Skip to main content
Top

23-04-2024 | COVID-19 Vaccination | Review Article

Current Progress, Challenges and Prospects in the Development of COVID-19 Vaccines

Authors: Congrui Zhu, Shengmei Pang, Jiaqi Liu, Qiangde Duan

Published in: Drugs

Login to get access

Abstract

The COVID-19 pandemic has resulted in over 772 million confirmed cases, including nearly 7 million deaths, according to the World Health Organization (WHO). Leveraging rapid development, accelerated vaccine approval processes, and large-scale production of various COVID-19 vaccines using different technical platforms, the WHO declared an end to the global health emergency of COVID-19 on May 5, 2023. Current COVID-19 vaccines encompass inactivated, live attenuated, viral vector, protein subunit, nucleic acid (DNA and RNA), and virus-like particle (VLP) vaccines. However, the efficacy of these vaccines is diminishing due to the constant mutation of SARS-CoV-2 and the heightened immune evasion abilities of emerging variants. This review examines the impact of the COVID-19 pandemic, the biological characteristics of the virus, and its diverse variants. Moreover, the review underscores the effectiveness, advantages, and disadvantages of authorized COVID-19 vaccines. Additionally, it analyzes the challenges, strategies, and future prospects of developing a safe, broad-spectrum vaccine that confers sufficient and sustainable immune protection against new variants of SARS-CoV-2. These discussions not only offer insight for the development of next-generation COVID-19 vaccines but also summarize experiences for combating future emerging viruses.

Graphical Abstract

This review focuses on the strengths and weaknesses of various vaccine platforms against rapidly mutating SARS-CoV-2 variants, discusses the challenges of current vaccine research, and provides strategies for next-generation COVID-19 vaccine development.
Literature
1.
go back to reference Li Q, Guan XH, Wu P, Wang XY, Zhou L, Tong YQ, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N Engl J Med. 2020;382(13):1199–207.PubMedPubMedCentralCrossRef Li Q, Guan XH, Wu P, Wang XY, Zhou L, Tong YQ, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N Engl J Med. 2020;382(13):1199–207.PubMedPubMedCentralCrossRef
2.
go back to reference Hu B, Guo H, Zhou P, Shi ZL. Characteristics of SARS-CoV-2 and COVID-19. Nat Rev Microbiol. 2021;19(3):141–54.PubMedCrossRef Hu B, Guo H, Zhou P, Shi ZL. Characteristics of SARS-CoV-2 and COVID-19. Nat Rev Microbiol. 2021;19(3):141–54.PubMedCrossRef
3.
5.
go back to reference Li QQ, Nie JH, Wu JJ, Zhang L, Ding RX, Wang HX, et al. SARS-CoV-2 501Y.V2 variants lack higher infectivity but do have immune escape. Cell. 2021;184(9):2362–71. Li QQ, Nie JH, Wu JJ, Zhang L, Ding RX, Wang HX, et al. SARS-CoV-2 501Y.V2 variants lack higher infectivity but do have immune escape. Cell. 2021;184(9):2362–71.
6.
go back to reference Pulliam JRC, van Schalkwyk C, Govender N, von Gottberg A, Cohen C, Groome MJ, et al. Increased risk of SARS-CoV-2 reinfection associated with emergence of Omicron in South Africa. Science. 2022;376(6593):596–603.CrossRef Pulliam JRC, van Schalkwyk C, Govender N, von Gottberg A, Cohen C, Groome MJ, et al. Increased risk of SARS-CoV-2 reinfection associated with emergence of Omicron in South Africa. Science. 2022;376(6593):596–603.CrossRef
7.
go back to reference Cui Z, Liu P, Wang N, Wang L, Fan KY, Zhu QH, et al. Structural and functional characterizations of infectivity and immune evasion of SARS-CoV-2 Omicron. Cell. 2022;185(5):860–71.PubMedPubMedCentralCrossRef Cui Z, Liu P, Wang N, Wang L, Fan KY, Zhu QH, et al. Structural and functional characterizations of infectivity and immune evasion of SARS-CoV-2 Omicron. Cell. 2022;185(5):860–71.PubMedPubMedCentralCrossRef
8.
go back to reference Tallei TE, Alhumaid S, AlMusa Z, Fatimawali, Kusumawaty D, Alynbiawi A, et al. Update on the omicron sub-variants BA.4 and BA.5. Rev Med Virol. 2023;33(1):e2391. Tallei TE, Alhumaid S, AlMusa Z, Fatimawali, Kusumawaty D, Alynbiawi A, et al. Update on the omicron sub-variants BA.4 and BA.5. Rev Med Virol. 2023;33(1):e2391.
9.
go back to reference Xie Y, Choi T, Al-Aly Z. Risk of death in patients hospitalized for COVID-19 vs seasonal influenza in fall-winter 2022–2023. JAMA. 2023;329(19):1697–9.PubMedPubMedCentralCrossRef Xie Y, Choi T, Al-Aly Z. Risk of death in patients hospitalized for COVID-19 vs seasonal influenza in fall-winter 2022–2023. JAMA. 2023;329(19):1697–9.PubMedPubMedCentralCrossRef
11.
go back to reference Sarker R, Roknuzzaman ASM, Hossain MJ, Bhuiyan MA, Islam MR. The WHO declares COVID-19 is no longer a public health emergency of international concern: benefits, challenges, and necessary precautions to come back to normal life. Int J Surg. 2023;109(9):2851–2.PubMedPubMedCentralCrossRef Sarker R, Roknuzzaman ASM, Hossain MJ, Bhuiyan MA, Islam MR. The WHO declares COVID-19 is no longer a public health emergency of international concern: benefits, challenges, and necessary precautions to come back to normal life. Int J Surg. 2023;109(9):2851–2.PubMedPubMedCentralCrossRef
12.
go back to reference Chen Y, Cheng L, Lian R, Song Z, Tian J. COVID-19 vaccine research focusses on safety, efficacy, immunoinformatics, and vaccine production and delivery: a bibliometric analysis based on VOSviewer. Biosci Trends. 2021;15(2):64–73.PubMedCrossRef Chen Y, Cheng L, Lian R, Song Z, Tian J. COVID-19 vaccine research focusses on safety, efficacy, immunoinformatics, and vaccine production and delivery: a bibliometric analysis based on VOSviewer. Biosci Trends. 2021;15(2):64–73.PubMedCrossRef
13.
go back to reference Talic S, Shah S, Wild H, Gasevic D, Maharaj A, Ademi Z, et al. Effectiveness of public health measures in reducing the incidence of covid-19, SARS-CoV-2 transmission, and covid-19 mortality: systematic review and meta-analysis. BMJ Br Med J. 2021;375:e068302. Talic S, Shah S, Wild H, Gasevic D, Maharaj A, Ademi Z, et al. Effectiveness of public health measures in reducing the incidence of covid-19, SARS-CoV-2 transmission, and covid-19 mortality: systematic review and meta-analysis. BMJ Br Med J. 2021;375:e068302.
14.
15.
go back to reference Hotez PJ. COVID-19 vaccines: the imperfect instruments of vaccine diplomacy. J Travel Med. 2022;29(8):taac063. Hotez PJ. COVID-19 vaccines: the imperfect instruments of vaccine diplomacy. J Travel Med. 2022;29(8):taac063.
16.
go back to reference Li MC, Wang H, Tian LL, Pang ZH, Yang QK, Huang TQ, et al. COVID-19 vaccine development: milestones, lessons and prospects. Signal Transduct Tar. 2022;7(1):146–77. Li MC, Wang H, Tian LL, Pang ZH, Yang QK, Huang TQ, et al. COVID-19 vaccine development: milestones, lessons and prospects. Signal Transduct Tar. 2022;7(1):146–77.
17.
18.
go back to reference Yilmaz IC, Ipekoglu EM, Bulbul A, Turay N, Yildirim M, Evcili I, et al. Development and preclinical evaluation of virus-like particle vaccine against COVID-19 infection. Allergy. 2022;77(1):258–70.PubMedCrossRef Yilmaz IC, Ipekoglu EM, Bulbul A, Turay N, Yildirim M, Evcili I, et al. Development and preclinical evaluation of virus-like particle vaccine against COVID-19 infection. Allergy. 2022;77(1):258–70.PubMedCrossRef
20.
go back to reference Goel RR, Painter MM, Apostolidis SA, Mathew D, Meng WZ, Rosenfeld AM, et al. mRNA vaccines induce durable immune memory to SARS-CoV-2 and variants of concern. Science. 2021;374(6572):1214–30.CrossRef Goel RR, Painter MM, Apostolidis SA, Mathew D, Meng WZ, Rosenfeld AM, et al. mRNA vaccines induce durable immune memory to SARS-CoV-2 and variants of concern. Science. 2021;374(6572):1214–30.CrossRef
21.
go back to reference Barouch DH. Covid-19 vaccines—immunity, variants, boosters. N Engl J Med. 2022;387(11):1011–20.PubMedCrossRef Barouch DH. Covid-19 vaccines—immunity, variants, boosters. N Engl J Med. 2022;387(11):1011–20.PubMedCrossRef
22.
go back to reference Lipsitch M, Krammer F, Regev-Yochay G, Lustig Y, Balicer RD. SARS-CoV-2 breakthrough infections in vaccinated individuals: measurement, causes and impact. Nat Rev Immunol. 2022;22(1):57–65.PubMedCrossRef Lipsitch M, Krammer F, Regev-Yochay G, Lustig Y, Balicer RD. SARS-CoV-2 breakthrough infections in vaccinated individuals: measurement, causes and impact. Nat Rev Immunol. 2022;22(1):57–65.PubMedCrossRef
23.
go back to reference Finazzi S, Perego M, Tricella G, Poole D, Ranieri VM, Evaluat GIG. SARS-CoV-2 breakthrough infections in vaccinated individuals requiring ventilatory support for severe acute respiratory failure. Intensive Care Med. 2023;49(2):248–50.PubMedPubMedCentralCrossRef Finazzi S, Perego M, Tricella G, Poole D, Ranieri VM, Evaluat GIG. SARS-CoV-2 breakthrough infections in vaccinated individuals requiring ventilatory support for severe acute respiratory failure. Intensive Care Med. 2023;49(2):248–50.PubMedPubMedCentralCrossRef
25.
go back to reference Xu K, Wang Z, Qin M, Gao Y, Luo N, Xie W, et al. A systematic review and meta-analysis of the effectiveness and safety of COVID-19 vaccination in older adults. Front Immunol. 2023;14:1113156.PubMedPubMedCentralCrossRef Xu K, Wang Z, Qin M, Gao Y, Luo N, Xie W, et al. A systematic review and meta-analysis of the effectiveness and safety of COVID-19 vaccination in older adults. Front Immunol. 2023;14:1113156.PubMedPubMedCentralCrossRef
26.
go back to reference Mittal A, Khattri A, Verma V. Structural and antigenic variations in the spike protein of emerging SARS-CoV-2 variants. PLoS Pathog. 2022;18(2): e1010260.PubMedPubMedCentralCrossRef Mittal A, Khattri A, Verma V. Structural and antigenic variations in the spike protein of emerging SARS-CoV-2 variants. PLoS Pathog. 2022;18(2): e1010260.PubMedPubMedCentralCrossRef
27.
go back to reference Zaki AM, van Boheemen S, Bestebroer TM, Osterhaus ADME, Fouchier RAM. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med. 2012;367(19):1814–20.PubMedCrossRef Zaki AM, van Boheemen S, Bestebroer TM, Osterhaus ADME, Fouchier RAM. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med. 2012;367(19):1814–20.PubMedCrossRef
28.
go back to reference Xu JB, Zhao SZ, Teng TS, Abdalla AE, Zhu W, Xie LX, et al. Systematic comparison of two animal-to-human transmitted human coronaviruses: SARS-CoV-2 and SARS-CoV. Viruses Basel. 2020;12(2):244–60. Xu JB, Zhao SZ, Teng TS, Abdalla AE, Zhu W, Xie LX, et al. Systematic comparison of two animal-to-human transmitted human coronaviruses: SARS-CoV-2 and SARS-CoV. Viruses Basel. 2020;12(2):244–60.
29.
go back to reference Kesheh MM, Hosseini P, Soltani S, Zandi M. An overview on the seven pathogenic human coronaviruses. Rev Med Virol. 2022;32(2):e2282. Kesheh MM, Hosseini P, Soltani S, Zandi M. An overview on the seven pathogenic human coronaviruses. Rev Med Virol. 2022;32(2):e2282.
30.
go back to reference Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020;395(10224):565–74.PubMedPubMedCentralCrossRef Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020;395(10224):565–74.PubMedPubMedCentralCrossRef
32.
go back to reference Wang C, Liu Z, Chen Z, Huang X, Xu M, He T, et al. The establishment of reference sequence for SARS-CoV-2 and variation analysis. J Med Virol. 2020;92(6):667–74.PubMedPubMedCentralCrossRef Wang C, Liu Z, Chen Z, Huang X, Xu M, He T, et al. The establishment of reference sequence for SARS-CoV-2 and variation analysis. J Med Virol. 2020;92(6):667–74.PubMedPubMedCentralCrossRef
33.
go back to reference Wu A, Peng Y, Huang B, Ding X, Wang X, Niu P, et al. Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China. Cell Host Microbe. 2020;27(3):325–8.PubMedPubMedCentralCrossRef Wu A, Peng Y, Huang B, Ding X, Wang X, Niu P, et al. Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China. Cell Host Microbe. 2020;27(3):325–8.PubMedPubMedCentralCrossRef
34.
go back to reference Rohaim MA, El Naggar RF, Clayton E, Munir M. Structural and functional insights into non-structural proteins of coronaviruses. Microb Pathog. 2021;150: 104641.PubMedCrossRef Rohaim MA, El Naggar RF, Clayton E, Munir M. Structural and functional insights into non-structural proteins of coronaviruses. Microb Pathog. 2021;150: 104641.PubMedCrossRef
35.
36.
go back to reference Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL, Abiona O, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020;367(6483):1260–3.PubMedPubMedCentralCrossRef Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL, Abiona O, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020;367(6483):1260–3.PubMedPubMedCentralCrossRef
37.
38.
go back to reference Baggen J, Jacquemyn M, Persoons L, Vanstreels E, Pye VE, Wrobel AG, et al. TMEM106B is a receptor mediating ACE2-independent SARS-CoV-2 cell entry. Cell. 2023;186(16):3427-42 e22.PubMedPubMedCentralCrossRef Baggen J, Jacquemyn M, Persoons L, Vanstreels E, Pye VE, Wrobel AG, et al. TMEM106B is a receptor mediating ACE2-independent SARS-CoV-2 cell entry. Cell. 2023;186(16):3427-42 e22.PubMedPubMedCentralCrossRef
39.
go back to reference Jackson CB, Farzan M, Chen B, Choe H. Mechanisms of SARS-CoV-2 entry into cells. Nat Rev Mol Cell Biol. 2022;23(1):3–20.PubMedCrossRef Jackson CB, Farzan M, Chen B, Choe H. Mechanisms of SARS-CoV-2 entry into cells. Nat Rev Mol Cell Biol. 2022;23(1):3–20.PubMedCrossRef
41.
go back to reference Kakavandi S, Zare I, VaezJalali M, Dadashi M, Azarian M, Akbari A, et al. Structural and non-structural proteins in SARS-CoV-2: potential aspects to COVID-19 treatment or prevention of progression of related diseases. Cell Commun Signal. 2023;21(1):110–40.PubMedPubMedCentralCrossRef Kakavandi S, Zare I, VaezJalali M, Dadashi M, Azarian M, Akbari A, et al. Structural and non-structural proteins in SARS-CoV-2: potential aspects to COVID-19 treatment or prevention of progression of related diseases. Cell Commun Signal. 2023;21(1):110–40.PubMedPubMedCentralCrossRef
43.
go back to reference Aleem A, Akbar Samad AB, Vaqar S. Emerging variants of SARS-CoV-2 and novel therapeutics against coronavirus (COVID-19). StatPearls. Treasure Island, StatPearls Publishing. 2024. Aleem A, Akbar Samad AB, Vaqar S. Emerging variants of SARS-CoV-2 and novel therapeutics against coronavirus (COVID-19). StatPearls. Treasure Island, StatPearls Publishing. 2024.
44.
go back to reference Carabelli AM, Peacock TP, Thorne LG, Harvey WT, Hughes J, Consortium C-GU, et al. SARS-CoV-2 variant biology: immune escape, transmission and fitness. Nat Rev Microbiol. 2023;21(3):162–77. Carabelli AM, Peacock TP, Thorne LG, Harvey WT, Hughes J, Consortium C-GU, et al. SARS-CoV-2 variant biology: immune escape, transmission and fitness. Nat Rev Microbiol. 2023;21(3):162–77.
45.
go back to reference Liu Y, Liu J, Johnson BA, Xia H, Ku Z, Schindewolf C, et al. Delta spike P681R mutation enhances SARS-CoV-2 fitness over Alpha variant. Cell Rep. 2022;39(7):110829.PubMedPubMedCentralCrossRef Liu Y, Liu J, Johnson BA, Xia H, Ku Z, Schindewolf C, et al. Delta spike P681R mutation enhances SARS-CoV-2 fitness over Alpha variant. Cell Rep. 2022;39(7):110829.PubMedPubMedCentralCrossRef
46.
go back to reference Cao Y, Yisimayi A, Jian F, Song W, Xiao T, Wang L, et al. BA.2.12.1, BA.4 and BA.5 escape antibodies elicited by Omicron infection. Nature. 2022;608(7923):593–602. Cao Y, Yisimayi A, Jian F, Song W, Xiao T, Wang L, et al. BA.2.12.1, BA.4 and BA.5 escape antibodies elicited by Omicron infection. Nature. 2022;608(7923):593–602.
47.
go back to reference Cele S, Jackson L, Khoury DS, Khan K, Moyo-Gwete T, Tegally H, et al. Omicron extensively but incompletely escapes Pfizer BNT162b2 neutralization. Nature. 2022;602(7898):654–6.PubMedCrossRef Cele S, Jackson L, Khoury DS, Khan K, Moyo-Gwete T, Tegally H, et al. Omicron extensively but incompletely escapes Pfizer BNT162b2 neutralization. Nature. 2022;602(7898):654–6.PubMedCrossRef
48.
go back to reference Iketani S, Liu L, Guo Y, Liu L, Chan JF, Huang Y, et al. Antibody evasion properties of SARS-CoV-2 Omicron sublineages. Nature. 2022;604(7906):553–6.PubMedPubMedCentralCrossRef Iketani S, Liu L, Guo Y, Liu L, Chan JF, Huang Y, et al. Antibody evasion properties of SARS-CoV-2 Omicron sublineages. Nature. 2022;604(7906):553–6.PubMedPubMedCentralCrossRef
49.
go back to reference Viana R, Moyo S, Amoako DG, Tegally H, Scheepers C, Althaus CL, et al. Rapid epidemic expansion of the SARS-CoV-2 Omicron variant in southern Africa. Nature. 2022;603(7902):679–86.PubMedPubMedCentralCrossRef Viana R, Moyo S, Amoako DG, Tegally H, Scheepers C, Althaus CL, et al. Rapid epidemic expansion of the SARS-CoV-2 Omicron variant in southern Africa. Nature. 2022;603(7902):679–86.PubMedPubMedCentralCrossRef
50.
go back to reference Yu J, Collier AY, Rowe M, Mardas F, Ventura JD, Wan H, et al. Neutralization of the SARS-CoV-2 omicron BA.1 and BA.2 variants. N Engl J Med. 2022;386(16):1579–80. Yu J, Collier AY, Rowe M, Mardas F, Ventura JD, Wan H, et al. Neutralization of the SARS-CoV-2 omicron BA.1 and BA.2 variants. N Engl J Med. 2022;386(16):1579–80.
51.
go back to reference Accorsi EK, Britton A, Fleming-Dutra KE, Smith ZR, Shang N, Derado G, et al. Association between 3 doses of mRNA COVID-19 vaccine and symptomatic infection caused by the SARS-CoV-2 omicron and delta variants. JAMA. 2022;327(7):639–51.PubMedPubMedCentralCrossRef Accorsi EK, Britton A, Fleming-Dutra KE, Smith ZR, Shang N, Derado G, et al. Association between 3 doses of mRNA COVID-19 vaccine and symptomatic infection caused by the SARS-CoV-2 omicron and delta variants. JAMA. 2022;327(7):639–51.PubMedPubMedCentralCrossRef
52.
go back to reference Andrews N, Stowe J, Kirsebom F, Toffa S, Rickeard T, Gallagher E, et al. Covid-19 vaccine effectiveness against the omicron (B.1.1.529) variant. N Engl J Med. 2022;386(16):1532–46.PubMedCrossRef Andrews N, Stowe J, Kirsebom F, Toffa S, Rickeard T, Gallagher E, et al. Covid-19 vaccine effectiveness against the omicron (B.1.1.529) variant. N Engl J Med. 2022;386(16):1532–46.PubMedCrossRef
53.
go back to reference Tanriover MD, Doganay HL, Akova M, Guner HR, Azap A, Akhan S, et al. Efficacy and safety of an inactivated whole-virion SARS-CoV-2 vaccine (CoronaVac): interim results of a double-blind, randomised, placebo-controlled, phase 3 trial in Turkey. Lancet. 2021;398(10296):213–22.PubMedPubMedCentralCrossRef Tanriover MD, Doganay HL, Akova M, Guner HR, Azap A, Akhan S, et al. Efficacy and safety of an inactivated whole-virion SARS-CoV-2 vaccine (CoronaVac): interim results of a double-blind, randomised, placebo-controlled, phase 3 trial in Turkey. Lancet. 2021;398(10296):213–22.PubMedPubMedCentralCrossRef
54.
go back to reference Lounis M, Rais MA, Bencherit D, Aouissi HA, Oudjedi A, Klugarova J, et al. Side effects of COVID-19 inactivated virus vs. adenoviral vector vaccines: experience of Algerian healthcare workers. Front Public Health. 2022;10:896343. Lounis M, Rais MA, Bencherit D, Aouissi HA, Oudjedi A, Klugarova J, et al. Side effects of COVID-19 inactivated virus vs. adenoviral vector vaccines: experience of Algerian healthcare workers. Front Public Health. 2022;10:896343.
55.
go back to reference Grana C, Ghosn L, Evrenoglou T, Jarde A, Minozzi S, Bergman H, et al. Efficacy and safety of COVID-19 vaccines. Cochrane Database Syst Rev. 2022;12(12):CD015477. Grana C, Ghosn L, Evrenoglou T, Jarde A, Minozzi S, Bergman H, et al. Efficacy and safety of COVID-19 vaccines. Cochrane Database Syst Rev. 2022;12(12):CD015477.
56.
57.
go back to reference Li Y, Tenchov R, Smoot J, Liu C, Watkins S, Zhou Q. A comprehensive review of the global efforts on COVID-19 vaccine development. ACS Cent Sci. 2021;7(4):512–33.PubMedPubMedCentralCrossRef Li Y, Tenchov R, Smoot J, Liu C, Watkins S, Zhou Q. A comprehensive review of the global efforts on COVID-19 vaccine development. ACS Cent Sci. 2021;7(4):512–33.PubMedPubMedCentralCrossRef
58.
go back to reference Kan AKC, Li PH. Inactivated COVID-19 vaccines: potential concerns of antibody-dependent enhancement and original antigenic sin. Immunol Lett. 2023;259:21–3.PubMedPubMedCentralCrossRef Kan AKC, Li PH. Inactivated COVID-19 vaccines: potential concerns of antibody-dependent enhancement and original antigenic sin. Immunol Lett. 2023;259:21–3.PubMedPubMedCentralCrossRef
59.
go back to reference Zheng C, Shao W, Chen X, Zhang B, Wang G, Zhang W. Real-world effectiveness of COVID-19 vaccines: a literature review and meta-analysis. Int J Infect Dis. 2022;114:252–60.PubMedCrossRef Zheng C, Shao W, Chen X, Zhang B, Wang G, Zhang W. Real-world effectiveness of COVID-19 vaccines: a literature review and meta-analysis. Int J Infect Dis. 2022;114:252–60.PubMedCrossRef
61.
go back to reference Shay DK, Shimabukuro TT, DeStefano F. Myocarditis occurring after immunization with mRNA-based COVID-19 vaccines. JAMA Cardiol. 2021;6(10):1115–7.PubMedCrossRef Shay DK, Shimabukuro TT, DeStefano F. Myocarditis occurring after immunization with mRNA-based COVID-19 vaccines. JAMA Cardiol. 2021;6(10):1115–7.PubMedCrossRef
62.
go back to reference Alami A, Krewski D, Mattison D, Wilson K, Gravel CA, Villeneuve PJ, et al. Risk of myocarditis and pericarditis among young adults following mRNA COVID-19 vaccinations. Vaccines. 2022;10(5):722–30. Alami A, Krewski D, Mattison D, Wilson K, Gravel CA, Villeneuve PJ, et al. Risk of myocarditis and pericarditis among young adults following mRNA COVID-19 vaccinations. Vaccines. 2022;10(5):722–30.
63.
go back to reference Goddard K, Lewis N, Fireman B, Weintraub E, Shimabukuro T, Zerbo O, et al. Risk of myocarditis and pericarditis following BNT162b2 and mRNA-1273 COVID-19 vaccination. Vaccine. 2022;40(35):5153–9.PubMedPubMedCentralCrossRef Goddard K, Lewis N, Fireman B, Weintraub E, Shimabukuro T, Zerbo O, et al. Risk of myocarditis and pericarditis following BNT162b2 and mRNA-1273 COVID-19 vaccination. Vaccine. 2022;40(35):5153–9.PubMedPubMedCentralCrossRef
65.
go back to reference Pascolo S. Vaccines against COVID-19: priority to mRNA-based formulations. Cells. 2021;10(10):2716–26. Pascolo S. Vaccines against COVID-19: priority to mRNA-based formulations. Cells. 2021;10(10):2716–26.
66.
go back to reference Gupta SK, Carmi S, Ben-Asher HW, Tkacz ID, Naboishchikov I, Michaeli S. Basal splicing factors regulate the stability of mature mRNAs in trypanosomes. J Biol Chem. 2013;288(7):4991–5006.PubMedPubMedCentralCrossRef Gupta SK, Carmi S, Ben-Asher HW, Tkacz ID, Naboishchikov I, Michaeli S. Basal splicing factors regulate the stability of mature mRNAs in trypanosomes. J Biol Chem. 2013;288(7):4991–5006.PubMedPubMedCentralCrossRef
67.
go back to reference Ramachandran S, Satapathy SR, Dutta T. Delivery strategies for mRNA vaccines. Pharm Med. 2022;36(1):11–20.CrossRef Ramachandran S, Satapathy SR, Dutta T. Delivery strategies for mRNA vaccines. Pharm Med. 2022;36(1):11–20.CrossRef
68.
go back to reference Folegatti PM, Ewer KJ, Aley PK, Angus B, Becker S, Belij-Rammerstorfer S, et al. Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised controlled trial. Lancet. 2020;396(10249):467–78.PubMedPubMedCentralCrossRef Folegatti PM, Ewer KJ, Aley PK, Angus B, Becker S, Belij-Rammerstorfer S, et al. Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised controlled trial. Lancet. 2020;396(10249):467–78.PubMedPubMedCentralCrossRef
70.
go back to reference Lin DY, Gu Y, Wheeler B, Young H, Holloway S, Sunny SK, et al. Effectiveness of Covid-19 vaccines over a 9-month period in North Carolina. N Engl J Med. 2022;386(10):933–41.PubMedCrossRef Lin DY, Gu Y, Wheeler B, Young H, Holloway S, Sunny SK, et al. Effectiveness of Covid-19 vaccines over a 9-month period in North Carolina. N Engl J Med. 2022;386(10):933–41.PubMedCrossRef
71.
go back to reference Rosenberg ES, Dorabawila V, Easton D, Bauer UE, Kumar J, Hoen R, et al. Covid-19 vaccine effectiveness in New York State. N Engl J Med. 2022;386(2):116–27.PubMedCrossRef Rosenberg ES, Dorabawila V, Easton D, Bauer UE, Kumar J, Hoen R, et al. Covid-19 vaccine effectiveness in New York State. N Engl J Med. 2022;386(2):116–27.PubMedCrossRef
72.
go back to reference Cines DB, Bussel JB. SARS-CoV-2 vaccine-induced immune thrombotic thrombocytopenia. N Engl J Med. 2021;384(23):2254–6.PubMedCrossRef Cines DB, Bussel JB. SARS-CoV-2 vaccine-induced immune thrombotic thrombocytopenia. N Engl J Med. 2021;384(23):2254–6.PubMedCrossRef
73.
go back to reference Sadoff J, Gray G, Vandebosch A, Cardenas V, Shukarev G, Grinsztejn B, et al. Final analysis of efficacy and safety of single-dose Ad26.COV2.S. N Engl J Med. 2022;386(9):847–60.PubMedCrossRef Sadoff J, Gray G, Vandebosch A, Cardenas V, Shukarev G, Grinsztejn B, et al. Final analysis of efficacy and safety of single-dose Ad26.COV2.S. N Engl J Med. 2022;386(9):847–60.PubMedCrossRef
74.
go back to reference Reimann P, Ulmer H, Mutschlechner B, Benda M, Severgnini L, Volgger A, et al. Efficacy and safety of heterologous booster vaccination with Ad26.COV2.S after BNT162b2 mRNA COVID-19 vaccine in haemato-oncological patients with no antibody response. Br J Haematol. 2022;196(3):577–84.PubMedCrossRef Reimann P, Ulmer H, Mutschlechner B, Benda M, Severgnini L, Volgger A, et al. Efficacy and safety of heterologous booster vaccination with Ad26.COV2.S after BNT162b2 mRNA COVID-19 vaccine in haemato-oncological patients with no antibody response. Br J Haematol. 2022;196(3):577–84.PubMedCrossRef
75.
go back to reference Zhu FC, Li YH, Guan XH, Hou LH, Wang WJ, Li JX, et al. Safety, tolerability, and immunogenicity of a recombinant adenovirus type-5 vectored COVID-19 vaccine: a dose-escalation, open-label, non-randomised, first-in-human trial. Lancet. 2020;395(10240):1845–54.PubMedPubMedCentralCrossRef Zhu FC, Li YH, Guan XH, Hou LH, Wang WJ, Li JX, et al. Safety, tolerability, and immunogenicity of a recombinant adenovirus type-5 vectored COVID-19 vaccine: a dose-escalation, open-label, non-randomised, first-in-human trial. Lancet. 2020;395(10240):1845–54.PubMedPubMedCentralCrossRef
76.
go back to reference Yu B, Zhou Y, Wu H, Wang Z, Zhan Y, Feng X, et al. Seroprevalence of neutralizing antibodies to human adenovirus type 5 in healthy adults in China. J Med Virol. 2012;84(9):1408–14.PubMedCrossRef Yu B, Zhou Y, Wu H, Wang Z, Zhan Y, Feng X, et al. Seroprevalence of neutralizing antibodies to human adenovirus type 5 in healthy adults in China. J Med Virol. 2012;84(9):1408–14.PubMedCrossRef
77.
go back to reference Lai CY, To A, Ann SWT, Lieberman MM, Clements DE, Senda JT, et al. Recombinant protein subunit SARS-CoV-2 vaccines formulated with CoVaccine HT adjuvant induce broad, Th1 biased, humoral and cellular immune responses in mice. Vaccine X. 2021;9:100126.PubMedPubMedCentralCrossRef Lai CY, To A, Ann SWT, Lieberman MM, Clements DE, Senda JT, et al. Recombinant protein subunit SARS-CoV-2 vaccines formulated with CoVaccine HT adjuvant induce broad, Th1 biased, humoral and cellular immune responses in mice. Vaccine X. 2021;9:100126.PubMedPubMedCentralCrossRef
78.
go back to reference Pitcovski J, Gruzdev N, Abzach A, Katz C, Ben-Adiva R, Brand-Shwartz M, et al. Oral subunit SARS-CoV-2 vaccine induces systemic neutralizing IgG, IgA and cellular immune responses and can boost neutralizing antibody responses primed by an injected vaccine. Vaccine. 2022;40(8):1098–107.PubMedPubMedCentralCrossRef Pitcovski J, Gruzdev N, Abzach A, Katz C, Ben-Adiva R, Brand-Shwartz M, et al. Oral subunit SARS-CoV-2 vaccine induces systemic neutralizing IgG, IgA and cellular immune responses and can boost neutralizing antibody responses primed by an injected vaccine. Vaccine. 2022;40(8):1098–107.PubMedPubMedCentralCrossRef
79.
80.
go back to reference Cai Y, Zhang J, Xiao T, Peng H, Sterling SM, Walsh RM Jr, et al. Distinct conformational states of SARS-CoV-2 spike protein. Science. 2020;369(6511):1586–92.PubMedCrossRef Cai Y, Zhang J, Xiao T, Peng H, Sterling SM, Walsh RM Jr, et al. Distinct conformational states of SARS-CoV-2 spike protein. Science. 2020;369(6511):1586–92.PubMedCrossRef
81.
go back to reference Juraszek J, Rutten L, Blokland S, Bouchier P, Voorzaat R, Ritschel T, et al. Stabilizing the closed SARS-CoV-2 spike trimer. Nat Commun. 2021;12(1):244–51.PubMedPubMedCentralCrossRef Juraszek J, Rutten L, Blokland S, Bouchier P, Voorzaat R, Ritschel T, et al. Stabilizing the closed SARS-CoV-2 spike trimer. Nat Commun. 2021;12(1):244–51.PubMedPubMedCentralCrossRef
82.
go back to reference Schaub JM, Chou CW, Kuo HC, Javanmardi K, Hsieh CL, Goldsmith J, et al. Expression and characterization of SARS-CoV-2 spike proteins. Nat Protoc. 2021;16(11):5339–56.PubMedPubMedCentralCrossRef Schaub JM, Chou CW, Kuo HC, Javanmardi K, Hsieh CL, Goldsmith J, et al. Expression and characterization of SARS-CoV-2 spike proteins. Nat Protoc. 2021;16(11):5339–56.PubMedPubMedCentralCrossRef
83.
go back to reference Lehto M, Alanen A. Healing of a muscle trauma. Correlation of sonographical and histological findings in an experimental study in rats. J Ultrasound Med. 1987;6(8):425–9.PubMedCrossRef Lehto M, Alanen A. Healing of a muscle trauma. Correlation of sonographical and histological findings in an experimental study in rats. J Ultrasound Med. 1987;6(8):425–9.PubMedCrossRef
84.
go back to reference Ella R, Reddy S, Blackwelder W, Potdar V, Yadav P, Sarangi V, et al. Efficacy, safety, and lot-to-lot immunogenicity of an inactivated SARS-CoV-2 vaccine (BBV152): interim results of a randomised, double-blind, controlled, phase 3 trial. Lancet. 2021;398(10317):2173–84.PubMedPubMedCentralCrossRef Ella R, Reddy S, Blackwelder W, Potdar V, Yadav P, Sarangi V, et al. Efficacy, safety, and lot-to-lot immunogenicity of an inactivated SARS-CoV-2 vaccine (BBV152): interim results of a randomised, double-blind, controlled, phase 3 trial. Lancet. 2021;398(10317):2173–84.PubMedPubMedCentralCrossRef
85.
go back to reference Al Kaabi N, Zhang Y, Xia S, Yang Y, Al Qahtani MM, Abdulrazzaq N, et al. Effect of 2 inactivated SARS-CoV-2 vaccines on symptomatic COVID-19 infection in adults: a randomized clinical trial. JAMA. 2021;326(1):35–45.PubMedCrossRef Al Kaabi N, Zhang Y, Xia S, Yang Y, Al Qahtani MM, Abdulrazzaq N, et al. Effect of 2 inactivated SARS-CoV-2 vaccines on symptomatic COVID-19 infection in adults: a randomized clinical trial. JAMA. 2021;326(1):35–45.PubMedCrossRef
86.
go back to reference Ranzani OT, Hitchings MDT, de Melo RL, de Franca GVA, Fernandes CFR, Lind ML, et al. Effectiveness of an inactivated Covid-19 vaccine with homologous and heterologous boosters against Omicron in Brazil. Nat Commun. 2022;13(1):5536–45.PubMedPubMedCentralCrossRef Ranzani OT, Hitchings MDT, de Melo RL, de Franca GVA, Fernandes CFR, Lind ML, et al. Effectiveness of an inactivated Covid-19 vaccine with homologous and heterologous boosters against Omicron in Brazil. Nat Commun. 2022;13(1):5536–45.PubMedPubMedCentralCrossRef
87.
go back to reference Wang X, Zhao X, Song J, Wu J, Zhu Y, Li M, et al. Homologous or heterologous booster of inactivated vaccine reduces SARS-CoV-2 Omicron variant escape from neutralizing antibodies. Emerg Microbes Infect. 2022;11(1):477–81.PubMedPubMedCentralCrossRef Wang X, Zhao X, Song J, Wu J, Zhu Y, Li M, et al. Homologous or heterologous booster of inactivated vaccine reduces SARS-CoV-2 Omicron variant escape from neutralizing antibodies. Emerg Microbes Infect. 2022;11(1):477–81.PubMedPubMedCentralCrossRef
88.
go back to reference Zhang F, Zhu Y, He Z, Lan X, Song M, Chen X, et al. Uptake of heterologous or homologous COVID-19 booster dose and related adverse events among diabetic patients: a multicenter cross-sectional study—China, 2022. China CDC Wkly. 2023;5(1):5–10.PubMedPubMedCentralCrossRef Zhang F, Zhu Y, He Z, Lan X, Song M, Chen X, et al. Uptake of heterologous or homologous COVID-19 booster dose and related adverse events among diabetic patients: a multicenter cross-sectional study—China, 2022. China CDC Wkly. 2023;5(1):5–10.PubMedPubMedCentralCrossRef
90.
go back to reference Chen J, Chen J, Xu Q. Current developments and challenges of mRNA vaccines. Annu Rev Biomed Eng. 2022;6(24):85–109.CrossRef Chen J, Chen J, Xu Q. Current developments and challenges of mRNA vaccines. Annu Rev Biomed Eng. 2022;6(24):85–109.CrossRef
92.
go back to reference Goddard K, Hanson KE, Lewis N, Weintraub E, Fireman B, Klein NP. Incidence of myocarditis/pericarditis following mRNA COVID-19 vaccination among children and younger adults in the United States. Ann Intern Med. 2022;175(12):1169–771.PubMedCrossRef Goddard K, Hanson KE, Lewis N, Weintraub E, Fireman B, Klein NP. Incidence of myocarditis/pericarditis following mRNA COVID-19 vaccination among children and younger adults in the United States. Ann Intern Med. 2022;175(12):1169–771.PubMedCrossRef
93.
go back to reference Polack FP, Thomas SJ, Kitchin N, Absalon J, Gurtman A, Lockhart S, et al. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N Engl J Med. 2020;383(27):2603–15.PubMedCrossRef Polack FP, Thomas SJ, Kitchin N, Absalon J, Gurtman A, Lockhart S, et al. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N Engl J Med. 2020;383(27):2603–15.PubMedCrossRef
94.
go back to reference Baden LR, El Sahly HM, Essink B, Kotloff K, Frey S, Novak R, et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 Vaccine. N Engl J Med. 2021;384(5):403–16.PubMedCrossRef Baden LR, El Sahly HM, Essink B, Kotloff K, Frey S, Novak R, et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 Vaccine. N Engl J Med. 2021;384(5):403–16.PubMedCrossRef
95.
go back to reference Self WH, Tenforde MW, Rhoads JP, Gaglani M, Ginde AA, Douin DJ, et al. Comparative Effectiveness of Moderna, Pfizer-BioNTech, and Janssen (Johnson & Johnson) vaccines in preventing COVID-19 hospitalizations among adults without immunocompromising conditions—United States, March–August 2021. MMWR Morb Mortal Wkly Rep. 2021;70(38):1337–43.PubMedPubMedCentralCrossRef Self WH, Tenforde MW, Rhoads JP, Gaglani M, Ginde AA, Douin DJ, et al. Comparative Effectiveness of Moderna, Pfizer-BioNTech, and Janssen (Johnson & Johnson) vaccines in preventing COVID-19 hospitalizations among adults without immunocompromising conditions—United States, March–August 2021. MMWR Morb Mortal Wkly Rep. 2021;70(38):1337–43.PubMedPubMedCentralCrossRef
96.
go back to reference Bar-On YM, Goldberg Y, Mandel M, Bodenheimer O, Freedman L, Kalkstein N, et al. Protection of BNT162b2 vaccine booster against Covid-19 in Israel. N Engl J Med. 2021;385(15):1393–400.PubMedCrossRef Bar-On YM, Goldberg Y, Mandel M, Bodenheimer O, Freedman L, Kalkstein N, et al. Protection of BNT162b2 vaccine booster against Covid-19 in Israel. N Engl J Med. 2021;385(15):1393–400.PubMedCrossRef
97.
go back to reference Abu-Raddad LJ, Chemaitelly H, Butt AA, National Study Group for C-V. Effectiveness of the BNT162b2 Covid-19 vaccine against the B.1.1.7 and B.1.351 variants. N Engl J Med. 2021;385(2):187–9. Abu-Raddad LJ, Chemaitelly H, Butt AA, National Study Group for C-V. Effectiveness of the BNT162b2 Covid-19 vaccine against the B.1.1.7 and B.1.351 variants. N Engl J Med. 2021;385(2):187–9.
98.
go back to reference Lopez Bernal J, Andrews N, Gower C, Gallagher E, Simmons R, Thelwall S, et al. Effectiveness of Covid-19 vaccines against the B16172 (delta) variant. N Engl J Med. 2021;385(7):585–94.PubMedCrossRef Lopez Bernal J, Andrews N, Gower C, Gallagher E, Simmons R, Thelwall S, et al. Effectiveness of Covid-19 vaccines against the B16172 (delta) variant. N Engl J Med. 2021;385(7):585–94.PubMedCrossRef
99.
go back to reference Haas EJ, McLaughlin JM, Khan F, Angulo FJ, Anis E, Lipsitch M, et al. Infections, hospitalisations, and deaths averted via a nationwide vaccination campaign using the Pfizer-BioNTech BNT162b2 mRNA COVID-19 vaccine in Israel: a retrospective surveillance study. Lancet Infect Dis. 2022;22(3):357–66.PubMedCrossRef Haas EJ, McLaughlin JM, Khan F, Angulo FJ, Anis E, Lipsitch M, et al. Infections, hospitalisations, and deaths averted via a nationwide vaccination campaign using the Pfizer-BioNTech BNT162b2 mRNA COVID-19 vaccine in Israel: a retrospective surveillance study. Lancet Infect Dis. 2022;22(3):357–66.PubMedCrossRef
100.
go back to reference Dagan N, Barda N, Kepten E, Miron O, Perchik S, Katz MA, et al. BNT162b2 mRNA Covid-19 vaccine in a nationwide mass vaccination setting. N Engl J Med. 2021;384(15):1412–23.PubMedCrossRef Dagan N, Barda N, Kepten E, Miron O, Perchik S, Katz MA, et al. BNT162b2 mRNA Covid-19 vaccine in a nationwide mass vaccination setting. N Engl J Med. 2021;384(15):1412–23.PubMedCrossRef
101.
go back to reference Sibbel S, McKeon K, Luo J, Wendt K, Walker AG, Kelley T, et al. Real-world effectiveness and immunogenicity of BNT162b2 and mRNA-1273 SARS-CoV-2 vaccines in patients on hemodialysis. J Am Soc Nephrol. 2022;33(1):49–57.PubMedPubMedCentralCrossRef Sibbel S, McKeon K, Luo J, Wendt K, Walker AG, Kelley T, et al. Real-world effectiveness and immunogenicity of BNT162b2 and mRNA-1273 SARS-CoV-2 vaccines in patients on hemodialysis. J Am Soc Nephrol. 2022;33(1):49–57.PubMedPubMedCentralCrossRef
102.
go back to reference Chung H, He S, Nasreen S, Sundaram ME, Buchan SA, Wilson SE, et al. Effectiveness of BNT162b2 and mRNA-1273 covid-19 vaccines against symptomatic SARS-CoV-2 infection and severe covid-19 outcomes in Ontario, Canada: test negative design study. BMJ. 2021;20(374): n1943.CrossRef Chung H, He S, Nasreen S, Sundaram ME, Buchan SA, Wilson SE, et al. Effectiveness of BNT162b2 and mRNA-1273 covid-19 vaccines against symptomatic SARS-CoV-2 infection and severe covid-19 outcomes in Ontario, Canada: test negative design study. BMJ. 2021;20(374): n1943.CrossRef
103.
go back to reference Falsey AR, Sobieszczyk ME, Hirsch I, Sproule S, Robb ML, Corey L, et al. Phase 3 safety and efficacy of AZD1222 (ChAdOx1 nCoV-19) Covid-19 vaccine. N Engl J Med. 2021;385(25):2348–60.PubMedCrossRef Falsey AR, Sobieszczyk ME, Hirsch I, Sproule S, Robb ML, Corey L, et al. Phase 3 safety and efficacy of AZD1222 (ChAdOx1 nCoV-19) Covid-19 vaccine. N Engl J Med. 2021;385(25):2348–60.PubMedCrossRef
104.
go back to reference Widge AT, Rouphael NG, Jackson LA, Anderson EJ, Roberts PC, Makhene M, et al. Durability of responses after SARS-CoV-2 mRNA-1273 vaccination. N Engl J Med. 2021;384(1):80–2.PubMedCrossRef Widge AT, Rouphael NG, Jackson LA, Anderson EJ, Roberts PC, Makhene M, et al. Durability of responses after SARS-CoV-2 mRNA-1273 vaccination. N Engl J Med. 2021;384(1):80–2.PubMedCrossRef
105.
go back to reference Doria-Rose N, Suthar MS, Makowski M, O’Connell S, McDermott AB, Flach B, et al. Antibody persistence through 6 months after the second dose of mRNA-1273 vaccine for Covid-19. N Engl J Med. 2021;384(23):2259–61.PubMedPubMedCentralCrossRef Doria-Rose N, Suthar MS, Makowski M, O’Connell S, McDermott AB, Flach B, et al. Antibody persistence through 6 months after the second dose of mRNA-1273 vaccine for Covid-19. N Engl J Med. 2021;384(23):2259–61.PubMedPubMedCentralCrossRef
106.
go back to reference Evans DJR, Pawlina W. The future of anatomy education: learning from Covid-19 disruption. Anat Sci Educ. 2022;15(4):643–9.PubMedCrossRef Evans DJR, Pawlina W. The future of anatomy education: learning from Covid-19 disruption. Anat Sci Educ. 2022;15(4):643–9.PubMedCrossRef
107.
go back to reference Cromer D, Steain M, Reynaldi A, Schlub TE, Wheatley AK, Juno JA, et al. Neutralising antibody titres as predictors of protection against SARS-CoV-2 variants and the impact of boosting: a meta-analysis. Lancet Microbe. 2022;3(1):e52–61.PubMedCrossRef Cromer D, Steain M, Reynaldi A, Schlub TE, Wheatley AK, Juno JA, et al. Neutralising antibody titres as predictors of protection against SARS-CoV-2 variants and the impact of boosting: a meta-analysis. Lancet Microbe. 2022;3(1):e52–61.PubMedCrossRef
108.
go back to reference Bernal E, García-Villalba E, Pons E, Vicente MR, Tomás C, Minguela A, et al. Role of vaccination and anti-SARS-CoV-2 antibodies in the clinical outcome of hospitalized COVID-19 patients. Med Clin Barcelona. 2023;160(11):476–83.CrossRef Bernal E, García-Villalba E, Pons E, Vicente MR, Tomás C, Minguela A, et al. Role of vaccination and anti-SARS-CoV-2 antibodies in the clinical outcome of hospitalized COVID-19 patients. Med Clin Barcelona. 2023;160(11):476–83.CrossRef
109.
go back to reference Chemaitelly H, Yassine HM, Benslimane FM, Al Khatib HA, Tang P, Hasan MR, et al. mRNA-1273 COVID-19 vaccine effectiveness against the B.1.1.7 and B.1.351 variants and severe COVID-19 disease in Qatar. Nat Med. 2021;27(9):1614–21.PubMedCrossRef Chemaitelly H, Yassine HM, Benslimane FM, Al Khatib HA, Tang P, Hasan MR, et al. mRNA-1273 COVID-19 vaccine effectiveness against the B.1.1.7 and B.1.351 variants and severe COVID-19 disease in Qatar. Nat Med. 2021;27(9):1614–21.PubMedCrossRef
110.
go back to reference Bruxvoort KJ, Sy LS, Qian L, Ackerson BK, Luo Y, Lee GS, et al. Real-world effectiveness of the mRNA-1273 vaccine against COVID-19: interim results from a prospective observational cohort study. Lancet Reg Health Americas. 2022;6: 100134.PubMedCrossRef Bruxvoort KJ, Sy LS, Qian L, Ackerson BK, Luo Y, Lee GS, et al. Real-world effectiveness of the mRNA-1273 vaccine against COVID-19: interim results from a prospective observational cohort study. Lancet Reg Health Americas. 2022;6: 100134.PubMedCrossRef
111.
go back to reference Tseng HF, Ackerson BK, Luo Y, Sy LS, Talarico CA, Tian Y, et al. Effectiveness of mRNA-1273 against SARS-CoV-2 Omicron and Delta variants. Nat Med. 2022;28(5):1063–71.PubMedPubMedCentralCrossRef Tseng HF, Ackerson BK, Luo Y, Sy LS, Talarico CA, Tian Y, et al. Effectiveness of mRNA-1273 against SARS-CoV-2 Omicron and Delta variants. Nat Med. 2022;28(5):1063–71.PubMedPubMedCentralCrossRef
112.
go back to reference Xu K, Lei W, Kang B, Yang H, Wang Y, Lu Y, et al. A novel mRNA vaccine, SYS6006, against SARS-CoV-2. Front Immunol. 2022;13:1051576.PubMedCrossRef Xu K, Lei W, Kang B, Yang H, Wang Y, Lu Y, et al. A novel mRNA vaccine, SYS6006, against SARS-CoV-2. Front Immunol. 2022;13:1051576.PubMedCrossRef
113.
go back to reference van Doremalen N, Lambe T, Spencer A, Belij-Rammerstorfer S, Purushotham JN, Port JR, et al. ChAdOx1 nCoV-19 vaccine prevents SARS-CoV-2 pneumonia in rhesus macaques. Nature. 2020;586(7830):578–82.PubMedPubMedCentralCrossRef van Doremalen N, Lambe T, Spencer A, Belij-Rammerstorfer S, Purushotham JN, Port JR, et al. ChAdOx1 nCoV-19 vaccine prevents SARS-CoV-2 pneumonia in rhesus macaques. Nature. 2020;586(7830):578–82.PubMedPubMedCentralCrossRef
114.
go back to reference Barouch DH, Stephenson KE, Sadoff J, Yu J, Chang A, Gebre M, et al. Durable humoral and cellular immune responses 8 months after Ad26.COV2.S vaccination. N Engl J Med. 2021;385(10):951–3.PubMedCrossRef Barouch DH, Stephenson KE, Sadoff J, Yu J, Chang A, Gebre M, et al. Durable humoral and cellular immune responses 8 months after Ad26.COV2.S vaccination. N Engl J Med. 2021;385(10):951–3.PubMedCrossRef
115.
go back to reference Solforosi L, Kuipers H, Jongeneelen M, Rosendahl Huber SK, van der Lubbe JEM, Dekking L, et al. Immunogenicity and efficacy of one and two doses of Ad26.COV2.S COVID vaccine in adult and aged NHP. J Exp Med. 2021;218(7):e20202756 Solforosi L, Kuipers H, Jongeneelen M, Rosendahl Huber SK, van der Lubbe JEM, Dekking L, et al. Immunogenicity and efficacy of one and two doses of Ad26.COV2.S COVID vaccine in adult and aged NHP. J Exp Med. 2021;218(7):e20202756
116.
go back to reference Chavda VP, Bezbaruah R, Valu D, Patel B, Kumar A, Prasad S, et al. Adenoviral vector-based vaccine platform for COVID-19: current status. Vaccines. 2023;11(2):432–61. Chavda VP, Bezbaruah R, Valu D, Patel B, Kumar A, Prasad S, et al. Adenoviral vector-based vaccine platform for COVID-19: current status. Vaccines. 2023;11(2):432–61.
117.
go back to reference Alter G, Yu J, Liu J, Chandrashekar A, Borducchi EN, Tostanoski LH, et al. Immunogenicity of Ad26.COV2.S vaccine against SARS-CoV-2 variants in humans. Nature. 2021;596(7871):268–72.PubMedPubMedCentralCrossRef Alter G, Yu J, Liu J, Chandrashekar A, Borducchi EN, Tostanoski LH, et al. Immunogenicity of Ad26.COV2.S vaccine against SARS-CoV-2 variants in humans. Nature. 2021;596(7871):268–72.PubMedPubMedCentralCrossRef
118.
go back to reference Polinski JM, Weckstein AR, Batech M, Kabelac C, Kamath T, Harvey R, et al. Durability of the single-dose Ad26.COV2.S vaccine in the prevention of COVID-19 infections and hospitalizations in the US before and during the delta variant surge. JAMA Netw Open. 2022;5(3):e222959.PubMedPubMedCentralCrossRef Polinski JM, Weckstein AR, Batech M, Kabelac C, Kamath T, Harvey R, et al. Durability of the single-dose Ad26.COV2.S vaccine in the prevention of COVID-19 infections and hospitalizations in the US before and during the delta variant surge. JAMA Netw Open. 2022;5(3):e222959.PubMedPubMedCentralCrossRef
119.
go back to reference Stephenson KE, Le Gars M, Sadoff J, de Groot AM, Heerwegh D, Truyers C, et al. Immunogenicity of the Ad26.COV2.S vaccine for COVID-19. JAMA. 2021;325(15):1535–44.PubMedCrossRef Stephenson KE, Le Gars M, Sadoff J, de Groot AM, Heerwegh D, Truyers C, et al. Immunogenicity of the Ad26.COV2.S vaccine for COVID-19. JAMA. 2021;325(15):1535–44.PubMedCrossRef
120.
go back to reference Sadoff J, Gray G, Vandebosch A, Cardenas V, Shukarev G, Grinsztejn B, et al. Safety and efficacy of single-dose Ad26.COV2.S vaccine against Covid-19. N Engl J Med. 2021;384(23):2187–201.PubMedCrossRef Sadoff J, Gray G, Vandebosch A, Cardenas V, Shukarev G, Grinsztejn B, et al. Safety and efficacy of single-dose Ad26.COV2.S vaccine against Covid-19. N Engl J Med. 2021;384(23):2187–201.PubMedCrossRef
121.
go back to reference Logunov DY, Dolzhikova IV, Shcheblyakov DV, Tukhvatulin AI, Zubkova OV, Dzharullaeva AS, et al. Safety and efficacy of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine: an interim analysis of a randomised controlled phase 3 trial in Russia. Lancet. 2021;397(10275):671–81.PubMedPubMedCentralCrossRef Logunov DY, Dolzhikova IV, Shcheblyakov DV, Tukhvatulin AI, Zubkova OV, Dzharullaeva AS, et al. Safety and efficacy of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine: an interim analysis of a randomised controlled phase 3 trial in Russia. Lancet. 2021;397(10275):671–81.PubMedPubMedCentralCrossRef
122.
go back to reference Voysey M, Clemens SAC, Madhi SA, Weckx LY, Folegatti PM, Aley PK, et al. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. Lancet. 2021;397(10269):99–111.PubMedPubMedCentralCrossRef Voysey M, Clemens SAC, Madhi SA, Weckx LY, Folegatti PM, Aley PK, et al. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. Lancet. 2021;397(10269):99–111.PubMedPubMedCentralCrossRef
123.
go back to reference Corchado-Garcia J, Zemmour D, Hughes T, Bandi H, Cristea-Platon T, Lenehan P, et al. Analysis of the effectiveness of the Ad26.COV2.S adenoviral vector vaccine for preventing COVID-19. JAMA Netw Open. 2021;4(11):e2132540. Corchado-Garcia J, Zemmour D, Hughes T, Bandi H, Cristea-Platon T, Lenehan P, et al. Analysis of the effectiveness of the Ad26.COV2.S adenoviral vector vaccine for preventing COVID-19. JAMA Netw Open. 2021;4(11):e2132540.
124.
go back to reference Iheanacho CO, Eze UIH, Adida EA. A systematic review of effectiveness of BNT162b2 mRNA and ChAdOx1 adenoviral vector COVID-19 vaccines in the general population. Bull Natl Res Centre. 2021;45(1):150–59.CrossRef Iheanacho CO, Eze UIH, Adida EA. A systematic review of effectiveness of BNT162b2 mRNA and ChAdOx1 adenoviral vector COVID-19 vaccines in the general population. Bull Natl Res Centre. 2021;45(1):150–59.CrossRef
125.
126.
go back to reference Madhi SA, Baillie V, Cutland CL, Voysey M, Koen AL, Fairlie L, et al. Efficacy of the ChAdOx1 nCoV-19 Covid-19 vaccine against the B.1.351 variant. N Engl J Med. 2021;384(20):1885–98.PubMedCrossRef Madhi SA, Baillie V, Cutland CL, Voysey M, Koen AL, Fairlie L, et al. Efficacy of the ChAdOx1 nCoV-19 Covid-19 vaccine against the B.1.351 variant. N Engl J Med. 2021;384(20):1885–98.PubMedCrossRef
127.
go back to reference Kirsebom FCM, Andrews N, Stowe J, Toffa S, Sachdeva R, Gallagher E, et al. COVID-19 vaccine effectiveness against the omicron (BA.2) variant in England. Lancet Infect Dis. 2022;22(7):931–3.PubMedPubMedCentralCrossRef Kirsebom FCM, Andrews N, Stowe J, Toffa S, Sachdeva R, Gallagher E, et al. COVID-19 vaccine effectiveness against the omicron (BA.2) variant in England. Lancet Infect Dis. 2022;22(7):931–3.PubMedPubMedCentralCrossRef
128.
go back to reference Dejnirattisai W, Huo J, Zhou D, Zahradnik J, Supasa P, Liu C, et al. SARS-CoV-2 Omicron-B.1.1.529 leads to widespread escape from neutralizing antibody responses. Cell. 2022;185(3):467–84e15.PubMedPubMedCentralCrossRef Dejnirattisai W, Huo J, Zhou D, Zahradnik J, Supasa P, Liu C, et al. SARS-CoV-2 Omicron-B.1.1.529 leads to widespread escape from neutralizing antibody responses. Cell. 2022;185(3):467–84e15.PubMedPubMedCentralCrossRef
129.
go back to reference Chen WH, Hotez PJ, Bottazzi ME. Potential for developing a SARS-CoV receptor-binding domain (RBD) recombinant protein as a heterologous human vaccine against coronavirus infectious disease (COVID)-19. Hum Vaccines Immunother. 2020;16(6):1239–42.CrossRef Chen WH, Hotez PJ, Bottazzi ME. Potential for developing a SARS-CoV receptor-binding domain (RBD) recombinant protein as a heterologous human vaccine against coronavirus infectious disease (COVID)-19. Hum Vaccines Immunother. 2020;16(6):1239–42.CrossRef
130.
go back to reference Yang S, Li Y, Dai L, Wang J, He P, Li C, et al. Safety and immunogenicity of a recombinant tandem-repeat dimeric RBD-based protein subunit vaccine (ZF2001) against COVID-19 in adults: two randomised, double-blind, placebo-controlled, phase 1 and 2 trials. Lancet Infect Dis. 2021;21(8):1107–19.PubMedPubMedCentralCrossRef Yang S, Li Y, Dai L, Wang J, He P, Li C, et al. Safety and immunogenicity of a recombinant tandem-repeat dimeric RBD-based protein subunit vaccine (ZF2001) against COVID-19 in adults: two randomised, double-blind, placebo-controlled, phase 1 and 2 trials. Lancet Infect Dis. 2021;21(8):1107–19.PubMedPubMedCentralCrossRef
131.
go back to reference Lazo L, Bequet-Romero M, Lemos G, Musacchio A, Cabrales A, Bruno AJ, et al. A recombinant SARS-CoV-2 receptor-binding domain expressed in an engineered fungal strain of Thermothelomyces heterothallica induces a functional immune response in mice. Vaccine. 2022;40(8):1162–9.PubMedPubMedCentralCrossRef Lazo L, Bequet-Romero M, Lemos G, Musacchio A, Cabrales A, Bruno AJ, et al. A recombinant SARS-CoV-2 receptor-binding domain expressed in an engineered fungal strain of Thermothelomyces heterothallica induces a functional immune response in mice. Vaccine. 2022;40(8):1162–9.PubMedPubMedCentralCrossRef
132.
go back to reference Tian JH, Patel N, Haupt R, Zhou H, Weston S, Hammond H, et al. SARS-CoV-2 spike glycoprotein vaccine candidate NVX-CoV2373 immunogenicity in baboons and protection in mice. Nat Commun. 2021;12(1):372–85.PubMedPubMedCentralCrossRef Tian JH, Patel N, Haupt R, Zhou H, Weston S, Hammond H, et al. SARS-CoV-2 spike glycoprotein vaccine candidate NVX-CoV2373 immunogenicity in baboons and protection in mice. Nat Commun. 2021;12(1):372–85.PubMedPubMedCentralCrossRef
133.
go back to reference Heath PT, Galiza EP, Baxter DN, Boffito M, Browne D, Burns F, et al. Safety and efficacy of NVX-CoV2373 covid-19 vaccine. N Engl J Med. 2021;385(13):1172–83.PubMedCrossRef Heath PT, Galiza EP, Baxter DN, Boffito M, Browne D, Burns F, et al. Safety and efficacy of NVX-CoV2373 covid-19 vaccine. N Engl J Med. 2021;385(13):1172–83.PubMedCrossRef
134.
go back to reference Xu X, Hong Y, Chen E, Wang Y, Ma B, Li J, et al. Antibodies induced by homologous or heterologous inactivated (CoronaVac/BBIBP-CorV) and recombinant protein subunit vaccines (ZF2001) dramatically enhanced inhibitory abilities against B.1.351, B.1.617.2, and B.1.1.529 variants. Vaccines. 2022;10(12):2110–23. Xu X, Hong Y, Chen E, Wang Y, Ma B, Li J, et al. Antibodies induced by homologous or heterologous inactivated (CoronaVac/BBIBP-CorV) and recombinant protein subunit vaccines (ZF2001) dramatically enhanced inhibitory abilities against B.1.351, B.1.617.2, and B.1.1.529 variants. Vaccines. 2022;10(12):2110–23.
135.
go back to reference Dai L, Gao L, Tao L, Hadinegoro SR, Erkin M, Ying Z, et al. Efficacy and safety of the RBD-dimer-based covid-19 vaccine ZF2001 in adults. N Engl J Med. 2022;386(22):2097–111.PubMedCrossRef Dai L, Gao L, Tao L, Hadinegoro SR, Erkin M, Ying Z, et al. Efficacy and safety of the RBD-dimer-based covid-19 vaccine ZF2001 in adults. N Engl J Med. 2022;386(22):2097–111.PubMedCrossRef
136.
go back to reference Heidary M, Kaviar VH, Shirani M, Ghanavati R, Motahar M, Sholeh M, et al. A comprehensive review of the protein subunit vaccines against COVID-19. Front Microbiol. 2022;13: 927306.PubMedPubMedCentralCrossRef Heidary M, Kaviar VH, Shirani M, Ghanavati R, Motahar M, Sholeh M, et al. A comprehensive review of the protein subunit vaccines against COVID-19. Front Microbiol. 2022;13: 927306.PubMedPubMedCentralCrossRef
137.
go back to reference Kelly HG, Kent SJ, Wheatley AK. Immunological basis for enhanced immunity of nanoparticle vaccines. Expert Rev Vaccines. 2019;18(3):269–80.PubMedCrossRef Kelly HG, Kent SJ, Wheatley AK. Immunological basis for enhanced immunity of nanoparticle vaccines. Expert Rev Vaccines. 2019;18(3):269–80.PubMedCrossRef
138.
go back to reference Dunkle LM, Kotloff KL, Gay CL, Anez G, Adelglass JM, Barrat Hernandez AQ, et al. Efficacy and safety of NVX-CoV2373 in adults in the United States and Mexico. N Engl J Med. 2022;386(6):531–43.PubMedCrossRef Dunkle LM, Kotloff KL, Gay CL, Anez G, Adelglass JM, Barrat Hernandez AQ, et al. Efficacy and safety of NVX-CoV2373 in adults in the United States and Mexico. N Engl J Med. 2022;386(6):531–43.PubMedCrossRef
139.
go back to reference Shinde V, Bhikha S, Hoosain Z, Archary M, Bhorat Q, Fairlie L, et al. Efficacy of NVX-CoV2373 Covid-19 vaccine against the B.1.351 variant. N Engl J Med. 2021;384(20):1899–909.PubMedPubMedCentralCrossRef Shinde V, Bhikha S, Hoosain Z, Archary M, Bhorat Q, Fairlie L, et al. Efficacy of NVX-CoV2373 Covid-19 vaccine against the B.1.351 variant. N Engl J Med. 2021;384(20):1899–909.PubMedPubMedCentralCrossRef
140.
go back to reference Bhiman JN, Richardson SI, Lambson BE, Kgagudi P, Mzindle N, Kaldine H, et al. Novavax NVX-COV2373 triggers neutralization of Omicron sub-lineages. Sci Rep. 2023;13(1):1222–26.PubMedPubMedCentralCrossRef Bhiman JN, Richardson SI, Lambson BE, Kgagudi P, Mzindle N, Kaldine H, et al. Novavax NVX-COV2373 triggers neutralization of Omicron sub-lineages. Sci Rep. 2023;13(1):1222–26.PubMedPubMedCentralCrossRef
141.
go back to reference Huang B, Dai L, Wang H, Hu Z, Yang X, Tan W, et al. Serum sample neutralisation of BBIBP-CorV and ZF2001 vaccines to SARS-CoV-2 501Y.V2. Lancet Microbe. 2021;2(7):e285.PubMedPubMedCentralCrossRef Huang B, Dai L, Wang H, Hu Z, Yang X, Tan W, et al. Serum sample neutralisation of BBIBP-CorV and ZF2001 vaccines to SARS-CoV-2 501Y.V2. Lancet Microbe. 2021;2(7):e285.PubMedPubMedCentralCrossRef
142.
go back to reference Zhao X, Zheng A, Li D, Zhang R, Sun H, Wang Q, et al. Neutralisation of ZF2001-elicited antisera to SARS-CoV-2 variants. Lancet Microbe. 2021t;2(10): e494.PubMedPubMedCentralCrossRef Zhao X, Zheng A, Li D, Zhang R, Sun H, Wang Q, et al. Neutralisation of ZF2001-elicited antisera to SARS-CoV-2 variants. Lancet Microbe. 2021t;2(10): e494.PubMedPubMedCentralCrossRef
143.
go back to reference Zhao X, Zhang R, Qiao S, Wang X, Zhang W, Ruan W, et al. Omicron SARS-CoV-2 neutralization from inactivated and ZF2001 vaccines. N Engl J Med. 2022;387(3):277–80.PubMedCrossRef Zhao X, Zhang R, Qiao S, Wang X, Zhang W, Ruan W, et al. Omicron SARS-CoV-2 neutralization from inactivated and ZF2001 vaccines. N Engl J Med. 2022;387(3):277–80.PubMedCrossRef
144.
go back to reference Gao L, Li Y, He P, Chen Z, Yang H, Li F, et al. Safety and immunogenicity of a protein subunit COVID-19 vaccine (ZF2001) in healthy children and adolescents aged 3–17 years in China: a randomised, double-blind, placebo-controlled, phase 1 trial and an open-label, non-randomised, non-inferiority, phase 2 trial. Lancet Child Adolesc Health. 2023;7(4):269–79.PubMedPubMedCentralCrossRef Gao L, Li Y, He P, Chen Z, Yang H, Li F, et al. Safety and immunogenicity of a protein subunit COVID-19 vaccine (ZF2001) in healthy children and adolescents aged 3–17 years in China: a randomised, double-blind, placebo-controlled, phase 1 trial and an open-label, non-randomised, non-inferiority, phase 2 trial. Lancet Child Adolesc Health. 2023;7(4):269–79.PubMedPubMedCentralCrossRef
145.
go back to reference Li D, Duan M, Wang X, Gao P, Zhao X, Xu K, et al. Neutralization of BQ.1, BQ.1.1, and XBB with RBD-dimer vaccines. N Engl J Med. 2023;388(12):1142–5.PubMedCrossRef Li D, Duan M, Wang X, Gao P, Zhao X, Xu K, et al. Neutralization of BQ.1, BQ.1.1, and XBB with RBD-dimer vaccines. N Engl J Med. 2023;388(12):1142–5.PubMedCrossRef
146.
go back to reference Wang Y, Yang C, Song Y, Coleman JR, Stawowczyk M, Tafrova J, et al. Scalable live-attenuated SARS-CoV-2 vaccine candidate demonstrates preclinical safety and efficacy. Proc Natl Acad Sci USA. 2021;118(29):e2102775118. Wang Y, Yang C, Song Y, Coleman JR, Stawowczyk M, Tafrova J, et al. Scalable live-attenuated SARS-CoV-2 vaccine candidate demonstrates preclinical safety and efficacy. Proc Natl Acad Sci USA. 2021;118(29):e2102775118.
147.
go back to reference Trimpert J, Dietert K, Firsching TC, Ebert N, Thi Nhu Thao T, Vladimirova D, et al. Development of safe and highly protective live-attenuated SARS-CoV-2 vaccine candidates by genome recoding. Cell Rep. 2021;36(5):109493. Trimpert J, Dietert K, Firsching TC, Ebert N, Thi Nhu Thao T, Vladimirova D, et al. Development of safe and highly protective live-attenuated SARS-CoV-2 vaccine candidates by genome recoding. Cell Rep. 2021;36(5):109493.
148.
go back to reference Mehla R, Kokate P, Bhosale SR, Vaidya V, Narayanan S, Shandil RK, et al. A live attenuated COVID-19 candidate vaccine for children: protection against SARS-CoV-2 challenge in hamsters. Vaccines. 2023;11(2):255–71. Mehla R, Kokate P, Bhosale SR, Vaidya V, Narayanan S, Shandil RK, et al. A live attenuated COVID-19 candidate vaccine for children: protection against SARS-CoV-2 challenge in hamsters. Vaccines. 2023;11(2):255–71.
149.
go back to reference Focosi D, Maggi F. Recombination in coronaviruses, with a focus on SARS-CoV-2. Viruses. 2022;14(6):1239-51. Focosi D, Maggi F. Recombination in coronaviruses, with a focus on SARS-CoV-2. Viruses. 2022;14(6):1239-51.
150.
go back to reference Jackson B, Boni MF, Bull MJ, Colleran A, Colquhoun RM, Darby AC, et al. Generation and transmission of interlineage recombinants in the SARS-CoV-2 pandemic. Cell. 2021;184(20):5179–88 e8.PubMedPubMedCentralCrossRef Jackson B, Boni MF, Bull MJ, Colleran A, Colquhoun RM, Darby AC, et al. Generation and transmission of interlineage recombinants in the SARS-CoV-2 pandemic. Cell. 2021;184(20):5179–88 e8.PubMedPubMedCentralCrossRef
151.
go back to reference Frederiksen LSF, Zhang Y, Foged C, Thakur A. The long road toward COVID-19 herd immunity: vaccine platform technologies and mass immunization strategies. Front Immunol. 2020;11:1817–42.PubMedPubMedCentralCrossRef Frederiksen LSF, Zhang Y, Foged C, Thakur A. The long road toward COVID-19 herd immunity: vaccine platform technologies and mass immunization strategies. Front Immunol. 2020;11:1817–42.PubMedPubMedCentralCrossRef
153.
go back to reference Shafaati M, Saidijam M, Soleimani M, Hazrati F, Mirzaei R, Amirheidari B, et al. A brief review on DNA vaccines in the era of COVID-19. Future Virol. 2022;17:49–66. Shafaati M, Saidijam M, Soleimani M, Hazrati F, Mirzaei R, Amirheidari B, et al. A brief review on DNA vaccines in the era of COVID-19. Future Virol. 2022;17:49–66.
154.
go back to reference Castro Dopico X, Ols S, Lore K, Karlsson Hedestam GB. Immunity to SARS-CoV-2 induced by infection or vaccination. J Intern Med. 2022;291(1):32–50.PubMedCrossRef Castro Dopico X, Ols S, Lore K, Karlsson Hedestam GB. Immunity to SARS-CoV-2 induced by infection or vaccination. J Intern Med. 2022;291(1):32–50.PubMedCrossRef
156.
go back to reference Tamura T, Ito J, Uriu K, Zahradnik J, Kida I, Anraku Y, et al. Virological characteristics of the SARS-CoV-2 XBB variant derived from recombination of two Omicron subvariants. Nat Commun. 2023;14(1):2800–19.PubMedPubMedCentralCrossRef Tamura T, Ito J, Uriu K, Zahradnik J, Kida I, Anraku Y, et al. Virological characteristics of the SARS-CoV-2 XBB variant derived from recombination of two Omicron subvariants. Nat Commun. 2023;14(1):2800–19.PubMedPubMedCentralCrossRef
157.
158.
go back to reference Risk M, Hayek SS, Schiopu E, Yuan L, Shen C, Shi X, et al. COVID-19 vaccine effectiveness against omicron (B.1.1.529) variant infection and hospitalisation in patients taking immunosuppressive medications: a retrospective cohort study. Lancet Rheumatol. 2022;4(11):e775–84.PubMedPubMedCentralCrossRef Risk M, Hayek SS, Schiopu E, Yuan L, Shen C, Shi X, et al. COVID-19 vaccine effectiveness against omicron (B.1.1.529) variant infection and hospitalisation in patients taking immunosuppressive medications: a retrospective cohort study. Lancet Rheumatol. 2022;4(11):e775–84.PubMedPubMedCentralCrossRef
159.
go back to reference Ahmed SK. Myocarditis after BNT162b2 and mRNA-1273 COVID-19 vaccination: a report of 7 cases. Ann Med Surg. 2022;77:103657.CrossRef Ahmed SK. Myocarditis after BNT162b2 and mRNA-1273 COVID-19 vaccination: a report of 7 cases. Ann Med Surg. 2022;77:103657.CrossRef
160.
go back to reference Choi PY. Thrombotic thrombocytopenia after ChAdOx1 nCoV-19 vaccination. N Engl J Med. 2021;385(3):e11.PubMed Choi PY. Thrombotic thrombocytopenia after ChAdOx1 nCoV-19 vaccination. N Engl J Med. 2021;385(3):e11.PubMed
161.
go back to reference Rosner CM, Genovese L, Tehrani BN, Atkins M, Bakhshi H, Chaudhri S, et al. Myocarditis temporally associated with COVID-19 vaccination. Circulation. 2021;144(6):502–5.PubMedPubMedCentralCrossRef Rosner CM, Genovese L, Tehrani BN, Atkins M, Bakhshi H, Chaudhri S, et al. Myocarditis temporally associated with COVID-19 vaccination. Circulation. 2021;144(6):502–5.PubMedPubMedCentralCrossRef
162.
go back to reference Guetl K, Gary T, Raggam RB, Schmid J, Wolfler A, Brodmann M. SARS-CoV-2 vaccine-induced immune thrombotic thrombocytopenia treated with immunoglobulin and argatroban. Lancet. 2021;397(10293):e19.PubMedPubMedCentralCrossRef Guetl K, Gary T, Raggam RB, Schmid J, Wolfler A, Brodmann M. SARS-CoV-2 vaccine-induced immune thrombotic thrombocytopenia treated with immunoglobulin and argatroban. Lancet. 2021;397(10293):e19.PubMedPubMedCentralCrossRef
163.
go back to reference Ruggiero R, Balzano N, Di Napoli R, Mascolo A, Berrino PM, Rafaniello C, et al. Capillary leak syndrome following COVID-19 vaccination: data from the European pharmacovigilance database Eudravigilance. Front Immunol. 2022;13:956825.PubMedPubMedCentralCrossRef Ruggiero R, Balzano N, Di Napoli R, Mascolo A, Berrino PM, Rafaniello C, et al. Capillary leak syndrome following COVID-19 vaccination: data from the European pharmacovigilance database Eudravigilance. Front Immunol. 2022;13:956825.PubMedPubMedCentralCrossRef
164.
go back to reference Inoue M, Yasue Y, Kobayashi Y, Sugiyama Y. Systemic capillary leak syndrome (SCLS) after receiving BNT162b2 mRNA COVID-19 (Pfizer-BioNTech) vaccine. BMJ Case Rep. 2022;15(3):e248927. Inoue M, Yasue Y, Kobayashi Y, Sugiyama Y. Systemic capillary leak syndrome (SCLS) after receiving BNT162b2 mRNA COVID-19 (Pfizer-BioNTech) vaccine. BMJ Case Rep. 2022;15(3):e248927.
165.
go back to reference Ao D, Lan T, He X, Liu J, Chen L, Baptista-Hon DT, et al. SARS-CoV-2 Omicron variant: Immune escape and vaccine development. Med Commun. 2022;3(1):e126. Ao D, Lan T, He X, Liu J, Chen L, Baptista-Hon DT, et al. SARS-CoV-2 Omicron variant: Immune escape and vaccine development. Med Commun. 2022;3(1):e126.
166.
go back to reference Dhama K, Nainu F, Frediansyah A, Yatoo MI, Mohapatra RK, Chakraborty S, et al. Global emerging Omicron variant of SARS-CoV-2: impacts, challenges and strategies. J Infect Public Health. 2023;16(1):4–14.PubMedCrossRef Dhama K, Nainu F, Frediansyah A, Yatoo MI, Mohapatra RK, Chakraborty S, et al. Global emerging Omicron variant of SARS-CoV-2: impacts, challenges and strategies. J Infect Public Health. 2023;16(1):4–14.PubMedCrossRef
167.
go back to reference Gong W, Parkkila S, Wu X, Aspatwar A. SARS-CoV-2 variants and COVID-19 vaccines: current challenges and future strategies. Int Rev Immunol. 2022;28:1–22. Gong W, Parkkila S, Wu X, Aspatwar A. SARS-CoV-2 variants and COVID-19 vaccines: current challenges and future strategies. Int Rev Immunol. 2022;28:1–22.
168.
go back to reference Magazine N, Zhang T, Wu Y, McGee MC, Veggiani G, Huang W. Mutations and evolution of the SARS-CoV-2 spike protein. Viruses. 2022;14(3):640–50. Magazine N, Zhang T, Wu Y, McGee MC, Veggiani G, Huang W. Mutations and evolution of the SARS-CoV-2 spike protein. Viruses. 2022;14(3):640–50.
169.
go back to reference Abas AH, Marfuah S, Idroes R, Kusumawaty D, Fatimawali, Park MN, et al. Can the SARS-CoV-2 omicron variant confer natural immunity against COVID-19? Molecules. 2022;27(7):2221–39. Abas AH, Marfuah S, Idroes R, Kusumawaty D, Fatimawali, Park MN, et al. Can the SARS-CoV-2 omicron variant confer natural immunity against COVID-19? Molecules. 2022;27(7):2221–39.
170.
go back to reference Magiorkinis G. On the evolution of SARS-CoV-2 and the emergence of variants of concern. Trends Microbiol. 2023;31(1):5–8.PubMedCrossRef Magiorkinis G. On the evolution of SARS-CoV-2 and the emergence of variants of concern. Trends Microbiol. 2023;31(1):5–8.PubMedCrossRef
171.
go back to reference Uriu K, Ito J, Zahradnik J, Fujita S, Kosugi Y, Schreiber G, et al. Enhanced transmissibility, infectivity, and immune resistance of the SARS-CoV-2 omicron XBB.1.5 variant. Lancet Infect Dis. 2023;23(3):280–1.PubMedPubMedCentralCrossRef Uriu K, Ito J, Zahradnik J, Fujita S, Kosugi Y, Schreiber G, et al. Enhanced transmissibility, infectivity, and immune resistance of the SARS-CoV-2 omicron XBB.1.5 variant. Lancet Infect Dis. 2023;23(3):280–1.PubMedPubMedCentralCrossRef
172.
go back to reference Garrett N, Tapley A, Andriesen J, Seocharan I, Fisher LH, Bunts L, et al. High rate of asymptomatic carriage associated with variant strain omicron. Preprint at medRxiv. 2022. Garrett N, Tapley A, Andriesen J, Seocharan I, Fisher LH, Bunts L, et al. High rate of asymptomatic carriage associated with variant strain omicron. Preprint at medRxiv. 2022.
174.
go back to reference Fleming TR, Krause PR, Nason M, Longini IM, Henao-Restrepo AM. COVID-19 vaccine trials: the use of active controls and non-inferiority studies. Clin Trials. 2021;18(3):335–42.PubMedPubMedCentralCrossRef Fleming TR, Krause PR, Nason M, Longini IM, Henao-Restrepo AM. COVID-19 vaccine trials: the use of active controls and non-inferiority studies. Clin Trials. 2021;18(3):335–42.PubMedPubMedCentralCrossRef
175.
go back to reference Excler JL, Saville M, Privor-Dumm L, Gilbert S, Hotez PJ, Thompson D, et al. Factors, enablers and challenges for COVID-19 vaccine development. BMJ Glob Health. 2023;8(6):e011879. Excler JL, Saville M, Privor-Dumm L, Gilbert S, Hotez PJ, Thompson D, et al. Factors, enablers and challenges for COVID-19 vaccine development. BMJ Glob Health. 2023;8(6):e011879.
176.
go back to reference Deng F, Pan J, Liu Z, Zeng L, Chen J. Programmable DNA biocomputing circuits for rapid and intelligent screening of SARS-CoV-2 variants. Biosens Bioelectron. 2023;1(223):115025.CrossRef Deng F, Pan J, Liu Z, Zeng L, Chen J. Programmable DNA biocomputing circuits for rapid and intelligent screening of SARS-CoV-2 variants. Biosens Bioelectron. 2023;1(223):115025.CrossRef
177.
go back to reference Cheemarla NR, Watkins TA, Mihaylova VT, Wang B, Zhao D, Wang G, et al. Dynamic innate immune response determines susceptibility to SARS-CoV-2 infection and early replication kinetics. J Exp Med. 2021;218(8):e20210583. Cheemarla NR, Watkins TA, Mihaylova VT, Wang B, Zhao D, Wang G, et al. Dynamic innate immune response determines susceptibility to SARS-CoV-2 infection and early replication kinetics. J Exp Med. 2021;218(8):e20210583.
178.
go back to reference An D, Li K, Rowe DK, Diaz MCH, Griffin EF, Beavis AC, et al. Protection of K18-hACE2 mice and ferrets against SARS-CoV-2 challenge by a single-dose mucosal immunization with a parainfluenza virus 5-based COVID-19 vaccine. Sci Adv. 2021;7(27):eabi5246. An D, Li K, Rowe DK, Diaz MCH, Griffin EF, Beavis AC, et al. Protection of K18-hACE2 mice and ferrets against SARS-CoV-2 challenge by a single-dose mucosal immunization with a parainfluenza virus 5-based COVID-19 vaccine. Sci Adv. 2021;7(27):eabi5246.
179.
go back to reference Loske J, Rohmel J, Lukassen S, Stricker S, Magalhaes VG, Liebig J, et al. Pre-activated antiviral innate immunity in the upper airways controls early SARS-CoV-2 infection in children. Nat Biotechnol. 2022;40(3):319–24.PubMedCrossRef Loske J, Rohmel J, Lukassen S, Stricker S, Magalhaes VG, Liebig J, et al. Pre-activated antiviral innate immunity in the upper airways controls early SARS-CoV-2 infection in children. Nat Biotechnol. 2022;40(3):319–24.PubMedCrossRef
180.
go back to reference Edara VV, Manning KE, Ellis M, Lai L, Moore KM, Foster SL, et al. mRNA-1273 and BNT162b2 mRNA vaccines have reduced neutralizing activity against the SARS-CoV-2 omicron variant. Cell Rep Med. 2022;3(2):100529.PubMedPubMedCentralCrossRef Edara VV, Manning KE, Ellis M, Lai L, Moore KM, Foster SL, et al. mRNA-1273 and BNT162b2 mRNA vaccines have reduced neutralizing activity against the SARS-CoV-2 omicron variant. Cell Rep Med. 2022;3(2):100529.PubMedPubMedCentralCrossRef
181.
go back to reference Shuai HP, Chan JFW, Hu BJ, Chai Y, Yoon CM, Liu H, et al. The viral fitness and intrinsic pathogenicity of dominant SARS-CoV-2 Omicron sublineages BA.1, BA.2, and BA.5. Ebiomedicine. 2023 Sep;95:104753. Shuai HP, Chan JFW, Hu BJ, Chai Y, Yoon CM, Liu H, et al. The viral fitness and intrinsic pathogenicity of dominant SARS-CoV-2 Omicron sublineages BA.1, BA.2, and BA.5. Ebiomedicine. 2023 Sep;95:104753.
182.
go back to reference Havervall S, Marking U, Svensson J, Greilert-Norin N, Bacchus P, Nilsson P, et al. Anti-spike mucosal IgA protection against SARS-CoV-2 omicron infection. N Engl J Med. 2022;387(14):1333–6.PubMedCrossRef Havervall S, Marking U, Svensson J, Greilert-Norin N, Bacchus P, Nilsson P, et al. Anti-spike mucosal IgA protection against SARS-CoV-2 omicron infection. N Engl J Med. 2022;387(14):1333–6.PubMedCrossRef
183.
go back to reference Szabo PA, Levitin HM, Miron M, Snyder ME, Senda T, Yuan J, et al. Single-cell transcriptomics of human T cells reveals tissue and activation signatures in health and disease. Nat Commun. 2019;10(1):4706–21.PubMedPubMedCentralCrossRef Szabo PA, Levitin HM, Miron M, Snyder ME, Senda T, Yuan J, et al. Single-cell transcriptomics of human T cells reveals tissue and activation signatures in health and disease. Nat Commun. 2019;10(1):4706–21.PubMedPubMedCentralCrossRef
184.
go back to reference Chen J, Wang P, Yuan L, Zhang L, Zhang L, Zhao H, et al. A live attenuated virus-based intranasal COVID-19 vaccine provides rapid, prolonged, and broad protection against SARS-CoV-2. Sci Bull. 2022;67(13):1372–87.CrossRef Chen J, Wang P, Yuan L, Zhang L, Zhang L, Zhao H, et al. A live attenuated virus-based intranasal COVID-19 vaccine provides rapid, prolonged, and broad protection against SARS-CoV-2. Sci Bull. 2022;67(13):1372–87.CrossRef
185.
go back to reference Castrodeza-Sanz J, Sanz-Munoz I, Eiros JM. Adjuvants for COVID-19 vaccines. Vaccines. 2023;11(5):902–18. Castrodeza-Sanz J, Sanz-Munoz I, Eiros JM. Adjuvants for COVID-19 vaccines. Vaccines. 2023;11(5):902–18.
186.
go back to reference Stertman L, Palm AE, Zarnegar B, Carow B, Lunderius Andersson C, Magnusson SE, et al. The matrix-M adjuvant: a critical component of vaccines for the 21(st) century. Hum Vaccines Immunother. 2023;19(1):2189885.CrossRef Stertman L, Palm AE, Zarnegar B, Carow B, Lunderius Andersson C, Magnusson SE, et al. The matrix-M adjuvant: a critical component of vaccines for the 21(st) century. Hum Vaccines Immunother. 2023;19(1):2189885.CrossRef
187.
go back to reference Marks PW, Gruppuso PA, Adashi EY. Urgent need for next-generation COVID-19 vaccines. JAMA. 2023;329(1):19–20.PubMedCrossRef Marks PW, Gruppuso PA, Adashi EY. Urgent need for next-generation COVID-19 vaccines. JAMA. 2023;329(1):19–20.PubMedCrossRef
188.
go back to reference Chavda VP, Jogi G, Dave S, Patel BM, Vineela Nalla L, Koradia K. mRNA-based vaccine for COVID-19: they are new but not unknown! Vaccines. 2023;11(3):507–34. Chavda VP, Jogi G, Dave S, Patel BM, Vineela Nalla L, Koradia K. mRNA-based vaccine for COVID-19: they are new but not unknown! Vaccines. 2023;11(3):507–34.
189.
go back to reference Mulroney TE, Poyry T, Yam-Puc JC, Rust M, Harvey RF, Kalmar L, et al. N(1)-methylpseudouridylation of mRNA causes +1 ribosomal frameshifting. Nature. 2024 Jan 4;625(7993):189–94. Mulroney TE, Poyry T, Yam-Puc JC, Rust M, Harvey RF, Kalmar L, et al. N(1)-methylpseudouridylation of mRNA causes +1 ribosomal frameshifting. Nature. 2024 Jan 4;625(7993):189–94.
190.
go back to reference Bommireddy R, Stone S, Bhatnagar N, Kumari P, Munoz LE, Oh J, et al. Influenza virus-like particle-based hybrid vaccine containing RBD induces immunity against influenza and SARS-CoV-2 viruses. Vaccines. 2022;10(6):944–61. Bommireddy R, Stone S, Bhatnagar N, Kumari P, Munoz LE, Oh J, et al. Influenza virus-like particle-based hybrid vaccine containing RBD induces immunity against influenza and SARS-CoV-2 viruses. Vaccines. 2022;10(6):944–61.
191.
go back to reference Zhang P, Narayanan E, Liu Q, Tsybovsky Y, Boswell K, Ding S, et al. A multiclade env-gag VLP mRNA vaccine elicits tier-2 HIV-1-neutralizing antibodies and reduces the risk of heterologous SHIV infection in macaques. Nat Med. 2021;27(12):2234–45.PubMedCrossRef Zhang P, Narayanan E, Liu Q, Tsybovsky Y, Boswell K, Ding S, et al. A multiclade env-gag VLP mRNA vaccine elicits tier-2 HIV-1-neutralizing antibodies and reduces the risk of heterologous SHIV infection in macaques. Nat Med. 2021;27(12):2234–45.PubMedCrossRef
192.
go back to reference Rosengarten JF, Schatz S, Wolf T, Barbe S, Stitz J. Components of a HIV-1 vaccine mediate virus-like particle (VLP)-formation and display of envelope proteins exposing broadly neutralizing epitopes. Virology. 2022;568:41–8.PubMedCrossRef Rosengarten JF, Schatz S, Wolf T, Barbe S, Stitz J. Components of a HIV-1 vaccine mediate virus-like particle (VLP)-formation and display of envelope proteins exposing broadly neutralizing epitopes. Virology. 2022;568:41–8.PubMedCrossRef
193.
go back to reference Bedi R, Bayless NL, Glanville J. Challenges and progress in designing broad-spectrum vaccines against rapidly mutating viruses. Annu Rev Biomed Data Sci. 2023 Aug 10;6:419–41. Bedi R, Bayless NL, Glanville J. Challenges and progress in designing broad-spectrum vaccines against rapidly mutating viruses. Annu Rev Biomed Data Sci. 2023 Aug 10;6:419–41.
194.
go back to reference Affonso de Oliveira JF, Zhao Z, Xiang Y, Shin MD, Villasenor KE, Deng X, et al. COVID-19 vaccines based on viral nanoparticles displaying a conserved B-cell epitope show potent immunogenicity and a long-lasting antibody response. Front Microbiol. 2023;14:1117494. Affonso de Oliveira JF, Zhao Z, Xiang Y, Shin MD, Villasenor KE, Deng X, et al. COVID-19 vaccines based on viral nanoparticles displaying a conserved B-cell epitope show potent immunogenicity and a long-lasting antibody response. Front Microbiol. 2023;14:1117494.
195.
go back to reference Duan Q, Lee KH, Nandre RM, Garcia C, Chen J, Zhang W. MEFA (multiepitope fusion antigen)-novel technology for structural vaccinology, proof from computational and empirical immunogenicity characterization of an enterotoxigenic Escherichia coli (ETEC) adhesin MEFA. J Vaccines Vaccination. 2017;8(4):367–84. Duan Q, Lee KH, Nandre RM, Garcia C, Chen J, Zhang W. MEFA (multiepitope fusion antigen)-novel technology for structural vaccinology, proof from computational and empirical immunogenicity characterization of an enterotoxigenic Escherichia coli (ETEC) adhesin MEFA. J Vaccines Vaccination. 2017;8(4):367–84.
196.
go back to reference Wu Y, Wang S, Zhang Y, Yuan L, Zheng Q, Wei M, et al. Lineage-mosaic and mutation-patched spike proteins for broad-spectrum COVID-19 vaccine. Cell Host Microbe. 2022;30(12):1732–44 e7.PubMedPubMedCentralCrossRef Wu Y, Wang S, Zhang Y, Yuan L, Zheng Q, Wei M, et al. Lineage-mosaic and mutation-patched spike proteins for broad-spectrum COVID-19 vaccine. Cell Host Microbe. 2022;30(12):1732–44 e7.PubMedPubMedCentralCrossRef
197.
go back to reference Yu AT, Absar NM. Long-term neuropsychiatric complications and 18F-FDG-PET hypometabolism in the brain from prolonged infection of COVID-19. Alzheimer Dis Assoc Disord. 2022;36(2):173–5.PubMedCrossRef Yu AT, Absar NM. Long-term neuropsychiatric complications and 18F-FDG-PET hypometabolism in the brain from prolonged infection of COVID-19. Alzheimer Dis Assoc Disord. 2022;36(2):173–5.PubMedCrossRef
198.
go back to reference Desai AD, Lavelle M, Boursiquot BC, Wan EY. Long-term complications of COVID-19. Am J Physiol Cell Physiol. 2022;322(1):C1–11.PubMedCrossRef Desai AD, Lavelle M, Boursiquot BC, Wan EY. Long-term complications of COVID-19. Am J Physiol Cell Physiol. 2022;322(1):C1–11.PubMedCrossRef
199.
go back to reference Knoke L, Schlegtendal A, Maier C, Eitner L, Lucke T, Brinkmann F. Pulmonary function and long-term respiratory symptoms in children and adolescents after COVID-19. Front Pediatr. 2022;10:851008.PubMedPubMedCentralCrossRef Knoke L, Schlegtendal A, Maier C, Eitner L, Lucke T, Brinkmann F. Pulmonary function and long-term respiratory symptoms in children and adolescents after COVID-19. Front Pediatr. 2022;10:851008.PubMedPubMedCentralCrossRef
200.
go back to reference Araujo N, Silva I, Campos P, Correia R, Calejo M, Freitas P, et al. Long-term neurological complications in COVID-19 survivors: study protocol of a prospective cohort study (NeurodegCoV-19). BMJ Open. 2023;13(7):e072981.PubMedPubMedCentralCrossRef Araujo N, Silva I, Campos P, Correia R, Calejo M, Freitas P, et al. Long-term neurological complications in COVID-19 survivors: study protocol of a prospective cohort study (NeurodegCoV-19). BMJ Open. 2023;13(7):e072981.PubMedPubMedCentralCrossRef
201.
go back to reference Ding QL, Zhao HJ. Long-term effects of SARS-CoV-2 infection on human brain and memory. Cell Death Discov. 2023;9(1):196-203. Ding QL, Zhao HJ. Long-term effects of SARS-CoV-2 infection on human brain and memory. Cell Death Discov. 2023;9(1):196-203.
203.
go back to reference Bowe B, Xie Y, Al-Aly Z. Postacute sequelae of COVID-19 at 2 years. Nat Med. 2023 Sep;29(9):2347–57. Bowe B, Xie Y, Al-Aly Z. Postacute sequelae of COVID-19 at 2 years. Nat Med. 2023 Sep;29(9):2347–57.
Metadata
Title
Current Progress, Challenges and Prospects in the Development of COVID-19 Vaccines
Authors
Congrui Zhu
Shengmei Pang
Jiaqi Liu
Qiangde Duan
Publication date
23-04-2024
Publisher
Springer International Publishing
Published in
Drugs
Print ISSN: 0012-6667
Electronic ISSN: 1179-1950
DOI
https://doi.org/10.1007/s40265-024-02013-8