2560–9.PubMedCrossRef
12.
go back to reference Petrov MS. Fatty change of the pancreas: the Pandora’s box of pancreatology. Lancet Gastroenterol Hepatol. 2023;8:671–82.PubMedCrossRef Petrov MS. Fatty change of the pancreas: the Pandora’s box of pancreatology. Lancet Gastroenterol Hepatol. 2023;8:671–82.PubMedCrossRef
14.
go back to reference Ko J, Skudder-Hill L, Tarrant C, et al. Intra-pancreatic fat deposition as a modifier of the relationship between habitual dietary fat intake and insulin resistance. Clin Nutr. 2021;40:4730–7.PubMedCrossRef Ko J, Skudder-Hill L, Tarrant C, et al. Intra-pancreatic fat deposition as a modifier of the relationship between habitual dietary fat intake and insulin resistance. Clin Nutr. 2021;40:4730–7.PubMedCrossRef
15.
go back to reference Ko J, Kimita W, Skudder-Hill L, et al. Dietary carbohydrate intake and insulin traits in individuals after acute pancreatitis: effect modification by intra-pancreatic fat deposition. Pancreatology. 2021;21:353–62.PubMedCrossRef Ko J, Kimita W, Skudder-Hill L, et al. Dietary carbohydrate intake and insulin traits in individuals after acute pancreatitis: effect modification by intra-pancreatic fat deposition. Pancreatology. 2021;21:353–62.PubMedCrossRef
16.
go back to reference Rossi AP, Fantin F, Zamboni GA, et al. Effect of moderate weight loss on hepatic, pancreatic and visceral lipids in obese subjects. Nutr Diabetes. 2012;2: e32.PubMedPubMedCentralCrossRef Rossi AP, Fantin F, Zamboni GA, et al. Effect of moderate weight loss on hepatic, pancreatic and visceral lipids in obese subjects. Nutr Diabetes. 2012;2: e32.PubMedPubMedCentralCrossRef
17.
go back to reference Honka H, Koffert J, Hannukainen JC, et al. The effects of bariatric surgery on pancreatic lipid metabolism and blood flow. J Clin Endocrinol Metab. 2015;100:2015–23.PubMedCrossRef Honka H, Koffert J, Hannukainen JC, et al. The effects of bariatric surgery on pancreatic lipid metabolism and blood flow. J Clin Endocrinol Metab. 2015;100:2015–23.PubMedCrossRef
18.
go back to reference Umemura A, Sasaki A, Nitta H, et al. Pancreas volume reduction and metabolic effects in Japanese patients with severe obesity following laparoscopic sleeve gastrectomy. Endocr J. 2017;64:487–98.PubMedCrossRef Umemura A, Sasaki A, Nitta H, et al. Pancreas volume reduction and metabolic effects in Japanese patients with severe obesity following laparoscopic sleeve gastrectomy. Endocr J. 2017;64:487–98.PubMedCrossRef
19.
go back to reference Lautenbach A, Wernecke M, Riedel N, et al. Adaptive changes in pancreas post Roux-en-Y gastric bypass induced weight loss. Diabetes Metab Res Rev. 2018;34: e3025.PubMedCrossRef Lautenbach A, Wernecke M, Riedel N, et al. Adaptive changes in pancreas post Roux-en-Y gastric bypass induced weight loss. Diabetes Metab Res Rev. 2018;34: e3025.PubMedCrossRef
20.
go back to reference Gaborit B, Abdesselam I, Kober F, et al. Ectopic fat storage in the pancreas using 1H-MRS: importance of diabetic status and modulation with bariatric surgery-induced weight loss. Int J Obes. 2015;39:480–7.CrossRef Gaborit B, Abdesselam I, Kober F, et al. Ectopic fat storage in the pancreas using 1H-MRS: importance of diabetic status and modulation with bariatric surgery-induced weight loss. Int J Obes. 2015;39:480–7.CrossRef
21.
go back to reference Hui SC, Wong SK, Ai Q, Yeung DK, Ng EK, Chu WC. Observed changes in brown, white, hepatic and pancreatic fat after bariatric surgery: evaluation with MRI. Eur Radiol. 2019;29:849–56.PubMedCrossRef Hui SC, Wong SK, Ai Q, Yeung DK, Ng EK, Chu WC. Observed changes in brown, white, hepatic and pancreatic fat after bariatric surgery: evaluation with MRI. Eur Radiol. 2019;29:849–56.PubMedCrossRef
22.
go back to reference Steven S, Hollingsworth KG, Al-Mrabeh A, et al. Very low-calorie diet and 6 months of weight stability in type 2 diabetes: pathophysiological changes in responders and nonresponders. Diabetes Care. 2016;39:808–15.PubMedCrossRef Steven S, Hollingsworth KG, Al-Mrabeh A, et al. Very low-calorie diet and 6 months of weight stability in type 2 diabetes: pathophysiological changes in responders and nonresponders. Diabetes Care. 2016;39:808–15.PubMedCrossRef
23.
go back to reference Steven S, Hollingsworth KG, Small PK, et al. Weight loss decreases excess pancreatic triacylglycerol specifically in type 2 diabetes. Diabetes Care. 2016;39:158–65.PubMedCrossRef Steven S, Hollingsworth KG, Small PK, et al. Weight loss decreases excess pancreatic triacylglycerol specifically in type 2 diabetes. Diabetes Care. 2016;39:158–65.PubMedCrossRef
25.
go back to reference Lewis GF, Carpentier A, Adeli K, et al. Disordered fat storage and mobilization in the pathogenesis of insulin resistance and type 2 diabetes. Endocr Rev. 2002;23:201–29.PubMedCrossRef Lewis GF, Carpentier A, Adeli K, et al. Disordered fat storage and mobilization in the pathogenesis of insulin resistance and type 2 diabetes. Endocr Rev. 2002;23:201–29.PubMedCrossRef
26.
go back to reference Souza-Mello V, Gregório BM, Cardoso-de-Lemos FS, et al. Comparative effects of telmisartan, sitagliptin and metformin alone or in combination on obesity, insulin resistance, and liver and pancreas remodelling in C57BL/6 mice fed on a very high-fat diet. Clin Sci (Lond). 2010;119:239–50.PubMedCrossRef Souza-Mello V, Gregório BM, Cardoso-de-Lemos FS, et al. Comparative effects of telmisartan, sitagliptin and metformin alone or in combination on obesity, insulin resistance, and liver and pancreas remodelling in C57BL/6 mice fed on a very high-fat diet. Clin Sci (Lond). 2010;119:239–50.PubMedCrossRef
27.
go back to reference Zsóri G, Illés D, Ivány E, et al. In new-onset diabetes mellitus, metformin reduces fat accumulation in the liver, but not in the pancreas or pericardium. Metab Syndr Relat Disord. 2019;17:289–95.PubMedCrossRef Zsóri G, Illés D, Ivány E, et al. In new-onset diabetes mellitus, metformin reduces fat accumulation in the liver, but not in the pancreas or pericardium. Metab Syndr Relat Disord. 2019;17:289–95.PubMedCrossRef
28.
go back to reference Kuriyama T, Ishibashi C, Kozawa J, et al. Effects of liraglutide on intrapancreatic fat deposition in patients with type 2 diabetes. Clin Nutr ESPEN. 2024;59:208–13.PubMedCrossRef Kuriyama T, Ishibashi C, Kozawa J, et al. Effects of liraglutide on intrapancreatic fat deposition in patients with type 2 diabetes. Clin Nutr ESPEN. 2024;59:208–13.PubMedCrossRef
29.
go back to reference Higa M, Zhou YT, Ravazzola M, et al. Troglitazone prevents mitochondrial alterations, beta cell destruction, and diabetes in obese prediabetic rats. Proc Natl Acad Sci USA. 1999;96:11513–8.PubMedPubMedCentralCrossRef Higa M, Zhou YT, Ravazzola M, et al. Troglitazone prevents mitochondrial alterations, beta cell destruction, and diabetes in obese prediabetic rats. Proc Natl Acad Sci USA. 1999;96:11513–8.PubMedPubMedCentralCrossRef
30.
go back to reference Yu X, McCorkle S, Wang M, et al. Leptinomimetic effects of the AMP kinase activator AICAR in leptin-resistant rats: prevention of diabetes and ectopic lipid deposition. Diabetologia. 2004;47:2012–21.PubMedCrossRef Yu X, McCorkle S, Wang M, et al. Leptinomimetic effects of the AMP kinase activator AICAR in leptin-resistant rats: prevention of diabetes and ectopic lipid deposition. Diabetologia. 2004;47:2012–21.PubMedCrossRef
31.
go back to reference Fernandes-Santos C, Evangelista Carneiro R, de Souza ML, et al. Rosiglitazone aggravates nonalcoholic fatty pancreatic disease in C57BL/6 mice fed high-fat and high-sucrose diet. Pancreas. 2009;38:e80–6.PubMedCrossRef Fernandes-Santos C, Evangelista Carneiro R, de Souza ML, et al. Rosiglitazone aggravates nonalcoholic fatty pancreatic disease in C57BL/6 mice fed high-fat and high-sucrose diet. Pancreas. 2009;38:e80–6.PubMedCrossRef
32.
go back to reference Lingvay I, Poduri M, Szczepaniak E, et al. Pioglitazone: effect on pancreatic steatosis and beta cell function. Diabetologia. 2012;55(Suppl 1):S327. Lingvay I, Poduri M, Szczepaniak E, et al. Pioglitazone: effect on pancreatic steatosis and beta cell function. Diabetologia. 2012;55(Suppl 1):S327.
34.
go back to reference Fang T, Huang S, Chen Y, et al. Glucagon like peptide-1 receptor agonists alter pancreatic and hepatic histology and regulation of endoplasmic reticulum stress in high-fat diet mouse model. Exp Clin Endocrinol Diabetes. 2021;129:625–33.PubMedCrossRef Fang T, Huang S, Chen Y, et al. Glucagon like peptide-1 receptor agonists alter pancreatic and hepatic histology and regulation of endoplasmic reticulum stress in high-fat diet mouse model. Exp Clin Endocrinol Diabetes. 2021;129:625–33.PubMedCrossRef
35.
go back to reference Kuchay MS, Krishan S, Mishra SK, et al. Effect of dulaglutide on liver fat in patients with type 2 diabetes and NAFLD: randomised controlled trial (D-LIFT trial). Diabetologia. 2020;63:2434–45.PubMedCrossRef Kuchay MS, Krishan S, Mishra SK, et al. Effect of dulaglutide on liver fat in patients with type 2 diabetes and NAFLD: randomised controlled trial (D-LIFT trial). Diabetologia. 2020;63:2434–45.PubMedCrossRef
36.
go back to reference Dutour A, Abdesselam I, Ancel P, et al. Exenatide decreases liver fat content and epicardial adipose tissue in patients with obesity and type 2 diabetes: a prospective randomized clinical trial using magnetic resonance imaging and spectroscopy. Diabetes Obes Metab. 2016;18:882–91.PubMedCrossRef Dutour A, Abdesselam I, Ancel P, et al. Exenatide decreases liver fat content and epicardial adipose tissue in patients with obesity and type 2 diabetes: a prospective randomized clinical trial using magnetic resonance imaging and spectroscopy. Diabetes Obes Metab. 2016;18:882–91.PubMedCrossRef
37.
go back to reference Smits MM, Tonneijck L, Muskiet MH, et al. Pancreatic effects of liraglutide or sitagliptin in overweight patients with type 2 diabetes: a 12-week randomized, placebo-controlled trial. Diabetes Care. 2017;40:301–8.PubMedCrossRef Smits MM, Tonneijck L, Muskiet MH, et al. Pancreatic effects of liraglutide or sitagliptin in overweight patients with type 2 diabetes: a 12-week randomized, placebo-controlled trial. Diabetes Care. 2017;40:301–8.PubMedCrossRef
38.
go back to reference Vanderheiden A, Harrison LB, Warshauer JT, et al. Mechanisms of action of liraglutide in patients with type 2 diabetes treated with high-dose insulin. J Clin Endocrinol Metab. 2016;101:1798–806.PubMedCrossRef Vanderheiden A, Harrison LB, Warshauer JT, et al. Mechanisms of action of liraglutide in patients with type 2 diabetes treated with high-dose insulin. J Clin Endocrinol Metab. 2016;101:1798–806.PubMedCrossRef
39.
go back to reference Svane MS, Johannesen HH, Martinussen C, et al. No effects of a 6-week intervention with a glucagon-like peptide-1 receptor agonist on pancreatic volume and oedema in obese men without diabetes. Diabetes Obes Metab. 2020;22:1837–46.PubMedCrossRef Svane MS, Johannesen HH, Martinussen C, et al. No effects of a 6-week intervention with a glucagon-like peptide-1 receptor agonist on pancreatic volume and oedema in obese men without diabetes. Diabetes Obes Metab. 2020;22:1837–46.PubMedCrossRef
40.
go back to reference Nag S, Mandal S, Mukherjee O, et al. Vildagliptin inhibits high fat and fetuin-A mediated DPP-4 expression, intracellular lipid accumulation and improves insulin secretory defects in pancreatic beta cells. Biochim Biophys Acta Mol Basis Dis. 2024;1870: 167047.PubMedCrossRef Nag S, Mandal S, Mukherjee O, et al. Vildagliptin inhibits high fat and fetuin-A mediated DPP-4 expression, intracellular lipid accumulation and improves insulin secretory defects in pancreatic beta cells. Biochim Biophys Acta Mol Basis Dis. 2024;1870: 167047.PubMedCrossRef
41.
go back to reference Souza-Mello V, Gregório BM, Relvas-Lucas B, et al. Pancreatic ultrastructural enhancement due to telmisartan plus sitagliptin treatment in diet-induced obese C57BL/6 mice. Pancreas. 2011;40:715–22.PubMedCrossRef Souza-Mello V, Gregório BM, Relvas-Lucas B, et al. Pancreatic ultrastructural enhancement due to telmisartan plus sitagliptin treatment in diet-induced obese C57BL/6 mice. Pancreas. 2011;40:715–22.PubMedCrossRef
42.
go back to reference Horii T, Kozawa J, Fujita S, et al. Amelioration of pancreatic fat accumulation in Japanese type 2 diabetes patients treated with sodium-glucose cotransporter 2 inhibitors: a retrospective study. Obes Sci Pract. 2021;7:346–52.PubMedPubMedCentralCrossRef Horii T, Kozawa J, Fujita S, et al. Amelioration of pancreatic fat accumulation in Japanese type 2 diabetes patients treated with sodium-glucose cotransporter 2 inhibitors: a retrospective study. Obes Sci Pract. 2021;7:346–52.PubMedPubMedCentralCrossRef
43.
go back to reference Gaborit B, Ancel P, Abdullah AE, et al. Effect of empagliflozin on ectopic fat stores and myocardial energetics in type 2 diabetes: the EMPACEF study. Cardiovasc Diabetol. 2021;20:57.PubMedPubMedCentralCrossRef Gaborit B, Ancel P, Abdullah AE, et al. Effect of empagliflozin on ectopic fat stores and myocardial energetics in type 2 diabetes: the EMPACEF study. Cardiovasc Diabetol. 2021;20:57.PubMedPubMedCentralCrossRef
44.
go back to reference Hummel J, Machann J, Dannecker C, et al. Eight weeks of empagliflozin does not affect pancreatic fat content and insulin secretion in people with prediabetes. Diabetes Obes Metab. 2022;24:1661–6.PubMedCrossRef Hummel J, Machann J, Dannecker C, et al. Eight weeks of empagliflozin does not affect pancreatic fat content and insulin secretion in people with prediabetes. Diabetes Obes Metab. 2022;24:1661–6.PubMedCrossRef
45.
go back to reference Ghosh A, Dutta K, Bhatt SP, et al. Dapagliflozin improves body fat patterning, and hepatic and pancreatic fat in patients with type 2 diabetes in North India. J Clin Endocrinol Metab. 2022;107:e2267–75.PubMedCrossRef Ghosh A, Dutta K, Bhatt SP, et al. Dapagliflozin improves body fat patterning, and hepatic and pancreatic fat in patients with type 2 diabetes in North India. J Clin Endocrinol Metab. 2022;107:e2267–75.PubMedCrossRef
46.
go back to reference Shi M, Zhang H, Wang W, et al. Effect of dapagliflozin on liver and pancreatic fat in patients with type 2 diabetes and non-alcoholic fatty liver disease. J Diabetes Complicat. 2023;37: 108610.CrossRef Shi M, Zhang H, Wang W, et al. Effect of dapagliflozin on liver and pancreatic fat in patients with type 2 diabetes and non-alcoholic fatty liver disease. J Diabetes Complicat. 2023;37: 108610.CrossRef
47.
go back to reference Chen ZY, Liu SN, Li CN, et al. Atorvastatin helps preserve pancreatic β cell function in obese C57BL/6 J mice and the effect is related to increased pancreas proliferation and amelioration of endoplasmic-reticulum stress. Lipids Health Dis. 2014;13:98.PubMedPubMedCentralCrossRef Chen ZY, Liu SN, Li CN, et al. Atorvastatin helps preserve pancreatic β cell function in obese C57BL/6 J mice and the effect is related to increased pancreas proliferation and amelioration of endoplasmic-reticulum stress. Lipids Health Dis. 2014;13:98.PubMedPubMedCentralCrossRef
48.
go back to reference Krisnamurti DGB, Farida S, Putri RC, et al. The effect of simvastatin-Acalypha indica Linn. combination on the improvement of fatty pancreas in rats induced with a high fructose and cholesterol diet. J Adv Vet Anim Res. 2022;9:346–50.PubMedPubMedCentralCrossRef Krisnamurti DGB, Farida S, Putri RC, et al. The effect of simvastatin-Acalypha indica Linn. combination on the improvement of fatty pancreas in rats induced with a high fructose and cholesterol diet. J Adv Vet Anim Res. 2022;9:346–50.PubMedPubMedCentralCrossRef
49.
go back to reference Wei L, Yamamoto M, Harada M, et al. Treatment with pravastatin attenuates progression of chronic pancreatitis in rat. Lab Investig. 2011;91:872–84.PubMedCrossRef Wei L, Yamamoto M, Harada M, et al. Treatment with pravastatin attenuates progression of chronic pancreatitis in rat. Lab Investig. 2011;91:872–84.PubMedCrossRef
50.
go back to reference Patel K, Trivedi RN, Durgampudi C, et al. Lipolysis of visceral adipocyte triglyceride by pancreatic lipases converts mild acute pancreatitis to severe pancreatitis independent of necrosis and inflammation. Am J Pathol. 2015;185:808–19.PubMedPubMedCentralCrossRef Patel K, Trivedi RN, Durgampudi C, et al. Lipolysis of visceral adipocyte triglyceride by pancreatic lipases converts mild acute pancreatitis to severe pancreatitis independent of necrosis and inflammation. Am J Pathol. 2015;185:808–19.PubMedPubMedCentralCrossRef
51.
go back to reference Geer EB, Islam J, Buettner C. Mechanisms of glucocorticoid-induced insulin resistance: focus on adipose tissue function and lipid metabolism. Endocrinol Metab Clin N Am. 2014;43:75–102.CrossRef Geer EB, Islam J, Buettner C. Mechanisms of glucocorticoid-induced insulin resistance: focus on adipose tissue function and lipid metabolism. Endocrinol Metab Clin N Am. 2014;43:75–102.CrossRef
52.
go back to reference Lee JW, Gu HO, Jung Y, et al. Candesartan, an angiotensin-II receptor blocker, ameliorates insulin resistance and hepatosteatosis by reducing intracellular calcium overload and lipid accumulation. Exp Mol Med. 2023;55:910–25.PubMedPubMedCentralCrossRef Lee JW, Gu HO, Jung Y, et al. Candesartan, an angiotensin-II receptor blocker, ameliorates insulin resistance and hepatosteatosis by reducing intracellular calcium overload and lipid accumulation. Exp Mol Med. 2023;55:910–25.PubMedPubMedCentralCrossRef
54.
go back to reference Ye T, Chen YH, Gao JH, et al. Effect of octreotide on pancreatic fibrosis in rats with high-fat diet-induced obesity. Int J Clin Exp Pathol. 2018;11:4784–94.PubMedPubMedCentral Ye T, Chen YH, Gao JH, et al. Effect of octreotide on pancreatic fibrosis in rats with high-fat diet-induced obesity. Int J Clin Exp Pathol. 2018;11:4784–94.PubMedPubMedCentral
55.
go back to reference Belyaev O, Polle C, Herzog T, et al. Effects of intra-arterial octreotide on pancreatic texture: a randomized controlled trial. Scand J Surg. 2013;102:164–70.PubMedCrossRef Belyaev O, Polle C, Herzog T, et al. Effects of intra-arterial octreotide on pancreatic texture: a randomized controlled trial. Scand J Surg. 2013;102:164–70.PubMedCrossRef
56.
go back to reference Hong TH, Choi JI, Park MY, et al. Pancreatic hardness: correlation of surgeon’s palpation, durometer measurement and preoperative magnetic resonance imaging features. World J Gastroenterol. 2017;23:2044–51.PubMedPubMedCentralCrossRef Hong TH, Choi JI, Park MY, et al. Pancreatic hardness: correlation of surgeon’s palpation, durometer measurement and preoperative magnetic resonance imaging features. World J Gastroenterol. 2017;23:2044–51.PubMedPubMedCentralCrossRef
57.
go back to reference Jeon S, Lee J, Shin Y, Yoon M. Ascorbic acid reduces insulin resistance and pancreatic steatosis by regulating adipocyte hypertrophy in obese ovariectomized mice. Can J Physiol Pharmacol. 2023;101:294–303.PubMedCrossRef Jeon S, Lee J, Shin Y, Yoon M. Ascorbic acid reduces insulin resistance and pancreatic steatosis by regulating adipocyte hypertrophy in obese ovariectomized mice. Can J Physiol Pharmacol. 2023;101:294–303.PubMedCrossRef
58.
go back to reference Marciniak SJ, Chambers JE, Ron D. Pharmacological targeting of endoplasmic reticulum stress in disease. Nat Rev Drug Discov. 2022;21:115–40.PubMedCrossRef Marciniak SJ, Chambers JE, Ron D. Pharmacological targeting of endoplasmic reticulum stress in disease. Nat Rev Drug Discov. 2022;21:115–40.PubMedCrossRef
60.
go back to reference Sardar MB, Nadeem ZA, Babar M. Tirzepatide: a novel cardiovascular protective agent in type 2 diabetes mellitus and obesity. Curr Probl Cardiol. 2024;49: 102489.PubMedCrossRef Sardar MB, Nadeem ZA, Babar M. Tirzepatide: a novel cardiovascular protective agent in type 2 diabetes mellitus and obesity. Curr Probl Cardiol. 2024;49: 102489.PubMedCrossRef
Metadata
Title
The Pharmacological Landscape for Fatty Change of the Pancreas
Author
Maxim S. Petrov
Publication date
04-04-2024
Publisher
Springer International Publishing
Keyword
Liraglutide
Published in
Drugs / Issue 4/2024
Print ISSN: 0012-6667
Electronic ISSN: 1179-1950
DOI
https://doi.org/10.1007/s40265-024-02022-7

Other articles of this Issue 4/2024

Drugs 4/2024 Go to the issue

AdisInsight Report

Aponermin: First Approval