Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2012

Open Access 01-12-2012 | Research

Blockade of interleukin-6 signaling inhibits the classic pathway and promotes an alternative pathway of macrophage activation after spinal cord injury in mice

Authors: Alexander Rodriguez Guerrero, Kenzo Uchida, Hideaki Nakajima, Shuji Watanabe, Masaya Nakamura, William EB Johnson, Hisatoshi Baba

Published in: Journal of Neuroinflammation | Issue 1/2012

Login to get access

Abstract

Background

Recent in vivo and in vitro studies in non-neuronal and neuronal tissues have shown that different pathways of macrophage activation result in cells with different properties. Interleukin (IL)-6 triggers the classically activated inflammatory macrophages (M1 phenotype), whereas the alternatively activated macrophages (M2 phenotype) are anti-inflammatory. The objective of this study was to clarify the effects of a temporal blockade of IL-6/IL-6 receptor (IL-6R) engagement, using an anti-mouse IL-6R monoclonal antibody (MR16-1), on macrophage activation and the inflammatory response in the acute phase after spinal cord injury (SCI) in mice.

Methods

MR16-1 antibodies versus isotype control antibodies or saline alone were administered immediately after thoracic SCI in mice. SC tissue repair was compared between the two groups by Luxol fast blue (LFB) staining for myelination and immunoreactivity for the neuronal markers growth-associated protein (GAP)-43 and neurofilament heavy 200 kDa (NF-H) and for locomotor function. The expression of T helper (Th)1 cytokines (interferon (IFN)-γ and tumor necrosis factor-α) and Th2 cytokines (IL-4, IL-13) was determined by immunoblot analysis. The presence of M1 (inducible nitric oxide synthase (iNOS)-positive, CD16/32-positive) and M2 (arginase 1-positive, CD206-positive) macrophages was determined by immunohistology. Using flow cytometry, we also quantified IFN-γ and IL-4 levels in neutrophils, microglia, and macrophages, and Mac-2 (macrophage antigen-2) and Mac-3 in M2 macrophages and microglia.

Results

LFB-positive spared myelin was increased in the MR16-1-treated group compared with the controls, and this increase correlated with enhanced positivity for GAP-43 or NF-H, and improved locomotor Basso Mouse Scale scores. Immunoblot analysis of the MR16-1-treated samples identified downregulation of Th1 and upregulation of Th2 cytokines. Whereas iNOS-positive, CD16/32-positive M1 macrophages were the predominant phenotype in the injured SC of non-treated control mice, MR16-1 treatment promoted arginase 1-positive, CD206-positive M2 macrophages, with preferential localization of these cells at the injury site. MR16-1 treatment suppressed the number of IFN-γ-positive neutrophils, and increased the number of microglia present and their positivity for IL-4. Among the arginase 1-positive M2 macrophages, MR16-1 treatment increased positivity for Mac-2 and Mac-3, suggestive of increased phagocytic behavior.

Conclusion

The results suggest that temporal blockade of IL-6 signaling after SCI abrogates damaging inflammatory activity and promotes functional recovery by promoting the formation of alternatively activated M2 macrophages.
Appendix
Available only for authorised users
Literature
1.
go back to reference Taoka Y, Okajima K, Uchiba M, Murakami K, Kushimoto S, Johno M, Naruo M, Okabe H, Takatsuki K: Role of neutrophils in spinal cord injury in the rat. Neuroscience 1997, 79:1177–1182.CrossRefPubMed Taoka Y, Okajima K, Uchiba M, Murakami K, Kushimoto S, Johno M, Naruo M, Okabe H, Takatsuki K: Role of neutrophils in spinal cord injury in the rat. Neuroscience 1997, 79:1177–1182.CrossRefPubMed
2.
go back to reference Popovich PG, Guan Z, McGaughy V, Fisher L, Hickey WF, Basso DM: The neuropathological and behavioral consequences of intraspinal microglial/macrophage activation. J Neuropathol Exp Neurol 2002, 61:623–633.CrossRefPubMed Popovich PG, Guan Z, McGaughy V, Fisher L, Hickey WF, Basso DM: The neuropathological and behavioral consequences of intraspinal microglial/macrophage activation. J Neuropathol Exp Neurol 2002, 61:623–633.CrossRefPubMed
3.
go back to reference Pineau I, Lacroix S: Proinflammatory cytokine synthesis in the injured mouse spinal cord: multiphasic expression pattern and identification of the cell types involved. J Comp Neurol 2007, 500:267–285.CrossRefPubMed Pineau I, Lacroix S: Proinflammatory cytokine synthesis in the injured mouse spinal cord: multiphasic expression pattern and identification of the cell types involved. J Comp Neurol 2007, 500:267–285.CrossRefPubMed
4.
go back to reference Carlson SL, Parrish ME, Springer JE, Doty K, Dossett L: Acute inflammatory response in spinal cord following impact injury. Exp Neurol 1998, 151:77–88.CrossRefPubMed Carlson SL, Parrish ME, Springer JE, Doty K, Dossett L: Acute inflammatory response in spinal cord following impact injury. Exp Neurol 1998, 151:77–88.CrossRefPubMed
5.
go back to reference Blight AR: Miracles and molecules-progress in spinal cord repair. Nat Neurosci 2002,5(Suppl):1051–1054.CrossRefPubMed Blight AR: Miracles and molecules-progress in spinal cord repair. Nat Neurosci 2002,5(Suppl):1051–1054.CrossRefPubMed
6.
go back to reference Hausmann ON: Post-traumatic inflammation following spinal cord injury. Spinal Cord 2003, 41:369–378.CrossRefPubMed Hausmann ON: Post-traumatic inflammation following spinal cord injury. Spinal Cord 2003, 41:369–378.CrossRefPubMed
7.
go back to reference Popovich PG, Wei P, Stokes BT: Cellular inflammatory response after spinal cord injury in Sprague-Dawley and Lewis rats. J Comp Neurol 1997, 377:443–464.CrossRefPubMed Popovich PG, Wei P, Stokes BT: Cellular inflammatory response after spinal cord injury in Sprague-Dawley and Lewis rats. J Comp Neurol 1997, 377:443–464.CrossRefPubMed
9.
go back to reference Sun X, Wang X, Chen T, Li T, Cao K, Lu A, Chen Y, Sun D, Luo J, Fan J, et al.: Myelin activates FAK/Akt/NF-kappaB pathways and provokes CR3-dependent inflammatory response in murine system. PLoS One 2010, 5:e9380.CrossRefPubMedPubMedCentral Sun X, Wang X, Chen T, Li T, Cao K, Lu A, Chen Y, Sun D, Luo J, Fan J, et al.: Myelin activates FAK/Akt/NF-kappaB pathways and provokes CR3-dependent inflammatory response in murine system. PLoS One 2010, 5:e9380.CrossRefPubMedPubMedCentral
10.
go back to reference David S, Bouchard C, Tsatas O, Giftochristos N: Macrophages can modify the nonpermissive nature of the adult mammalian central nervous system. Neuron 1990, 5:463–469.CrossRefPubMed David S, Bouchard C, Tsatas O, Giftochristos N: Macrophages can modify the nonpermissive nature of the adult mammalian central nervous system. Neuron 1990, 5:463–469.CrossRefPubMed
11.
go back to reference Rapalino O, Lazarov-Spiegler O, Agranov E, Velan GJ, Yoles E, Fraidakis M, Solomon A, Gepstein R, Katz A, Belkin M, et al.: Implantation of stimulated homologous macrophages results in partial recovery of paraplegic rats. Nat Med 1998, 4:814–821.CrossRefPubMed Rapalino O, Lazarov-Spiegler O, Agranov E, Velan GJ, Yoles E, Fraidakis M, Solomon A, Gepstein R, Katz A, Belkin M, et al.: Implantation of stimulated homologous macrophages results in partial recovery of paraplegic rats. Nat Med 1998, 4:814–821.CrossRefPubMed
12.
go back to reference Horn KP, Busch SA, Hawthorne AL, van Rooijen N, Silver J: Another barrier to regeneration in the CNS: activated macrophages induce extensive retraction of dystrophic axons through direct physical interactions. J Neurosci 2008, 28:9330–9341.CrossRefPubMedPubMedCentral Horn KP, Busch SA, Hawthorne AL, van Rooijen N, Silver J: Another barrier to regeneration in the CNS: activated macrophages induce extensive retraction of dystrophic axons through direct physical interactions. J Neurosci 2008, 28:9330–9341.CrossRefPubMedPubMedCentral
13.
14.
go back to reference Gensel JC, Nakamura S, Guan Z, van Rooijen N, Ankeny DP, Popovich PG: Macrophages promote axon regeneration with concurrent neurotoxicity. J Neurosci 2009, 29:3956–3968.CrossRefPubMedPubMedCentral Gensel JC, Nakamura S, Guan Z, van Rooijen N, Ankeny DP, Popovich PG: Macrophages promote axon regeneration with concurrent neurotoxicity. J Neurosci 2009, 29:3956–3968.CrossRefPubMedPubMedCentral
15.
go back to reference Popovich PG, Guan Z, Wei P, Huitinga I, van Rooijen N, Stokes BT: Depletion of hematogenous macrophages promotes partial hindlimb recovery and neuroanatomical repair after experimental spinal cord injury. Exp Neurol 1999, 158:351–365.CrossRefPubMed Popovich PG, Guan Z, Wei P, Huitinga I, van Rooijen N, Stokes BT: Depletion of hematogenous macrophages promotes partial hindlimb recovery and neuroanatomical repair after experimental spinal cord injury. Exp Neurol 1999, 158:351–365.CrossRefPubMed
16.
go back to reference Schwartz M, Moalem G, Leibowitz-Amit R, Cohen IR: Innate and adaptive immune responses can be beneficial for CNS repair. Trends Neurosci 1999, 22:295–299.CrossRefPubMed Schwartz M, Moalem G, Leibowitz-Amit R, Cohen IR: Innate and adaptive immune responses can be beneficial for CNS repair. Trends Neurosci 1999, 22:295–299.CrossRefPubMed
18.
go back to reference Pineau I, Sun L, Bastien D, Lacroix S: Astrocytes initiate inflammation in the injured mouse spinal cord by promoting the entry of neutrophils and inflammatory monocytes in an IL-1 receptor/MyD88-dependent fashion. Brain Behav Immun 2010, 24:540–553.CrossRefPubMed Pineau I, Sun L, Bastien D, Lacroix S: Astrocytes initiate inflammation in the injured mouse spinal cord by promoting the entry of neutrophils and inflammatory monocytes in an IL-1 receptor/MyD88-dependent fashion. Brain Behav Immun 2010, 24:540–553.CrossRefPubMed
19.
go back to reference Stout RD, Jiang C, Matta B, Tietzel I, Watkins SK, Suttles J: Macrophages sequentially change their functional phenotype in response to changes in microenvironmental influences. J Immunol 2005, 175:342–349.CrossRefPubMed Stout RD, Jiang C, Matta B, Tietzel I, Watkins SK, Suttles J: Macrophages sequentially change their functional phenotype in response to changes in microenvironmental influences. J Immunol 2005, 175:342–349.CrossRefPubMed
20.
go back to reference Mantovani A, Sozzani S, Locati M, Allavena P, Sica A: Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 2002, 23:549–555.CrossRefPubMed Mantovani A, Sozzani S, Locati M, Allavena P, Sica A: Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 2002, 23:549–555.CrossRefPubMed
21.
go back to reference Kigerl KA, Gensel JC, Ankeny DP, Alexander JK, Donnelly DJ, Popovich PG: Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J Neurosci 2009, 29:13435–13444.CrossRefPubMedPubMedCentral Kigerl KA, Gensel JC, Ankeny DP, Alexander JK, Donnelly DJ, Popovich PG: Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J Neurosci 2009, 29:13435–13444.CrossRefPubMedPubMedCentral
22.
go back to reference Schwartz M: 'Tissue-repairing' blood-derived macrophages are essential for healing of the injured spinal cord: From skin-activated macrophages to infiltrating blood-derived cells? Brain Behav Immun 2010, 24:1054–7.CrossRefPubMed Schwartz M: 'Tissue-repairing' blood-derived macrophages are essential for healing of the injured spinal cord: From skin-activated macrophages to infiltrating blood-derived cells? Brain Behav Immun 2010, 24:1054–7.CrossRefPubMed
23.
go back to reference Wong SC, Puaux AL, Chittezhath M, Shalova I, Kajiji TS, Wang X, Abastado JP, Biswas SK: Macrophage polarization to a unique phenotype driven by B cells. Eur J Immunol 2010, 40:2296–2307.CrossRefPubMed Wong SC, Puaux AL, Chittezhath M, Shalova I, Kajiji TS, Wang X, Abastado JP, Biswas SK: Macrophage polarization to a unique phenotype driven by B cells. Eur J Immunol 2010, 40:2296–2307.CrossRefPubMed
25.
go back to reference Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M: The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 2004, 25:677–686.CrossRefPubMed Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M: The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 2004, 25:677–686.CrossRefPubMed
27.
go back to reference David S, Kroner A: Repertoire of microglial and macrophage responses after spinal cord injury. Nat Rev Neurosci 2011, 12:388–399.CrossRefPubMed David S, Kroner A: Repertoire of microglial and macrophage responses after spinal cord injury. Nat Rev Neurosci 2011, 12:388–399.CrossRefPubMed
28.
go back to reference Ma J, Chen T, Mandelin J, Ceponis A, Miller NE, Hukkanen M, Ma GF, Konttinen YT: Regulation of macrophage activation. Cell Mol Life Sci 2003, 60:2334–2346.CrossRefPubMed Ma J, Chen T, Mandelin J, Ceponis A, Miller NE, Hukkanen M, Ma GF, Konttinen YT: Regulation of macrophage activation. Cell Mol Life Sci 2003, 60:2334–2346.CrossRefPubMed
29.
go back to reference Busch SA, Hamilton JA, Horn KP, Cuascut FX, Cutrone R, Lehman N, Deans RJ, Ting AE, Mays RW, Silver J: Multipotent adult progenitor cells prevent macrophage-mediated axonal dieback and promote regrowth after spinal cord injury. J Neurosci 2011, 31:944–953.CrossRefPubMedPubMedCentral Busch SA, Hamilton JA, Horn KP, Cuascut FX, Cutrone R, Lehman N, Deans RJ, Ting AE, Mays RW, Silver J: Multipotent adult progenitor cells prevent macrophage-mediated axonal dieback and promote regrowth after spinal cord injury. J Neurosci 2011, 31:944–953.CrossRefPubMedPubMedCentral
30.
go back to reference Bomstein Y, Marder JB, Vitner K, Smirnov I, Lisaey G, Butovsky O, Fulga V, Yoles E: Features of skin-coincubated macrophages that promote recovery from spinal cord injury. J Neuroimmunol 2003, 142:10–16.CrossRefPubMed Bomstein Y, Marder JB, Vitner K, Smirnov I, Lisaey G, Butovsky O, Fulga V, Yoles E: Features of skin-coincubated macrophages that promote recovery from spinal cord injury. J Neuroimmunol 2003, 142:10–16.CrossRefPubMed
31.
go back to reference Jones TB, McDaniel EE, Popovich PG: Inflammatory-mediated injury and repair in the traumatically injured spinal cord. Curr Pharm Des 2005, 11:1223–1236.CrossRefPubMed Jones TB, McDaniel EE, Popovich PG: Inflammatory-mediated injury and repair in the traumatically injured spinal cord. Curr Pharm Des 2005, 11:1223–1236.CrossRefPubMed
32.
go back to reference Stirling DP, Yong VW: Dynamics of the inflammatory response after murine spinal cord injury revealed by flow cytometry. J Neurosci Res 2008, 86:1944–1958.CrossRefPubMed Stirling DP, Yong VW: Dynamics of the inflammatory response after murine spinal cord injury revealed by flow cytometry. J Neurosci Res 2008, 86:1944–1958.CrossRefPubMed
33.
go back to reference Gruol DL, Nelson TE: Physiological and pathological roles of interleukin-6 in the central nervous system. Mol Neurobiol 1997, 15:307–339.CrossRefPubMed Gruol DL, Nelson TE: Physiological and pathological roles of interleukin-6 in the central nervous system. Mol Neurobiol 1997, 15:307–339.CrossRefPubMed
34.
go back to reference Van Wagoner NJ, Benveniste EN: Interleukin-6 expression and regulation in astrocytes. J Neuroimmunol 1999, 100:124–139.CrossRefPubMed Van Wagoner NJ, Benveniste EN: Interleukin-6 expression and regulation in astrocytes. J Neuroimmunol 1999, 100:124–139.CrossRefPubMed
35.
go back to reference Bethea JR, Dietrich WD: Targeting the host inflammatory response in traumatic spinal cord injury. Curr Opin Neurol 2002, 15:355–360.CrossRefPubMed Bethea JR, Dietrich WD: Targeting the host inflammatory response in traumatic spinal cord injury. Curr Opin Neurol 2002, 15:355–360.CrossRefPubMed
36.
go back to reference Chai Z, Gatti S, Toniatti C, Poli V, Bartfai T: Interleukin (IL)-6 gene expression in the central nervous system is necessary for fever response to lipopolysaccharide or IL-1 beta: a study on IL-6-deficient mice. J Exp Med 1996, 183:311–316.CrossRefPubMed Chai Z, Gatti S, Toniatti C, Poli V, Bartfai T: Interleukin (IL)-6 gene expression in the central nervous system is necessary for fever response to lipopolysaccharide or IL-1 beta: a study on IL-6-deficient mice. J Exp Med 1996, 183:311–316.CrossRefPubMed
37.
go back to reference Hurst SM, Wilkinson TS, McLoughlin RM, Jones S, Horiuchi S, Yamamoto N, Rose-John S, Fuller GM, Topley N, Jones SA: Il-6 and its soluble receptor orchestrate a temporal switch in the pattern of leukocyte recruitment seen during acute inflammation. Immunity 2001, 14:705–714.CrossRefPubMed Hurst SM, Wilkinson TS, McLoughlin RM, Jones S, Horiuchi S, Yamamoto N, Rose-John S, Fuller GM, Topley N, Jones SA: Il-6 and its soluble receptor orchestrate a temporal switch in the pattern of leukocyte recruitment seen during acute inflammation. Immunity 2001, 14:705–714.CrossRefPubMed
38.
go back to reference Saiwai H, Ohkawa Y, Yamada H, Kumamaru H, Harada A, Okano H, Yokomizo T, Iwamoto Y, Okada S: The LTB4-BLT1 axis mediates neutrophil infiltration and secondary injury in experimental spinal cord injury. Am J Pathol 2010, 176:2352–2366.CrossRefPubMedPubMedCentral Saiwai H, Ohkawa Y, Yamada H, Kumamaru H, Harada A, Okano H, Yokomizo T, Iwamoto Y, Okada S: The LTB4-BLT1 axis mediates neutrophil infiltration and secondary injury in experimental spinal cord injury. Am J Pathol 2010, 176:2352–2366.CrossRefPubMedPubMedCentral
39.
go back to reference Yeaman GR, Collins JE, Currie JK, Guyre PM, Wira CR, Fanger MW: IFN-gamma is produced by polymorphonuclear neutrophils in human uterine endometrium and by cultured peripheral blood polymorphonuclear neutrophils. J Immunol 1998, 160:5145–5153.PubMed Yeaman GR, Collins JE, Currie JK, Guyre PM, Wira CR, Fanger MW: IFN-gamma is produced by polymorphonuclear neutrophils in human uterine endometrium and by cultured peripheral blood polymorphonuclear neutrophils. J Immunol 1998, 160:5145–5153.PubMed
40.
go back to reference Suzuki Y, Claflin J, Wang X, Lengi A, Kikuchi T: Microglia and macrophages as innate producers of interferon-gamma in the brain following infection with Toxoplasma gondii. Int J Parasitol 2005, 35:83–90.CrossRefPubMed Suzuki Y, Claflin J, Wang X, Lengi A, Kikuchi T: Microglia and macrophages as innate producers of interferon-gamma in the brain following infection with Toxoplasma gondii. Int J Parasitol 2005, 35:83–90.CrossRefPubMed
41.
go back to reference Makela J, Koivuniemi R, Korhonen L, Lindholm D: Interferon-gamma produced by microglia and the neuropeptide PACAP have opposite effects on the viability of neural progenitor cells. PLoS One 2010, 5:e11091.CrossRefPubMedPubMedCentral Makela J, Koivuniemi R, Korhonen L, Lindholm D: Interferon-gamma produced by microglia and the neuropeptide PACAP have opposite effects on the viability of neural progenitor cells. PLoS One 2010, 5:e11091.CrossRefPubMedPubMedCentral
42.
go back to reference Cafferty WB, Gardiner NJ, Das P, Qiu J, McMahon SB, Thompson SW: Conditioning injury-induced spinal axon regeneration fails in interleukin-6 knock-out mice. J Neurosci 2004, 24:4432–4443.CrossRefPubMed Cafferty WB, Gardiner NJ, Das P, Qiu J, McMahon SB, Thompson SW: Conditioning injury-induced spinal axon regeneration fails in interleukin-6 knock-out mice. J Neurosci 2004, 24:4432–4443.CrossRefPubMed
43.
go back to reference Okazaki M, Yamada Y, Nishimoto N, Yoshizaki K, Mihara M: Characterization of anti-mouse interleukin-6 receptor antibody. Immunol Lett 2002, 84:231–240.CrossRefPubMed Okazaki M, Yamada Y, Nishimoto N, Yoshizaki K, Mihara M: Characterization of anti-mouse interleukin-6 receptor antibody. Immunol Lett 2002, 84:231–240.CrossRefPubMed
44.
go back to reference Okada S, Nakamura M, Mikami Y, Shimazaki T, Mihara M, Ohsugi Y, Iwamoto Y, Yoshizaki K, Kishimoto T, Toyama Y, Okano H: Blockade of interleukin-6 receptor suppresses reactive astrogliosis and ameliorates functional recovery in experimental spinal cord injury. J Neurosci Res 2004, 76:265–276.CrossRefPubMed Okada S, Nakamura M, Mikami Y, Shimazaki T, Mihara M, Ohsugi Y, Iwamoto Y, Yoshizaki K, Kishimoto T, Toyama Y, Okano H: Blockade of interleukin-6 receptor suppresses reactive astrogliosis and ameliorates functional recovery in experimental spinal cord injury. J Neurosci Res 2004, 76:265–276.CrossRefPubMed
45.
go back to reference Mukaino M, Nakamura M, Yamada O, Okada S, Morikawa S, Renault-Mihara F, Iwanami A, Ikegami T, Ohsugi Y, Tsuji O, et al.: Anti-IL-6-receptor antibody promotes repair of spinal cord injury by inducing microglia-dominant inflammation. Exp Neurol 2010, 224:403–414.CrossRefPubMed Mukaino M, Nakamura M, Yamada O, Okada S, Morikawa S, Renault-Mihara F, Iwanami A, Ikegami T, Ohsugi Y, Tsuji O, et al.: Anti-IL-6-receptor antibody promotes repair of spinal cord injury by inducing microglia-dominant inflammation. Exp Neurol 2010, 224:403–414.CrossRefPubMed
46.
go back to reference Ponomarev ED, Maresz K, Tan Y, Dittel BN: CNS-derived interleukin-4 is essential for the regulation of autoimmune inflammation and induces a state of alternative activation in microglial cells. J Neurosci 2007, 27:10714–10721.CrossRefPubMed Ponomarev ED, Maresz K, Tan Y, Dittel BN: CNS-derived interleukin-4 is essential for the regulation of autoimmune inflammation and induces a state of alternative activation in microglial cells. J Neurosci 2007, 27:10714–10721.CrossRefPubMed
47.
go back to reference Shin WH, Lee DY, Park KW, Kim SU, Yang MS, Joe EH, Jin BK: Microglia expressing interleukin-13 undergo cell death and contribute to neuronal survival in vivo. Glia 2004, 46:142–152.CrossRefPubMed Shin WH, Lee DY, Park KW, Kim SU, Yang MS, Joe EH, Jin BK: Microglia expressing interleukin-13 undergo cell death and contribute to neuronal survival in vivo. Glia 2004, 46:142–152.CrossRefPubMed
48.
go back to reference Brandt E, Woerly G, Younes AB, Loiseau S, Capron M: IL-4 production by human polymorphonuclear neutrophils. J Leukoc Biol 2000, 68:125–130.PubMed Brandt E, Woerly G, Younes AB, Loiseau S, Capron M: IL-4 production by human polymorphonuclear neutrophils. J Leukoc Biol 2000, 68:125–130.PubMed
49.
go back to reference Pouliot P, Turmel V, Gelinas E, Laviolette M, Bissonnette EY: Interleukin-4 production by human alveolar macrophages. Clin Exp Allergy 2005, 35:804–810.CrossRefPubMed Pouliot P, Turmel V, Gelinas E, Laviolette M, Bissonnette EY: Interleukin-4 production by human alveolar macrophages. Clin Exp Allergy 2005, 35:804–810.CrossRefPubMed
50.
go back to reference Tamura T, Udagawa N, Takahashi N, Miyaura C, Tanaka S, Yamada Y, Koishihara Y, Ohsugi Y, Kumaki K, Taga T, et al.: Soluble interleukin-6 receptor triggers osteoclast formation by interleukin 6. Proc Natl Acad Sci USA 1993, 90:11924–11928.CrossRefPubMedPubMedCentral Tamura T, Udagawa N, Takahashi N, Miyaura C, Tanaka S, Yamada Y, Koishihara Y, Ohsugi Y, Kumaki K, Taga T, et al.: Soluble interleukin-6 receptor triggers osteoclast formation by interleukin 6. Proc Natl Acad Sci USA 1993, 90:11924–11928.CrossRefPubMedPubMedCentral
51.
go back to reference Scheff SW, Rabchevsky AG, Fugaccia I, Main JA, Lumpp JE Jr: Experimental modeling of spinal cord injury: characterization of a force-defined injury device. J Neurotrauma 2003, 20:179–193.CrossRefPubMed Scheff SW, Rabchevsky AG, Fugaccia I, Main JA, Lumpp JE Jr: Experimental modeling of spinal cord injury: characterization of a force-defined injury device. J Neurotrauma 2003, 20:179–193.CrossRefPubMed
52.
go back to reference Okano H, Okada S, Nakamura M, Toyama Y: Neural stem cells and regeneration of injured spinal cord. Kidney Int 2005, 68:1927–1931.CrossRefPubMed Okano H, Okada S, Nakamura M, Toyama Y: Neural stem cells and regeneration of injured spinal cord. Kidney Int 2005, 68:1927–1931.CrossRefPubMed
53.
go back to reference Tuna M, Polat S, Erman T, Ildan F, Gocer AI, Tuna N, Tamer L, Kaya M, Cetinalp E: Effect of anti-rat interleukin-6 antibody after spinal cord injury in the rat: inducible nitric oxide synthase expression, sodium- and potassium-activated, magnesium-dependent adenosine-5'-triphosphatase and superoxide dismutase activation, and ultrastructural changes. J Neurosurg 2001, 95:64–73.PubMed Tuna M, Polat S, Erman T, Ildan F, Gocer AI, Tuna N, Tamer L, Kaya M, Cetinalp E: Effect of anti-rat interleukin-6 antibody after spinal cord injury in the rat: inducible nitric oxide synthase expression, sodium- and potassium-activated, magnesium-dependent adenosine-5'-triphosphatase and superoxide dismutase activation, and ultrastructural changes. J Neurosurg 2001, 95:64–73.PubMed
54.
go back to reference Chen KB, Uchida K, Nakajima H, Yayama T, Hirai T, Watanabe S, Guerrero AR, Kobayashi S, Ma WY, Liu SY, Baba H: Tumor necrosis factor-alpha antagonist reduces apoptosis of neurons and oligodendroglia in rat spinal cord injury. Spine (Phila Pa 1976) 2011, 36:1350–1358.CrossRef Chen KB, Uchida K, Nakajima H, Yayama T, Hirai T, Watanabe S, Guerrero AR, Kobayashi S, Ma WY, Liu SY, Baba H: Tumor necrosis factor-alpha antagonist reduces apoptosis of neurons and oligodendroglia in rat spinal cord injury. Spine (Phila Pa 1976) 2011, 36:1350–1358.CrossRef
55.
go back to reference Uchida K, Baba H, Maezawa Y, Kubota C: Progressive changes in neurofilament proteins and growth-associated protein-43 immunoreactivities at the site of cervical spinal cord compression in spinal hyperostotic mice. Spine (Phila Pa 1976) 2002, 27:480–486.CrossRef Uchida K, Baba H, Maezawa Y, Kubota C: Progressive changes in neurofilament proteins and growth-associated protein-43 immunoreactivities at the site of cervical spinal cord compression in spinal hyperostotic mice. Spine (Phila Pa 1976) 2002, 27:480–486.CrossRef
56.
go back to reference Basso DM, Fisher LC, Anderson AJ, Jakeman LB, McTigue DM, Popovich PG: Basso Mouse Scale for locomotion detects differences in recovery after spinal cord injury in five common mouse strains. J Neurotrauma 2006, 23:635–659.CrossRefPubMed Basso DM, Fisher LC, Anderson AJ, Jakeman LB, McTigue DM, Popovich PG: Basso Mouse Scale for locomotion detects differences in recovery after spinal cord injury in five common mouse strains. J Neurotrauma 2006, 23:635–659.CrossRefPubMed
57.
go back to reference Lagasse E, Weissman IL: Flow cytometric identification of murine neutrophils and monocytes. J Immunol Methods 1996, 197:139–150.CrossRefPubMed Lagasse E, Weissman IL: Flow cytometric identification of murine neutrophils and monocytes. J Immunol Methods 1996, 197:139–150.CrossRefPubMed
58.
go back to reference Kishimoto T, Akira S, Narazaki M, Taga T: Interleukin-6 family of cytokines and gp130. Blood 1995, 86:1243–1254.PubMed Kishimoto T, Akira S, Narazaki M, Taga T: Interleukin-6 family of cytokines and gp130. Blood 1995, 86:1243–1254.PubMed
59.
go back to reference Choy EH, Isenberg DA, Garrood T, Farrow S, Ioannou Y, Bird H, Cheung N, Williams B, Hazleman B, Price R, et al.: Therapeutic benefit of blocking interleukin-6 activity with an anti-interleukin-6 receptor monoclonal antibody in rheumatoid arthritis: a randomized, double-blind, placebo-controlled, dose-escalation trial. Arthritis Rheum 2002, 46:3143–3150.CrossRefPubMed Choy EH, Isenberg DA, Garrood T, Farrow S, Ioannou Y, Bird H, Cheung N, Williams B, Hazleman B, Price R, et al.: Therapeutic benefit of blocking interleukin-6 activity with an anti-interleukin-6 receptor monoclonal antibody in rheumatoid arthritis: a randomized, double-blind, placebo-controlled, dose-escalation trial. Arthritis Rheum 2002, 46:3143–3150.CrossRefPubMed
60.
go back to reference Ethuin F, Gerard B, Benna JE, Boutten A, Gougereot-Pocidalo MA, Jacob L, Chollet-Martin S: Human neutrophils produce interferon gamma upon stimulation by interleukin-12. Lab Invest 2004, 84:1363–1371.CrossRefPubMed Ethuin F, Gerard B, Benna JE, Boutten A, Gougereot-Pocidalo MA, Jacob L, Chollet-Martin S: Human neutrophils produce interferon gamma upon stimulation by interleukin-12. Lab Invest 2004, 84:1363–1371.CrossRefPubMed
61.
go back to reference Romano M, Sironi M, Toniatti C, Polentarutti N, Fruscella P, Ghezzi P, Faggioni R, Luini W, van Hinsbergh V, Sozzani S, et al.: Role of IL-6 and its soluble receptor in induction of chemokines and leukocyte recruitment. Immunity 1997, 6:315–325.CrossRefPubMed Romano M, Sironi M, Toniatti C, Polentarutti N, Fruscella P, Ghezzi P, Faggioni R, Luini W, van Hinsbergh V, Sozzani S, et al.: Role of IL-6 and its soluble receptor in induction of chemokines and leukocyte recruitment. Immunity 1997, 6:315–325.CrossRefPubMed
62.
go back to reference Fujiyoshi T, Kubo T, Chan CC, Koda M, Okawa A, Takahashi K, Yamazaki M: Interferon-gamma decreases chondroitin sulfate proteoglycan expression and enhances hindlimb function after spinal cord injury in mice. J Neurotrauma 2010, 27:2283–2294.CrossRefPubMed Fujiyoshi T, Kubo T, Chan CC, Koda M, Okawa A, Takahashi K, Yamazaki M: Interferon-gamma decreases chondroitin sulfate proteoglycan expression and enhances hindlimb function after spinal cord injury in mice. J Neurotrauma 2010, 27:2283–2294.CrossRefPubMed
63.
go back to reference Wang Y, Wang K, Chao R, Li J, Zhou L, Ma J, Yan J: Neuroprotective effect of vaccination with autoantigen-pulsed dendritic cells after spinal cord injury. J Surg Res 2011, in press. Wang Y, Wang K, Chao R, Li J, Zhou L, Ma J, Yan J: Neuroprotective effect of vaccination with autoantigen-pulsed dendritic cells after spinal cord injury. J Surg Res 2011, in press.
64.
go back to reference Klusman I, Schwab ME: Effects of pro-inflammatory cytokines in experimental spinal cord injury. Brain Res 1997, 762:173–184.CrossRefPubMed Klusman I, Schwab ME: Effects of pro-inflammatory cytokines in experimental spinal cord injury. Brain Res 1997, 762:173–184.CrossRefPubMed
65.
go back to reference Gris D, Marsh DR, Oatway MA, Chen Y, Hamilton EF, Dekaban GA, Weaver LC: Transient blockade of the CD11d/CD18 integrin reduces secondary damage after spinal cord injury, improving sensory, autonomic, and motor function. J Neurosci 2004, 24:4043–4051.CrossRefPubMed Gris D, Marsh DR, Oatway MA, Chen Y, Hamilton EF, Dekaban GA, Weaver LC: Transient blockade of the CD11d/CD18 integrin reduces secondary damage after spinal cord injury, improving sensory, autonomic, and motor function. J Neurosci 2004, 24:4043–4051.CrossRefPubMed
66.
go back to reference Shechter R, London A, Varol C, Raposo C, Cusimano M, Yovel G, Rolls A, Mack M, Pluchino S, Martino G, et al.: Infiltrating blood-derived macrophages are vital cells playing an anti-inflammatory role in recovery from spinal cord injury in mice. PLoS Med 2009, 6:e1000113.CrossRefPubMedPubMedCentral Shechter R, London A, Varol C, Raposo C, Cusimano M, Yovel G, Rolls A, Mack M, Pluchino S, Martino G, et al.: Infiltrating blood-derived macrophages are vital cells playing an anti-inflammatory role in recovery from spinal cord injury in mice. PLoS Med 2009, 6:e1000113.CrossRefPubMedPubMedCentral
67.
go back to reference Loke P, Nair MG, Parkinson J, Guiliano D, Blaxter M, Allen JE: IL-4 dependent alternatively-activated macrophages have a distinctive in vivo gene expression phenotype. BMC Immunol 2002, 3:7.CrossRefPubMedPubMedCentral Loke P, Nair MG, Parkinson J, Guiliano D, Blaxter M, Allen JE: IL-4 dependent alternatively-activated macrophages have a distinctive in vivo gene expression phenotype. BMC Immunol 2002, 3:7.CrossRefPubMedPubMedCentral
68.
go back to reference Giulian D, Ingeman JE: Colony-stimulating factors as promoters of ameboid microglia. J Neurosci 1988, 8:4707–4717.PubMed Giulian D, Ingeman JE: Colony-stimulating factors as promoters of ameboid microglia. J Neurosci 1988, 8:4707–4717.PubMed
69.
go back to reference Cai D, Deng K, Mellado W, Lee J, Ratan RR, Filbin MT: Arginase I and polyamines act downstream from cyclic AMP in overcoming inhibition of axonal growth MAG and myelin in vitro. Neuron 2002, 35:711–719.CrossRefPubMed Cai D, Deng K, Mellado W, Lee J, Ratan RR, Filbin MT: Arginase I and polyamines act downstream from cyclic AMP in overcoming inhibition of axonal growth MAG and myelin in vitro. Neuron 2002, 35:711–719.CrossRefPubMed
70.
go back to reference Ho MK, Springer TA: Tissue distribution, structural characterization, and biosynthesis of Mac-3, a macrophage surface glycoprotein exhibiting molecular weight heterogeneity. J Biol Chem 1983, 258:636–642.PubMed Ho MK, Springer TA: Tissue distribution, structural characterization, and biosynthesis of Mac-3, a macrophage surface glycoprotein exhibiting molecular weight heterogeneity. J Biol Chem 1983, 258:636–642.PubMed
71.
go back to reference Rotshenker S, Reichert F, Gitik M, Haklai R, Elad-Sfadia G, Kloog Y: Galectin-3/MAC-2, Ras and PI3K activate complement receptor-3 and scavenger receptor-AI/II mediated myelin phagocytosis in microglia. Glia 2008, 56:1607–1613.CrossRefPubMed Rotshenker S, Reichert F, Gitik M, Haklai R, Elad-Sfadia G, Kloog Y: Galectin-3/MAC-2, Ras and PI3K activate complement receptor-3 and scavenger receptor-AI/II mediated myelin phagocytosis in microglia. Glia 2008, 56:1607–1613.CrossRefPubMed
Metadata
Title
Blockade of interleukin-6 signaling inhibits the classic pathway and promotes an alternative pathway of macrophage activation after spinal cord injury in mice
Authors
Alexander Rodriguez Guerrero
Kenzo Uchida
Hideaki Nakajima
Shuji Watanabe
Masaya Nakamura
William EB Johnson
Hisatoshi Baba
Publication date
01-12-2012
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2012
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/1742-2094-9-40

Other articles of this Issue 1/2012

Journal of Neuroinflammation 1/2012 Go to the issue