Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2012

Open Access 01-12-2012 | Research

Lipopolysaccharide impairs amyloid beta efflux from brain: altered vascular sequestration, cerebrospinal fluid reabsorption, peripheral clearance and transporter function at the blood–brain barrier

Authors: Michelle A Erickson, Pehr E Hartvigson, Yoichi Morofuji, Joshua B Owen, D Allan Butterfield, William A Banks

Published in: Journal of Neuroinflammation | Issue 1/2012

Login to get access

Abstract

Background

Defects in the low density lipoprotein receptor-related protein-1 (LRP-1) and p-glycoprotein (Pgp) clearance of amyloid beta (Aβ) from brain are thought to contribute to Alzheimer’s disease (AD). We have recently shown that induction of systemic inflammation by lipopolysaccharide (LPS) results in impaired efflux of Aβ from the brain. The same treatment also impairs Pgp function. Here, our aim is to determine which physiological routes of Aβ clearance are affected following systemic inflammation, including those relying on LRP-1 and Pgp function at the blood–brain barrier.

Methods

CD-1 mice aged between 6 and 8 weeks were treated with 3 intraperitoneal injections of 3 mg/kg LPS at 0, 6, and 24 hours and studied at 28 hours. 125I-Aβ1-42 or 125I-alpha-2-macroglobulin injected into the lateral ventricle of the brain (intracerebroventricular (ICV)) or into the jugular vein (intravenous (IV)) was used to quantify LRP-1-dependent partitioning between the brain vasculature and parenchyma and peripheral clearance, respectively. Disappearance of ICV-injected 14 C-inulin from brain was measured to quantify bulk flow of cerebrospinal fluid (CSF). Brain microvascular protein expression of LRP-1 and Pgp was measured by immunoblotting. Endothelial cell localization of LRP-1 was measured by immunofluorescence microscopy. Oxidative modifications to LRP-1 at the brain microvasculature were measured by immunoprecipitation of LRP-1 followed by immunoblotting for 4-hydroxynonenal and 3-nitrotyrosine.

Results

We found that LPS: caused an LRP-1-dependent redistribution of ICV-injected Aβ from brain parenchyma to brain vasculature and decreased entry into blood; impaired peripheral clearance of IV-injected Aβ; inhibited reabsorption of CSF; did not significantly alter brain microvascular protein levels of LRP-1 or Pgp, or oxidative modifications to LRP-1; and downregulated LRP-1 protein levels and caused LRP-1 mislocalization in cultured brain endothelial cells.

Conclusions

These results suggest that LRP-1 undergoes complex functional regulation following systemic inflammation which may depend on cell type, subcellular location, and post-translational modifications. Our findings that systemic inflammation causes deficits in both Aβ transport and bulk flow like those observed in AD indicate that inflammation could induce and promote the disease.
Literature
1.
go back to reference Thies W, Bleiler L: 2011 Alzheimer's disease facts and figures. Alzheimers Dement 2011, 7:208–244.CrossRef Thies W, Bleiler L: 2011 Alzheimer's disease facts and figures. Alzheimers Dement 2011, 7:208–244.CrossRef
2.
go back to reference Hardy J, Selkoe DJ: The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science 2002, 297:353–356.CrossRefPubMed Hardy J, Selkoe DJ: The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science 2002, 297:353–356.CrossRefPubMed
3.
go back to reference Zlokovic BV, Deane R, Sagare AP, Bell RD, Winkler EA: Low-density lipoprotein receptor-related protein-1: a serial clearance homeostatic mechanism controlling Alzheimer's amyloid beta-peptide elimination from the brain. J Neurochem 2010, 115:1077–1089.CrossRefPubMedCentral Zlokovic BV, Deane R, Sagare AP, Bell RD, Winkler EA: Low-density lipoprotein receptor-related protein-1: a serial clearance homeostatic mechanism controlling Alzheimer's amyloid beta-peptide elimination from the brain. J Neurochem 2010, 115:1077–1089.CrossRefPubMedCentral
4.
go back to reference Shibata M, Yamada S, Kumar SR, Calero M, Bading J, Frangione B, Holtzman DM, Miller CA, Strickland DK, Ghiso J, Zlokovic BV: Clearance of Alzheimer's amyloid-ss(1–40) peptide from brain by LDL receptor-related protein-1 at the blood–brain barrier. J Clin Invest 2000, 106:1489–1499.CrossRefPubMedPubMedCentral Shibata M, Yamada S, Kumar SR, Calero M, Bading J, Frangione B, Holtzman DM, Miller CA, Strickland DK, Ghiso J, Zlokovic BV: Clearance of Alzheimer's amyloid-ss(1–40) peptide from brain by LDL receptor-related protein-1 at the blood–brain barrier. J Clin Invest 2000, 106:1489–1499.CrossRefPubMedPubMedCentral
5.
go back to reference Deane R, Wu Z, Sagare A, Davis J, Du Yan S, Hamm K, Xu F, Parisi M, LaRue B, Hu HW, Spijkers P, Guo H, Song X, Lenting PJ, Van Nostrand WE, Zlokovic BV: LRP/amyloid beta-peptide interaction mediates differential brain efflux of Abeta isoforms. Neuron 2004, 43:333–344.CrossRefPubMed Deane R, Wu Z, Sagare A, Davis J, Du Yan S, Hamm K, Xu F, Parisi M, LaRue B, Hu HW, Spijkers P, Guo H, Song X, Lenting PJ, Van Nostrand WE, Zlokovic BV: LRP/amyloid beta-peptide interaction mediates differential brain efflux of Abeta isoforms. Neuron 2004, 43:333–344.CrossRefPubMed
6.
go back to reference Kandimalla KK, Curran GL, Holasek SS, Gilles EJ, Wengenack TM, Poduslo JF: Pharmacokinetic analysis of the blood–brain barrier transport of 125I-amyloid beta protein 40 in wild-type and Alzheimer's disease transgenic mice (APP, PS1) and its implications for amyloid plaque formation. J Pharmacol Exp Ther 2005, 313:1370–1378.CrossRefPubMed Kandimalla KK, Curran GL, Holasek SS, Gilles EJ, Wengenack TM, Poduslo JF: Pharmacokinetic analysis of the blood–brain barrier transport of 125I-amyloid beta protein 40 in wild-type and Alzheimer's disease transgenic mice (APP, PS1) and its implications for amyloid plaque formation. J Pharmacol Exp Ther 2005, 313:1370–1378.CrossRefPubMed
7.
go back to reference Jaeger LB, Dohgu S, Hwang MC, Farr SA, Murphy MP, Fleegal-DeMotta MA, Lynch JL, Robinson SM, Niehoff ML, Johnson SN, Kumar VB, Banks WA: Testing the neurovascular hypothesis of Alzheimer's disease: LRP-1 antisense reduces blood–brain barrier clearance, increases brain levels of amyloid-beta protein, and impairs cognition. J Alzheimers Dis 2009, 17:553–570.PubMedPubMedCentral Jaeger LB, Dohgu S, Hwang MC, Farr SA, Murphy MP, Fleegal-DeMotta MA, Lynch JL, Robinson SM, Niehoff ML, Johnson SN, Kumar VB, Banks WA: Testing the neurovascular hypothesis of Alzheimer's disease: LRP-1 antisense reduces blood–brain barrier clearance, increases brain levels of amyloid-beta protein, and impairs cognition. J Alzheimers Dis 2009, 17:553–570.PubMedPubMedCentral
8.
go back to reference Donahue JE, Flaherty SL, Johanson CE, Duncan JA, Silverberg GD, Miller MC, Tavares R, Yang W, Wu Q, Sabo E, Hovanesian V, Stopa EG: RAGE, LRP-1, and amyloid-beta protein in Alzheimer's disease. Acta Neuropathol 2006, 112:405–415.CrossRefPubMed Donahue JE, Flaherty SL, Johanson CE, Duncan JA, Silverberg GD, Miller MC, Tavares R, Yang W, Wu Q, Sabo E, Hovanesian V, Stopa EG: RAGE, LRP-1, and amyloid-beta protein in Alzheimer's disease. Acta Neuropathol 2006, 112:405–415.CrossRefPubMed
9.
go back to reference Owen JB, Sultana R, Aluise CD, Erickson MA, Price TO, Bu G, Banks WA, Butterfield DA: Oxidative modification to LDL receptor-related protein 1 in hippocampus from subjects with Alzheimer disease: implications for Abeta accumulation in AD brain. Free Radic Biol Med 2010, 49:1798–1803.CrossRefPubMedPubMedCentral Owen JB, Sultana R, Aluise CD, Erickson MA, Price TO, Bu G, Banks WA, Butterfield DA: Oxidative modification to LDL receptor-related protein 1 in hippocampus from subjects with Alzheimer disease: implications for Abeta accumulation in AD brain. Free Radic Biol Med 2010, 49:1798–1803.CrossRefPubMedPubMedCentral
10.
go back to reference Cirrito JR, Deane R, Fagan AM, Spinner ML, Parsadanian M, Finn MB, Jiang H, Prior JL, Sagare A, Bales KR, Paul SM, Zlokovic BV, Piwnica-Worms D, Holtzman DM: P-glycoprotein deficiency at the blood–brain barrier increases amyloid-beta deposition in an Alzheimer disease mouse model. J Clin Invest 2005, 115:3285–3290.CrossRefPubMedPubMedCentral Cirrito JR, Deane R, Fagan AM, Spinner ML, Parsadanian M, Finn MB, Jiang H, Prior JL, Sagare A, Bales KR, Paul SM, Zlokovic BV, Piwnica-Worms D, Holtzman DM: P-glycoprotein deficiency at the blood–brain barrier increases amyloid-beta deposition in an Alzheimer disease mouse model. J Clin Invest 2005, 115:3285–3290.CrossRefPubMedPubMedCentral
11.
go back to reference Hartz AM, Miller DS, Bauer B: Restoring blood–brain barrier P-glycoprotein reduces brain amyloid-beta in a mouse model of Alzheimer's disease. Mol Pharmacol 2010, 77:715–723.CrossRefPubMedPubMedCentral Hartz AM, Miller DS, Bauer B: Restoring blood–brain barrier P-glycoprotein reduces brain amyloid-beta in a mouse model of Alzheimer's disease. Mol Pharmacol 2010, 77:715–723.CrossRefPubMedPubMedCentral
12.
go back to reference Wijesuriya HC, Bullock JY, Faull RL, Hladky SB, Barrand MA: ABC efflux transporters in brain vasculature of Alzheimer's subjects. Brain Res 2010, 1358:228–238.CrossRefPubMed Wijesuriya HC, Bullock JY, Faull RL, Hladky SB, Barrand MA: ABC efflux transporters in brain vasculature of Alzheimer's subjects. Brain Res 2010, 1358:228–238.CrossRefPubMed
13.
go back to reference Boulton M, Flessner M, Armstrong D, Mohamed R, Hay J, Johnston M: Contribution of extracranial lymphatics and arachnoid villi to the clearance of a CSF tracer in the rat. Am J Physiol 1999, 276:R818-R823.PubMed Boulton M, Flessner M, Armstrong D, Mohamed R, Hay J, Johnston M: Contribution of extracranial lymphatics and arachnoid villi to the clearance of a CSF tracer in the rat. Am J Physiol 1999, 276:R818-R823.PubMed
14.
go back to reference Johanson CE, Duncan JA, Klinge PM, Brinker T, Stopa EG, Silverberg GD: Multiplicity of cerebrospinal fluid functions: new challenges in health and disease. Cerebrospinal Fluid Res 2008, 5:10.CrossRefPubMedPubMedCentral Johanson CE, Duncan JA, Klinge PM, Brinker T, Stopa EG, Silverberg GD: Multiplicity of cerebrospinal fluid functions: new challenges in health and disease. Cerebrospinal Fluid Res 2008, 5:10.CrossRefPubMedPubMedCentral
15.
go back to reference Banks WA, Kumar VB, Farr SA, Nakaoke R, Robinson SM, Morley JE: Impairments in brain-to-blood transport of amyloid-beta and reabsorption of cerebrospinal fluid in an animal model of Alzheimer's disease are reversed by antisense directed against amyloid-beta protein precursor. J Alzheimers Dis 2011, 23:599–605.PubMed Banks WA, Kumar VB, Farr SA, Nakaoke R, Robinson SM, Morley JE: Impairments in brain-to-blood transport of amyloid-beta and reabsorption of cerebrospinal fluid in an animal model of Alzheimer's disease are reversed by antisense directed against amyloid-beta protein precursor. J Alzheimers Dis 2011, 23:599–605.PubMed
16.
go back to reference Ghiso J, Shayo M, Calero M, Ng D, Tomidokoro Y, Gandy S, Rostagno A, Frangione B: Systemic catabolism of Alzheimer's Abeta40 and Abeta42. J Biol Chem 2004, 279:45897–45908.CrossRefPubMed Ghiso J, Shayo M, Calero M, Ng D, Tomidokoro Y, Gandy S, Rostagno A, Frangione B: Systemic catabolism of Alzheimer's Abeta40 and Abeta42. J Biol Chem 2004, 279:45897–45908.CrossRefPubMed
17.
go back to reference Tamaki C, Ohtsuki S, Iwatsubo T, Hashimoto T, Yamada K, Yabuki C, Terasaki T: Major involvement of low-density lipoprotein receptor-related protein 1 in the clearance of plasma free amyloid beta-peptide by the liver. Pharm Res 2006, 23:1407–1416.CrossRefPubMed Tamaki C, Ohtsuki S, Iwatsubo T, Hashimoto T, Yamada K, Yabuki C, Terasaki T: Major involvement of low-density lipoprotein receptor-related protein 1 in the clearance of plasma free amyloid beta-peptide by the liver. Pharm Res 2006, 23:1407–1416.CrossRefPubMed
18.
go back to reference Deane R, Du Yan S, Submamaryan RK, LaRue B, Jovanovic S, Hogg E, Welch D, Manness L, Lin C, Yu J, Zhu H, Ghiso J, Frangione B, Stern A, Schmidt AM, Armstrong DL, Arnold B, Liliensiek B, Nawroth P, Hofman F, Kindy M, Stern D, Zlokovic B: RAGE mediates amyloid-beta peptide transport across the blood–brain barrier and accumulation in brain. Nat Med 2003, 9:907–913.CrossRefPubMed Deane R, Du Yan S, Submamaryan RK, LaRue B, Jovanovic S, Hogg E, Welch D, Manness L, Lin C, Yu J, Zhu H, Ghiso J, Frangione B, Stern A, Schmidt AM, Armstrong DL, Arnold B, Liliensiek B, Nawroth P, Hofman F, Kindy M, Stern D, Zlokovic B: RAGE mediates amyloid-beta peptide transport across the blood–brain barrier and accumulation in brain. Nat Med 2003, 9:907–913.CrossRefPubMed
19.
go back to reference Marques MA, Kulstad JJ, Savard CE, Green PS, Lee SP, Craft S, Watson GS, Cook DG: Peripheral amyloid-beta levels regulate amyloid-beta clearance from the central nervous system. J Alzheimers Dis 2009, 16:325–329.PubMedPubMedCentral Marques MA, Kulstad JJ, Savard CE, Green PS, Lee SP, Craft S, Watson GS, Cook DG: Peripheral amyloid-beta levels regulate amyloid-beta clearance from the central nervous system. J Alzheimers Dis 2009, 16:325–329.PubMedPubMedCentral
20.
go back to reference Baiguera S, Fioravanzo L, Grandi C, Di Liddo R, Parnigotto PP, Folin M: Involvement of the receptor for advanced glycation-end products (RAGE) in beta-amyloid-induced toxic effects in rat cerebromicrovascular endothelial cells cultured in vitro. Int J Mol Med 2009, 24:9–15.PubMed Baiguera S, Fioravanzo L, Grandi C, Di Liddo R, Parnigotto PP, Folin M: Involvement of the receptor for advanced glycation-end products (RAGE) in beta-amyloid-induced toxic effects in rat cerebromicrovascular endothelial cells cultured in vitro. Int J Mol Med 2009, 24:9–15.PubMed
21.
go back to reference Akiyama H, Barger S, Barnum S, Bradt B, Bauer J, Cole GM, Cooper NR, Eikelenboom P, Emmerling M, Fiebich BL, Finch CE, Frautschy S, Griffin WS, Hampel H, Hull M, Landreth G, Lue L, Mrak R, Mackenzie IR, McGeer PL, O'Banion MK, Pachter J, Pasinetti G, Plata-Salaman C, Rogers J, Rydel R, Shen Y, Streit W, Strohmeyer R, Tooyoma I, Van Muiswinkel FL, Veerhuis R, Walker D, Webster S, Wegrzyniak B, Wenk G, Wyss-Coray T: Inflammation and Alzheimer's disease. Neurobiol Aging 2000, 21:383–421.CrossRefPubMedPubMedCentral Akiyama H, Barger S, Barnum S, Bradt B, Bauer J, Cole GM, Cooper NR, Eikelenboom P, Emmerling M, Fiebich BL, Finch CE, Frautschy S, Griffin WS, Hampel H, Hull M, Landreth G, Lue L, Mrak R, Mackenzie IR, McGeer PL, O'Banion MK, Pachter J, Pasinetti G, Plata-Salaman C, Rogers J, Rydel R, Shen Y, Streit W, Strohmeyer R, Tooyoma I, Van Muiswinkel FL, Veerhuis R, Walker D, Webster S, Wegrzyniak B, Wenk G, Wyss-Coray T: Inflammation and Alzheimer's disease. Neurobiol Aging 2000, 21:383–421.CrossRefPubMedPubMedCentral
22.
go back to reference Reed-Geaghan EG, Savage JC, Hise AG, Landreth GE: CD14 and toll-like receptors 2 and 4 are required for fibrillar A{beta}-stimulated microglial activation. J Neurosci 2009, 29:11982–11992.CrossRefPubMedPubMedCentral Reed-Geaghan EG, Savage JC, Hise AG, Landreth GE: CD14 and toll-like receptors 2 and 4 are required for fibrillar A{beta}-stimulated microglial activation. J Neurosci 2009, 29:11982–11992.CrossRefPubMedPubMedCentral
23.
go back to reference Liu S, Liu Y, Hao W, Wolf L, Kiliaan AJ, Penke B, Rube CE, Walter J, Heneka MT, Hartmann T, Menger MD, Fassbender K: TLR2 is a primary receptor for Alzheimer's amyloid beta peptide to trigger neuroinflammatory activation. J Immunol 2012, 188:1098–1107.CrossRefPubMed Liu S, Liu Y, Hao W, Wolf L, Kiliaan AJ, Penke B, Rube CE, Walter J, Heneka MT, Hartmann T, Menger MD, Fassbender K: TLR2 is a primary receptor for Alzheimer's amyloid beta peptide to trigger neuroinflammatory activation. J Immunol 2012, 188:1098–1107.CrossRefPubMed
24.
go back to reference Butterfield DA, Reed T, Newman SF, Sultana R: Roles of amyloid beta-peptide-associated oxidative stress and brain protein modifications in the pathogenesis of Alzheimer's disease and mild cognitive impairment. Free Radic Biol Med 2007, 43:658–677.CrossRefPubMedPubMedCentral Butterfield DA, Reed T, Newman SF, Sultana R: Roles of amyloid beta-peptide-associated oxidative stress and brain protein modifications in the pathogenesis of Alzheimer's disease and mild cognitive impairment. Free Radic Biol Med 2007, 43:658–677.CrossRefPubMedPubMedCentral
25.
go back to reference Bianca VD, Dusi S, Bianchini E, Dal Pra I, Rossi F: beta-amyloid activates the O-2 forming NADPH oxidase in microglia, monocytes, and neutrophils. A possible inflammatory mechanism of neuronal damage in Alzheimer's disease. J Biol Chem 1999, 274:15493–15499.CrossRefPubMed Bianca VD, Dusi S, Bianchini E, Dal Pra I, Rossi F: beta-amyloid activates the O-2 forming NADPH oxidase in microglia, monocytes, and neutrophils. A possible inflammatory mechanism of neuronal damage in Alzheimer's disease. J Biol Chem 1999, 274:15493–15499.CrossRefPubMed
26.
go back to reference Donnelly RJ, Friedhoff AJ, Beer B, Blume AJ, Vitek MP: Interleukin-1 stimulates the beta-amyloid precursor protein promoter. Cell Mol Neurobiol 1990, 10:485–495.CrossRefPubMed Donnelly RJ, Friedhoff AJ, Beer B, Blume AJ, Vitek MP: Interleukin-1 stimulates the beta-amyloid precursor protein promoter. Cell Mol Neurobiol 1990, 10:485–495.CrossRefPubMed
27.
go back to reference Sheng JG, Bora SH, Xu G, Borchelt DR, Price DL, Koliatsos VE: Lipopolysaccharide-induced-neuroinflammation increases intracellular accumulation of amyloid precursor protein and amyloid beta peptide in APPswe transgenic mice. Neurobiol Dis 2003, 14:133–145.CrossRefPubMed Sheng JG, Bora SH, Xu G, Borchelt DR, Price DL, Koliatsos VE: Lipopolysaccharide-induced-neuroinflammation increases intracellular accumulation of amyloid precursor protein and amyloid beta peptide in APPswe transgenic mice. Neurobiol Dis 2003, 14:133–145.CrossRefPubMed
28.
go back to reference Lee JW, Lee YK, Yuk DY, Choi DY, Ban SB, Oh KW, Hong JT: Neuro-inflammation induced by lipopolysaccharide causes cognitive impairment through enhancement of beta-amyloid generation. J Neuroinflammation 2008, 5:37.CrossRefPubMedPubMedCentral Lee JW, Lee YK, Yuk DY, Choi DY, Ban SB, Oh KW, Hong JT: Neuro-inflammation induced by lipopolysaccharide causes cognitive impairment through enhancement of beta-amyloid generation. J Neuroinflammation 2008, 5:37.CrossRefPubMedPubMedCentral
29.
go back to reference Oda A, Tamaoka A, Araki W: Oxidative stress up-regulates presenilin 1 in lipid rafts in neuronal cells. J Neurosci Res 2010, 88:1137–1145.PubMed Oda A, Tamaoka A, Araki W: Oxidative stress up-regulates presenilin 1 in lipid rafts in neuronal cells. J Neurosci Res 2010, 88:1137–1145.PubMed
30.
go back to reference Kontush A: Amyloid-beta: an antioxidant that becomes a pro-oxidant and critically contributes to Alzheimer's disease. Free Radic Biol Med 2001, 31:1120–1131.CrossRefPubMed Kontush A: Amyloid-beta: an antioxidant that becomes a pro-oxidant and critically contributes to Alzheimer's disease. Free Radic Biol Med 2001, 31:1120–1131.CrossRefPubMed
31.
go back to reference Neniskyte U, Neher JJ, Brown GC: Neuronal death induced by nanomolar amyloid beta is mediated by primary phagocytosis of neurons by microglia. J Biol Chem 2011, 286:39904–39913.CrossRefPubMed Neniskyte U, Neher JJ, Brown GC: Neuronal death induced by nanomolar amyloid beta is mediated by primary phagocytosis of neurons by microglia. J Biol Chem 2011, 286:39904–39913.CrossRefPubMed
32.
go back to reference Jaeger LB, Dohgu S, Sultana R, Lynch JL, Owen JB, Erickson MA, Shah GN, Price TO, Fleegal-Demotta MA, Butterfield DA, Banks WA: Lipopolysaccharide alters the blood–brain barrier transport of amyloid beta protein: a mechanism for inflammation in the progression of Alzheimer's disease. Brain Behav Immun 2009, 23:507–517.CrossRefPubMedPubMedCentral Jaeger LB, Dohgu S, Sultana R, Lynch JL, Owen JB, Erickson MA, Shah GN, Price TO, Fleegal-Demotta MA, Butterfield DA, Banks WA: Lipopolysaccharide alters the blood–brain barrier transport of amyloid beta protein: a mechanism for inflammation in the progression of Alzheimer's disease. Brain Behav Immun 2009, 23:507–517.CrossRefPubMedPubMedCentral
33.
go back to reference Zurhove K, Nakajima C, Herz J, Bock HH, May P: Gamma-secretase limits the inflammatory response through the processing of LRP1. Sci Signal 2008, 1:ra15.CrossRefPubMedPubMedCentral Zurhove K, Nakajima C, Herz J, Bock HH, May P: Gamma-secretase limits the inflammatory response through the processing of LRP1. Sci Signal 2008, 1:ra15.CrossRefPubMedPubMedCentral
34.
go back to reference Polavarapu R, An J, Zhang C, Yepes M: Regulated intramembrane proteolysis of the low-density lipoprotein receptor-related protein mediates ischemic cell death. Am J Pathol 2008, 172:1355–1362.CrossRefPubMedCentral Polavarapu R, An J, Zhang C, Yepes M: Regulated intramembrane proteolysis of the low-density lipoprotein receptor-related protein mediates ischemic cell death. Am J Pathol 2008, 172:1355–1362.CrossRefPubMedCentral
35.
go back to reference Kheir-Eldin AA, Motawi TK, Gad MZ, Abd-ElGawad HM: Protective effect of vitamin E, beta-carotene and N-acetylcysteine from the brain oxidative stress induced in rats by lipopolysaccharide. Int J Biochem Cell Biol 2001, 33:475–482.CrossRefPubMed Kheir-Eldin AA, Motawi TK, Gad MZ, Abd-ElGawad HM: Protective effect of vitamin E, beta-carotene and N-acetylcysteine from the brain oxidative stress induced in rats by lipopolysaccharide. Int J Biochem Cell Biol 2001, 33:475–482.CrossRefPubMed
36.
go back to reference Pan W, Yu C, Hsuchou H, Kastin AJ: The role of cerebral vascular NFkappaB in LPS-induced inflammation: differential regulation of efflux transporter and transporting cytokine receptors. Cell Physiol Biochem 2010, 25:623–630.CrossRefPubMedPubMedCentral Pan W, Yu C, Hsuchou H, Kastin AJ: The role of cerebral vascular NFkappaB in LPS-induced inflammation: differential regulation of efflux transporter and transporting cytokine receptors. Cell Physiol Biochem 2010, 25:623–630.CrossRefPubMedPubMedCentral
37.
go back to reference Hartz AM, Bauer B, Fricker G, Miller DS: Rapid modulation of P-glycoprotein-mediated transport at the blood–brain barrier by tumor necrosis factor-alpha and lipopolysaccharide. Mol Pharmacol 2006, 69:462–470.CrossRefPubMed Hartz AM, Bauer B, Fricker G, Miller DS: Rapid modulation of P-glycoprotein-mediated transport at the blood–brain barrier by tumor necrosis factor-alpha and lipopolysaccharide. Mol Pharmacol 2006, 69:462–470.CrossRefPubMed
38.
go back to reference Jin L, Li J, Nation RL, Nicolazzo JA: Impact of p-glycoprotein inhibition and lipopolysaccharide administration on blood–brain barrier transport of colistin in mice. Antimicrob Agents Chemother 2011, 55:502–507.CrossRefPubMed Jin L, Li J, Nation RL, Nicolazzo JA: Impact of p-glycoprotein inhibition and lipopolysaccharide administration on blood–brain barrier transport of colistin in mice. Antimicrob Agents Chemother 2011, 55:502–507.CrossRefPubMed
39.
go back to reference Candela P, Gosselet F, Saint-Pol J, Sevin E, Boucau MC, Boulanger E, Cecchelli R, Fenart L: Apical-to-basolateral transport of amyloid-beta peptides through blood–brain barrier cells is mediated by the receptor for advanced glycation end-products and is restricted by P-glycoprotein. J Alzheimers Dis 2010, 22:849–859.PubMed Candela P, Gosselet F, Saint-Pol J, Sevin E, Boucau MC, Boulanger E, Cecchelli R, Fenart L: Apical-to-basolateral transport of amyloid-beta peptides through blood–brain barrier cells is mediated by the receptor for advanced glycation end-products and is restricted by P-glycoprotein. J Alzheimers Dis 2010, 22:849–859.PubMed
40.
go back to reference Imber MJ, Pizzo SV: Clearance and binding of two electrophoretic ‘fast’ forms of human alpha 2-macroglobulin. J Biol Chem 1981, 256:8134–8139.PubMed Imber MJ, Pizzo SV: Clearance and binding of two electrophoretic ‘fast’ forms of human alpha 2-macroglobulin. J Biol Chem 1981, 256:8134–8139.PubMed
41.
go back to reference Greenwood FC, Hunter WM, Glover JS: The preparation of I-131-labelled human growth hormone of high specific radioactivity. Biochem J 1963, 89:114–123.CrossRefPubMedPubMedCentral Greenwood FC, Hunter WM, Glover JS: The preparation of I-131-labelled human growth hormone of high specific radioactivity. Biochem J 1963, 89:114–123.CrossRefPubMedPubMedCentral
42.
go back to reference Triguero D, Buciak J, Pardridge WM: Capillary depletion method for quantification of blood–brain barrier transport of circulating peptides and plasma proteins. J Neurochem 1990, 54:1882–1888.CrossRefPubMed Triguero D, Buciak J, Pardridge WM: Capillary depletion method for quantification of blood–brain barrier transport of circulating peptides and plasma proteins. J Neurochem 1990, 54:1882–1888.CrossRefPubMed
43.
go back to reference Patlak CS, Blasberg RG, Fenstermacher JD: Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab 1983, 3:1–7.CrossRefPubMed Patlak CS, Blasberg RG, Fenstermacher JD: Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab 1983, 3:1–7.CrossRefPubMed
44.
go back to reference Gerhart DZ, Broderius MA, Drewes LR: Cultured human and canine endothelial cells from brain microvessels. Brain Res Bull 1988, 21:785–793.CrossRefPubMed Gerhart DZ, Broderius MA, Drewes LR: Cultured human and canine endothelial cells from brain microvessels. Brain Res Bull 1988, 21:785–793.CrossRefPubMed
45.
go back to reference Coisne C, Dehouck L, Faveeuw C, Delplace Y, Miller F, Landry C, Morissette C, Fenart L, Cecchelli R, Tremblay P, Dehouck B: Mouse syngenic in vitro blood–brain barrier model: a new tool to examine inflammatory events in cerebral endothelium. Lab Invest 2005, 85:734–746.CrossRefPubMed Coisne C, Dehouck L, Faveeuw C, Delplace Y, Miller F, Landry C, Morissette C, Fenart L, Cecchelli R, Tremblay P, Dehouck B: Mouse syngenic in vitro blood–brain barrier model: a new tool to examine inflammatory events in cerebral endothelium. Lab Invest 2005, 85:734–746.CrossRefPubMed
46.
go back to reference Perriere N, Demeuse P, Garcia E, Regina A, Debray M, Andreux JP, Couvreur P, Scherrmann JM, Temsamani J, Couraud PO, Deli MA, Roux F: Puromycin-based purification of rat brain capillary endothelial cell cultures. Effect on the expression of blood–brain barrier-specific properties. J Neurochem 2005, 93:279–289.CrossRefPubMed Perriere N, Demeuse P, Garcia E, Regina A, Debray M, Andreux JP, Couvreur P, Scherrmann JM, Temsamani J, Couraud PO, Deli MA, Roux F: Puromycin-based purification of rat brain capillary endothelial cell cultures. Effect on the expression of blood–brain barrier-specific properties. J Neurochem 2005, 93:279–289.CrossRefPubMed
47.
go back to reference Erickson MA, Niehoff ML, Farr SA, Morley JE, Dillman LA, Lynch KM, Banks WA: Peripheral administration of antisense oligonucleotides targeting the amyloid-beta protein precursor reverses AbetaPP and LRP-1 overexpression in the aged SAMP8 mouse brain. J Alzheimers Dis 2012, 28:951–960.PubMed Erickson MA, Niehoff ML, Farr SA, Morley JE, Dillman LA, Lynch KM, Banks WA: Peripheral administration of antisense oligonucleotides targeting the amyloid-beta protein precursor reverses AbetaPP and LRP-1 overexpression in the aged SAMP8 mouse brain. J Alzheimers Dis 2012, 28:951–960.PubMed
48.
go back to reference Kovac A, Erickson MA, Banks WA: Brain microvascular pericytes are immunoactive in culture: cytokine, chemokine, nitric oxide, and LRP-1 expression in response to lipopolysaccharide. J Neuroinflammation 2011, 8:139.CrossRefPubMedPubMedCentral Kovac A, Erickson MA, Banks WA: Brain microvascular pericytes are immunoactive in culture: cytokine, chemokine, nitric oxide, and LRP-1 expression in response to lipopolysaccharide. J Neuroinflammation 2011, 8:139.CrossRefPubMedPubMedCentral
49.
go back to reference Lai CH, Kuo KH: The critical component to establish in vitro BBB model: pericyte. Brain Res Brain Res Rev 2005, 50:258–265.CrossRefPubMed Lai CH, Kuo KH: The critical component to establish in vitro BBB model: pericyte. Brain Res Brain Res Rev 2005, 50:258–265.CrossRefPubMed
50.
go back to reference Yamada K, Hashimoto T, Yabuki C, Nagae Y, Tachikawa M, Strickland DK, Liu Q, Bu G, Basak JM, Holtzman DM, Ohtsuki S, Terasaki T, Iwatsubo T: The low density lipoprotein receptor-related protein 1 mediates uptake of amyloid beta peptides in an in vitro model of the blood–brain barrier cells. J Biol Chem 2008, 283:34554–34562.CrossRefPubMed Yamada K, Hashimoto T, Yabuki C, Nagae Y, Tachikawa M, Strickland DK, Liu Q, Bu G, Basak JM, Holtzman DM, Ohtsuki S, Terasaki T, Iwatsubo T: The low density lipoprotein receptor-related protein 1 mediates uptake of amyloid beta peptides in an in vitro model of the blood–brain barrier cells. J Biol Chem 2008, 283:34554–34562.CrossRefPubMed
51.
go back to reference Banks WA, Robinson SM, Verma S, Morley JE: Efflux of human and mouse amyloid beta proteins 1–40 and 1–42 from brain: impairment in a mouse model of Alzheimer's disease. Neuroscience 2003, 121:487–492.CrossRefPubMedPubMedCentral Banks WA, Robinson SM, Verma S, Morley JE: Efflux of human and mouse amyloid beta proteins 1–40 and 1–42 from brain: impairment in a mouse model of Alzheimer's disease. Neuroscience 2003, 121:487–492.CrossRefPubMedPubMedCentral
52.
go back to reference Rubenstein E: Relationship of senescence of cerebrospinal fluid circulatory system to dementias of the aged. Lancet 1998, 351:283–285.CrossRefPubMed Rubenstein E: Relationship of senescence of cerebrospinal fluid circulatory system to dementias of the aged. Lancet 1998, 351:283–285.CrossRefPubMed
53.
go back to reference Crossgrove JS, Li GJ, Zheng W: The choroid plexus removes beta-amyloid from brain cerebrospinal fluid. Exp Biol Med (Maywood) 2005, 230:771–776. Crossgrove JS, Li GJ, Zheng W: The choroid plexus removes beta-amyloid from brain cerebrospinal fluid. Exp Biol Med (Maywood) 2005, 230:771–776.
54.
go back to reference Fujiyoshi M, Tachikawa M, Ohtsuki S, Ito S, Uchida Y, Akanuma S, Kamiie J, Hashimoto T, Hosoya K, Iwatsubo T, Terasaki T: Amyloid-beta peptide(1–40) elimination from cerebrospinal fluid involves low-density lipoprotein receptor-related protein 1 at the blood-cerebrospinal fluid barrier. J Neurochem 2011, 118:407–415.CrossRefPubMed Fujiyoshi M, Tachikawa M, Ohtsuki S, Ito S, Uchida Y, Akanuma S, Kamiie J, Hashimoto T, Hosoya K, Iwatsubo T, Terasaki T: Amyloid-beta peptide(1–40) elimination from cerebrospinal fluid involves low-density lipoprotein receptor-related protein 1 at the blood-cerebrospinal fluid barrier. J Neurochem 2011, 118:407–415.CrossRefPubMed
55.
go back to reference Pascale CL, Miller MC, Chiu C, Boylan M, Caralopoulos IN, Gonzalez L, Johanson CE, Silverberg GD: Amyloid-beta transporter expression at the blood-CSF barrier is age-dependent. Fluids Barriers CNS 2011, 8:21.CrossRefPubMedPubMedCentral Pascale CL, Miller MC, Chiu C, Boylan M, Caralopoulos IN, Gonzalez L, Johanson CE, Silverberg GD: Amyloid-beta transporter expression at the blood-CSF barrier is age-dependent. Fluids Barriers CNS 2011, 8:21.CrossRefPubMedPubMedCentral
56.
go back to reference Sagare AP, Winkler EA, Bell RD, Deane R, Zlokovic BV: From the liver to the blood–brain barrier: an interconnected system regulating brain amyloid-beta levels. J Neurosci Res 2011, 89:967–968.CrossRefPubMed Sagare AP, Winkler EA, Bell RD, Deane R, Zlokovic BV: From the liver to the blood–brain barrier: an interconnected system regulating brain amyloid-beta levels. J Neurosci Res 2011, 89:967–968.CrossRefPubMed
57.
go back to reference Sutcliffe JG, Hedlund PB, Thomas EA, Bloom FE, Hilbush BS: Peripheral reduction of beta-amyloid is sufficient to reduce brain beta-amyloid: implications for Alzheimer's disease. J Neurosci Res 2011, 89:808–814.CrossRefPubMed Sutcliffe JG, Hedlund PB, Thomas EA, Bloom FE, Hilbush BS: Peripheral reduction of beta-amyloid is sufficient to reduce brain beta-amyloid: implications for Alzheimer's disease. J Neurosci Res 2011, 89:808–814.CrossRefPubMed
58.
go back to reference Ito S, Ohtsuki S, Kamiie J, Nezu Y, Terasaki T: Cerebral clearance of human amyloid-beta peptide (1–40) across the blood–brain barrier is reduced by self-aggregation and formation of low-density lipoprotein receptor-related protein-1 ligand complexes. J Neurochem 2007, 103:2482–2490.CrossRefPubMed Ito S, Ohtsuki S, Kamiie J, Nezu Y, Terasaki T: Cerebral clearance of human amyloid-beta peptide (1–40) across the blood–brain barrier is reduced by self-aggregation and formation of low-density lipoprotein receptor-related protein-1 ligand complexes. J Neurochem 2007, 103:2482–2490.CrossRefPubMed
59.
go back to reference Bell RD, Sagare AP, Friedman AE, Bedi GS, Holtzman DM, Deane R, Zlokovic BV: Transport pathways for clearance of human Alzheimer's amyloid beta-peptide and apolipoproteins E and J in the mouse central nervous system. J Cereb Blood Flow Metab 2007, 27:909–918.PubMed Bell RD, Sagare AP, Friedman AE, Bedi GS, Holtzman DM, Deane R, Zlokovic BV: Transport pathways for clearance of human Alzheimer's amyloid beta-peptide and apolipoproteins E and J in the mouse central nervous system. J Cereb Blood Flow Metab 2007, 27:909–918.PubMed
60.
go back to reference Bell RD, Deane R, Chow N, Long X, Sagare A, Singh I, Streb JW, Guo H, Rubio A, Van Nostrand W, Miano JM, Zlokovic BV: SRF and myocardin regulate LRP-mediated amyloid-beta clearance in brain vascular cells. Nat Cell Biol 2009, 11:143–153.CrossRefPubMed Bell RD, Deane R, Chow N, Long X, Sagare A, Singh I, Streb JW, Guo H, Rubio A, Van Nostrand W, Miano JM, Zlokovic BV: SRF and myocardin regulate LRP-mediated amyloid-beta clearance in brain vascular cells. Nat Cell Biol 2009, 11:143–153.CrossRefPubMed
61.
go back to reference Wilhelmus MM, Otte-Holler I, van Triel JJ, Veerhuis R, Maat-Schieman ML, Bu G, de Waal RM, Verbeek MM: Lipoprotein receptor-related protein-1 mediates amyloid-beta-mediated cell death of cerebrovascular cells. Am J Pathol 2007, 171:1989–1999.CrossRefPubMedPubMedCentral Wilhelmus MM, Otte-Holler I, van Triel JJ, Veerhuis R, Maat-Schieman ML, Bu G, de Waal RM, Verbeek MM: Lipoprotein receptor-related protein-1 mediates amyloid-beta-mediated cell death of cerebrovascular cells. Am J Pathol 2007, 171:1989–1999.CrossRefPubMedPubMedCentral
62.
go back to reference van der Geer P: Phosphorylation of LRP1: regulation of transport and signal transduction. Trends Cardiovasc Med 2002, 12:160–165.CrossRefPubMed van der Geer P: Phosphorylation of LRP1: regulation of transport and signal transduction. Trends Cardiovasc Med 2002, 12:160–165.CrossRefPubMed
63.
go back to reference Pflanzner T, Janko MC, Andre-Dohmen B, Reuss S, Weggen S, Roebroek AJ, Kuhlmann CR, Pietrzik CU: LRP1 mediates bidirectional transcytosis of amyloid-beta across the blood–brain barrier. Neurobiol Aging 2011,32(2323):e2321–2311. Pflanzner T, Janko MC, Andre-Dohmen B, Reuss S, Weggen S, Roebroek AJ, Kuhlmann CR, Pietrzik CU: LRP1 mediates bidirectional transcytosis of amyloid-beta across the blood–brain barrier. Neurobiol Aging 2011,32(2323):e2321–2311.
64.
go back to reference Salkeni MA, Lynch JL, Otamis-Price T, Banks WA: Lipopolysaccharide impairs blood–brain barrier P-glycoprotein function in mice through prostaglandin- and nitric oxide-independent pathways. J Neuroimmune Pharmacol 2009, 4:276–282.CrossRefPubMed Salkeni MA, Lynch JL, Otamis-Price T, Banks WA: Lipopolysaccharide impairs blood–brain barrier P-glycoprotein function in mice through prostaglandin- and nitric oxide-independent pathways. J Neuroimmune Pharmacol 2009, 4:276–282.CrossRefPubMed
65.
go back to reference Hawkins BT, Rigor RR, Miller DS: Rapid loss of blood–brain barrier P-glycoprotein activity through transporter internalization demonstrated using a novel in situ proteolysis protection assay. J Cereb Blood Flow Metab 2010, 30:1593–1597.CrossRefPubMedPubMedCentral Hawkins BT, Rigor RR, Miller DS: Rapid loss of blood–brain barrier P-glycoprotein activity through transporter internalization demonstrated using a novel in situ proteolysis protection assay. J Cereb Blood Flow Metab 2010, 30:1593–1597.CrossRefPubMedPubMedCentral
66.
go back to reference Erickson MA, Banks WA: Cytokine and chemokine responses in serum and brain after single and repeated injections of lipopolysaccharide: multiplex quantification with path analysis. Brain Behav Immun 2011, 25:1637–1648.CrossRefPubMedPubMedCentral Erickson MA, Banks WA: Cytokine and chemokine responses in serum and brain after single and repeated injections of lipopolysaccharide: multiplex quantification with path analysis. Brain Behav Immun 2011, 25:1637–1648.CrossRefPubMedPubMedCentral
67.
go back to reference Ray B, Gaskins DL, Sajdyk TJ, Spence JP, Fitz SD, Shekhar A, Lahiri DK: Restraint stress and repeated corticotrophin-releasing factor receptor activation in the amygdala both increase amyloid-beta precursor protein and amyloid-beta peptide but have divergent effects on brain-derived neurotrophic factor and pre-synaptic proteins in the prefrontal cortex of rats. Neuroscience 2011, 184:139–150.CrossRefPubMed Ray B, Gaskins DL, Sajdyk TJ, Spence JP, Fitz SD, Shekhar A, Lahiri DK: Restraint stress and repeated corticotrophin-releasing factor receptor activation in the amygdala both increase amyloid-beta precursor protein and amyloid-beta peptide but have divergent effects on brain-derived neurotrophic factor and pre-synaptic proteins in the prefrontal cortex of rats. Neuroscience 2011, 184:139–150.CrossRefPubMed
68.
go back to reference Morley JE, Farr SA, Banks WA, Johnson SN, Yamada KA, Xu L: A physiological role for amyloid-beta protein: enhancement of learning and memory. J Alzheimers Dis 2010, 19:441–449.PubMed Morley JE, Farr SA, Banks WA, Johnson SN, Yamada KA, Xu L: A physiological role for amyloid-beta protein: enhancement of learning and memory. J Alzheimers Dis 2010, 19:441–449.PubMed
69.
go back to reference Chung HY, Cesari M, Anton S, Marzetti E, Giovannini S, Seo AY, Carter C, Yu BP, Leeuwenburgh C: Molecular inflammation: underpinnings of aging and age-related diseases. Ageing Res Rev 2009, 8:18–30.CrossRefPubMed Chung HY, Cesari M, Anton S, Marzetti E, Giovannini S, Seo AY, Carter C, Yu BP, Leeuwenburgh C: Molecular inflammation: underpinnings of aging and age-related diseases. Ageing Res Rev 2009, 8:18–30.CrossRefPubMed
70.
go back to reference Rink L, Cakman I, Kirchner H: Altered cytokine production in the elderly. Mech Ageing Dev 1998, 102:199–209.CrossRefPubMed Rink L, Cakman I, Kirchner H: Altered cytokine production in the elderly. Mech Ageing Dev 1998, 102:199–209.CrossRefPubMed
Metadata
Title
Lipopolysaccharide impairs amyloid beta efflux from brain: altered vascular sequestration, cerebrospinal fluid reabsorption, peripheral clearance and transporter function at the blood–brain barrier
Authors
Michelle A Erickson
Pehr E Hartvigson
Yoichi Morofuji
Joshua B Owen
D Allan Butterfield
William A Banks
Publication date
01-12-2012
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2012
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/1742-2094-9-150

Other articles of this Issue 1/2012

Journal of Neuroinflammation 1/2012 Go to the issue