Skip to main content
Top

12-04-2024 | Lipolysis | REVIEW

The Different Shades of Thermogenic Adipose Tissue

Authors: Yunwen Hu, Yijie Huang, Yangjing Jiang, Lvkan Weng, Zhaohua Cai, Ben He

Published in: Current Obesity Reports

Login to get access

Abstract

Purpose of Review

By providing a concise overview of adipose tissue types, elucidating the regulation of adipose thermogenic capacity in both physiological contexts and chronic wasting diseases (a protracted hypermetabolic state that precipitates sustained catabolism and consequent progressive corporeal atrophy), and most importantly, delving into the ongoing discourse regarding the role of adipose tissue thermogenic activation in chronic wasting diseases, this review aims to provide researchers with a comprehensive understanding of the field.

Recent Findings

Adipose tissue, traditionally classified as white, brown, and beige (brite) based on its thermogenic activity and potential, is intricately regulated by complex mechanisms in response to exercise or cold exposure. This regulation is adipose depot-specific and dependent on the duration of exposure. Excessive thermogenic activation of adipose tissue has been observed in chronic wasting diseases and has been considered a pathological factor that accelerates disease progression. However, this conclusion may be confounded by the detrimental effects of excessive lipolysis. Recent research also suggests that such activation may play a beneficial role in the early stages of chronic wasting disease and provide potential therapeutic effects.

Summary

A more comprehensive understanding of the changes in adipose tissue thermogenesis under physiological and pathological conditions, as well as the underlying regulatory mechanisms, is essential for the development of novel interventions to improve health and prevent disease.
Literature
2.
3.
go back to reference Pilkington AC, Paz HA, Wankhade UD. beige adipose tissue identification and marker specificity-overview. Front Endocrinol (Lausanne). 2021;12: 599134.PubMedCrossRef Pilkington AC, Paz HA, Wankhade UD. beige adipose tissue identification and marker specificity-overview. Front Endocrinol (Lausanne). 2021;12: 599134.PubMedCrossRef
4.
go back to reference •• Ruan CC, Kong LR, Chen XH, et al. A(2A) receptor activation attenuates hypertensive cardiac remodeling via promoting brown adipose tissue-derived FGF21. Cell Metab. 2018;28(3):476–89. This paper demonstrates that A2AR-mediated FGF21 release from brown adipose tissue plays an endocrine protective role against hypertensive cardiac remodeling.PubMedCrossRef •• Ruan CC, Kong LR, Chen XH, et al. A(2A) receptor activation attenuates hypertensive cardiac remodeling via promoting brown adipose tissue-derived FGF21. Cell Metab. 2018;28(3):476–89. This paper demonstrates that A2AR-mediated FGF21 release from brown adipose tissue plays an endocrine protective role against hypertensive cardiac remodeling.PubMedCrossRef
5.
go back to reference •• Adachi Y, Ueda K, Nomura S, et al. Beiging of perivascular adipose tissue regulates its inflammation and vascular remodeling. Nat Commun. 2022;13(1):5117. This study demonstrates the pivotal roles of perivascular adipose tissue (PVAT) in vascular inflammation and remodeling.PubMedPubMedCentralCrossRef •• Adachi Y, Ueda K, Nomura S, et al. Beiging of perivascular adipose tissue regulates its inflammation and vascular remodeling. Nat Commun. 2022;13(1):5117. This study demonstrates the pivotal roles of perivascular adipose tissue (PVAT) in vascular inflammation and remodeling.PubMedPubMedCentralCrossRef
6.
go back to reference •• Zhao H, Chen X, Hu G, et al. Small extracellular vesicles from brown adipose tissue mediate exercise cardioprotection. Circ Res. 2022;130(10):1490–506. The small extracellular vesicles (sEVs) secreted by BAT participate in exercise cardioprotection via delivering the cardioprotective miRNAs into the heart.PubMedCrossRef •• Zhao H, Chen X, Hu G, et al. Small extracellular vesicles from brown adipose tissue mediate exercise cardioprotection. Circ Res. 2022;130(10):1490–506. The small extracellular vesicles (sEVs) secreted by BAT participate in exercise cardioprotection via delivering the cardioprotective miRNAs into the heart.PubMedCrossRef
7.
go back to reference •• Lin JR, Ding LL, Xu L, et al. Brown adipocyte ADRB3 mediates cardioprotection via suppressing exosomal iNOS. Circ Res. 2022;131(2):133–47. This study demonstrates that the activation of ADRB3 (β3-adrenergic receptors) in brown adipocytes offers cardiac protection through suppressing exosomal iNOS, illustrating an important role of ADRB3 in endocrine crosstalk between BAT and the heart.PubMedCrossRef •• Lin JR, Ding LL, Xu L, et al. Brown adipocyte ADRB3 mediates cardioprotection via suppressing exosomal iNOS. Circ Res. 2022;131(2):133–47. This study demonstrates that the activation of ADRB3 (β3-adrenergic receptors) in brown adipocytes offers cardiac protection through suppressing exosomal iNOS, illustrating an important role of ADRB3 in endocrine crosstalk between BAT and the heart.PubMedCrossRef
8.
go back to reference Park A, Kim W, Bae K. Distinction of white, beige and brown adipocytes derived from mesenchymal stem cells. World journal of stem cells. 2014;6(1):33–42.PubMedPubMedCentralCrossRef Park A, Kim W, Bae K. Distinction of white, beige and brown adipocytes derived from mesenchymal stem cells. World journal of stem cells. 2014;6(1):33–42.PubMedPubMedCentralCrossRef
9.
go back to reference Trayhurn P, Beattie JH. Physiological role of adipose tissue: white adipose tissue as an endocrine and secretory organ. Proc Nutr Soc. 2001;60(3):329–39.PubMedCrossRef Trayhurn P, Beattie JH. Physiological role of adipose tissue: white adipose tissue as an endocrine and secretory organ. Proc Nutr Soc. 2001;60(3):329–39.PubMedCrossRef
10.
go back to reference Scheja L, Heeren J. The endocrine function of adipose tissues in health and cardiometabolic disease. Nat Rev Endocrinol. 2019;15(9):507–24.PubMedCrossRef Scheja L, Heeren J. The endocrine function of adipose tissues in health and cardiometabolic disease. Nat Rev Endocrinol. 2019;15(9):507–24.PubMedCrossRef
11.
go back to reference Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW Jr. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest. 2003;112(12):1796–808.PubMedPubMedCentralCrossRef Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW Jr. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest. 2003;112(12):1796–808.PubMedPubMedCentralCrossRef
12.
go back to reference Perry RJ, Camporez JG, Kursawe R, et al. Hepatic acetyl CoA links adipose tissue inflammation to hepatic insulin resistance and type 2 diabetes. Cell. 2015;160(4):745–58.PubMedPubMedCentralCrossRef Perry RJ, Camporez JG, Kursawe R, et al. Hepatic acetyl CoA links adipose tissue inflammation to hepatic insulin resistance and type 2 diabetes. Cell. 2015;160(4):745–58.PubMedPubMedCentralCrossRef
13.
go back to reference Item F, Konrad D. Visceral fat and metabolic inflammation: the portal theory revisited. Obes Rev. 2012;13(Suppl 2):30–9.PubMedCrossRef Item F, Konrad D. Visceral fat and metabolic inflammation: the portal theory revisited. Obes Rev. 2012;13(Suppl 2):30–9.PubMedCrossRef
14.
15.
go back to reference Carpentier AC, Blondin DP, Haman F, Richard D. Brown adipose tissue—a translational perspective. Endocr Rev. 2023;44(2):143–92.PubMedCrossRef Carpentier AC, Blondin DP, Haman F, Richard D. Brown adipose tissue—a translational perspective. Endocr Rev. 2023;44(2):143–92.PubMedCrossRef
16.
go back to reference Villarroya F, Cereijo R, Villarroya J, Giralt M. Brown adipose tissue as a secretory organ. Nat Rev Endocrinol. 2017;13(1):26–35.PubMedCrossRef Villarroya F, Cereijo R, Villarroya J, Giralt M. Brown adipose tissue as a secretory organ. Nat Rev Endocrinol. 2017;13(1):26–35.PubMedCrossRef
17.
go back to reference Cannon B, Nedergaard JAN. Brown adipose tissue: function and physiological significance. Physiol Rev. 2004;84(1):277–359.PubMedCrossRef Cannon B, Nedergaard JAN. Brown adipose tissue: function and physiological significance. Physiol Rev. 2004;84(1):277–359.PubMedCrossRef
19.
go back to reference Virtanen KA, Lidell ME, Orava J, et al. Functional brown adipose tissue in healthy adults. N Engl J Med. 2009;360(15):1518–25.PubMedCrossRef Virtanen KA, Lidell ME, Orava J, et al. Functional brown adipose tissue in healthy adults. N Engl J Med. 2009;360(15):1518–25.PubMedCrossRef
20.
go back to reference Saito M, Okamatsu-Ogura Y, Matsushita M, et al. High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity. Diabetes. 2009;58(7):1526–31.PubMedPubMedCentralCrossRef Saito M, Okamatsu-Ogura Y, Matsushita M, et al. High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity. Diabetes. 2009;58(7):1526–31.PubMedPubMedCentralCrossRef
22.
go back to reference Rosenwald M, Perdikari A, Rulicke T, Wolfrum C. Bi-directional interconversion of brite and white adipocytes. Nat Cell Biol. 2013;15(6):659–67.PubMedCrossRef Rosenwald M, Perdikari A, Rulicke T, Wolfrum C. Bi-directional interconversion of brite and white adipocytes. Nat Cell Biol. 2013;15(6):659–67.PubMedCrossRef
23.
go back to reference Seale P, Conroe HM, Estall J, et al. PRDM16 determines the thermogenic program of subcutaneous white adipose tissue in mice. J Clin Invest. 2011;121(1). Seale P, Conroe HM, Estall J, et al. PRDM16 determines the thermogenic program of subcutaneous white adipose tissue in mice. J Clin Invest. 2011;121(1).
24.
go back to reference Cohen P, Levy JD, Zhang Y, et al. Ablation of PRDM16 and beige adipose causes metabolic dysfunction and a subcutaneous to visceral fat switch. Cell. 2014;156(1–2):304–16.PubMedPubMedCentralCrossRef Cohen P, Levy JD, Zhang Y, et al. Ablation of PRDM16 and beige adipose causes metabolic dysfunction and a subcutaneous to visceral fat switch. Cell. 2014;156(1–2):304–16.PubMedPubMedCentralCrossRef
25.
go back to reference Wang W, Ishibashi J, Trefely S, et al. A PRDM16-driven metabolic signal from adipocytes regulates precursor cell fate. Cell Metab. 2019;30(1). Wang W, Ishibashi J, Trefely S, et al. A PRDM16-driven metabolic signal from adipocytes regulates precursor cell fate. Cell Metab. 2019;30(1).
26.
go back to reference Henegar C, Tordjman J, Achard V, et al. Adipose tissue transcriptomic signature highlights the pathological relevance of extracellular matrix in human obesity. Genome Biol. 2008;9(1):R14.PubMedPubMedCentralCrossRef Henegar C, Tordjman J, Achard V, et al. Adipose tissue transcriptomic signature highlights the pathological relevance of extracellular matrix in human obesity. Genome Biol. 2008;9(1):R14.PubMedPubMedCentralCrossRef
27.
go back to reference Muir LA, Neeley CK, Meyer KA, et al. Adipose tissue fibrosis, hypertrophy, and hyperplasia: correlations with diabetes in human obesity. Obesity. 2016;24(3):597–605.PubMedCrossRef Muir LA, Neeley CK, Meyer KA, et al. Adipose tissue fibrosis, hypertrophy, and hyperplasia: correlations with diabetes in human obesity. Obesity. 2016;24(3):597–605.PubMedCrossRef
28.
go back to reference Harms M, Seale P. Brown and beige fat: development, function and therapeutic potential. Nat Med. 2013;19(10):1252–63.PubMedCrossRef Harms M, Seale P. Brown and beige fat: development, function and therapeutic potential. Nat Med. 2013;19(10):1252–63.PubMedCrossRef
30.
31.
go back to reference Bartelt A, Heeren J. Adipose tissue browning and metabolic health. Nat Rev Endocrinol. 2014;10(1):24–36.PubMedCrossRef Bartelt A, Heeren J. Adipose tissue browning and metabolic health. Nat Rev Endocrinol. 2014;10(1):24–36.PubMedCrossRef
32.
go back to reference Giordano A, Smorlesi A, Frontini A, Barbatelli G, Cinti S. Mechanisms in endocrinology: white, brown and pink adipocytes: the extraordinary plasticity of the adipose organ. Eur J Endocrinol. 2014;170(5):R159–71.PubMedCrossRef Giordano A, Smorlesi A, Frontini A, Barbatelli G, Cinti S. Mechanisms in endocrinology: white, brown and pink adipocytes: the extraordinary plasticity of the adipose organ. Eur J Endocrinol. 2014;170(5):R159–71.PubMedCrossRef
34.
go back to reference Smorlesi A, Frontini A, Giordano A, Cinti S. The adipose organ: white-brown adipocyte plasticity and metabolic inflammation. Obes Rev. 2012;13(2):83–96. Smorlesi A, Frontini A, Giordano A, Cinti S. The adipose organ: white-brown adipocyte plasticity and metabolic inflammation. Obes Rev. 2012;13(2):83–96.
35.
go back to reference Morroni M, Giordano A, Zingaretti MC, et al. Reversible transdifferentiation of secretory epithelial cells into adipocytes in the mammary gland. Proc Natl Acad Sci. 2004;101(48):16801–6.PubMedPubMedCentralCrossRef Morroni M, Giordano A, Zingaretti MC, et al. Reversible transdifferentiation of secretory epithelial cells into adipocytes in the mammary gland. Proc Natl Acad Sci. 2004;101(48):16801–6.PubMedPubMedCentralCrossRef
36.
go back to reference Shackleton M, Vaillant F, Simpson KJ, et al. Generation of a functional mammary gland from a single stem cell. Nature. 2006;439(7072):84–8.PubMedCrossRef Shackleton M, Vaillant F, Simpson KJ, et al. Generation of a functional mammary gland from a single stem cell. Nature. 2006;439(7072):84–8.PubMedCrossRef
37.
go back to reference Prokesch A, Smorlesi A, Perugini J, et al. Molecular aspects of adipoepithelial transdifferentiation in mouse mammary gland. Stem Cells. 2014;32(10):2756–66.PubMedCrossRef Prokesch A, Smorlesi A, Perugini J, et al. Molecular aspects of adipoepithelial transdifferentiation in mouse mammary gland. Stem Cells. 2014;32(10):2756–66.PubMedCrossRef
38.
go back to reference Cinti S, Cigolini M, Morroni M, Zingaretti MC. S-100 protein in white preadipocytes: an immunoelectronmicroscopic study. Anat Rec. 1989;224(4):466–72.PubMedCrossRef Cinti S, Cigolini M, Morroni M, Zingaretti MC. S-100 protein in white preadipocytes: an immunoelectronmicroscopic study. Anat Rec. 1989;224(4):466–72.PubMedCrossRef
39.
go back to reference Giordano A, Perugini J, Kristensen DM, et al. Mammary alveolar epithelial cells convert to brown adipocytes in post-lactating mice. J Cell Physiol. 2017;232(11):2923–8.PubMedPubMedCentralCrossRef Giordano A, Perugini J, Kristensen DM, et al. Mammary alveolar epithelial cells convert to brown adipocytes in post-lactating mice. J Cell Physiol. 2017;232(11):2923–8.PubMedPubMedCentralCrossRef
40.
go back to reference Li L, Li B, Li M, et al. Brown adipocytes can display a mammary basal myoepithelial cell phenotype in vivo. Molecular Metabolism. 2017;6(10):1198–211.PubMedPubMedCentralCrossRef Li L, Li B, Li M, et al. Brown adipocytes can display a mammary basal myoepithelial cell phenotype in vivo. Molecular Metabolism. 2017;6(10):1198–211.PubMedPubMedCentralCrossRef
41.
go back to reference Wagner K-U, Boulanger CA, Henry MD, Sgagias M, Hennighausen L, Smith GH. An adjunct mammary epithelial cell population in parous females: its role in functional adaptation and tissue renewal. Development. 2002;129(6):1377–86.PubMedCrossRef Wagner K-U, Boulanger CA, Henry MD, Sgagias M, Hennighausen L, Smith GH. An adjunct mammary epithelial cell population in parous females: its role in functional adaptation and tissue renewal. Development. 2002;129(6):1377–86.PubMedCrossRef
43.
go back to reference Hennighausen LG, Sippel AE. Mouse whey acidic protein is a novel member of the family of ‘four-disulfide core’ proteins. Nucleic Acids Res. 1982;10(8):2677–84.PubMedPubMedCentralCrossRef Hennighausen LG, Sippel AE. Mouse whey acidic protein is a novel member of the family of ‘four-disulfide core’ proteins. Nucleic Acids Res. 1982;10(8):2677–84.PubMedPubMedCentralCrossRef
44.
go back to reference Smith-Kirwin SM, O’Connor DM, De Johnston J, Lancey ED, Hassink SG, Funanage VL. Leptin expression in human mammary epithelial cells and breast milk. J Clin Endocrinol Metab. 1998;83(5):1810–3.PubMedCrossRef Smith-Kirwin SM, O’Connor DM, De Johnston J, Lancey ED, Hassink SG, Funanage VL. Leptin expression in human mammary epithelial cells and breast milk. J Clin Endocrinol Metab. 1998;83(5):1810–3.PubMedCrossRef
45.
go back to reference Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature. 1994;372(6505):425–32.PubMedCrossRef Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature. 1994;372(6505):425–32.PubMedCrossRef
47.
48.
go back to reference Kim J-Y, van de Wall E, Laplante M, et al. Obesity-associated improvements in metabolic profile through expansion of adipose tissue. J Clin Investig. 2007;117(9):2621–37.PubMedPubMedCentralCrossRef Kim J-Y, van de Wall E, Laplante M, et al. Obesity-associated improvements in metabolic profile through expansion of adipose tissue. J Clin Investig. 2007;117(9):2621–37.PubMedPubMedCentralCrossRef
49.
50.
go back to reference Mandal P, Pratt BT, Barnes M, McMullen MR, Nagy LE. Molecular mechanism for adiponectin-dependent M2 macrophage polarization: link between the metabolic and innate immune activity of full-length adiponectin. J Biol Chem. 2011;286(15):13460–9.PubMedPubMedCentralCrossRef Mandal P, Pratt BT, Barnes M, McMullen MR, Nagy LE. Molecular mechanism for adiponectin-dependent M2 macrophage polarization: link between the metabolic and innate immune activity of full-length adiponectin. J Biol Chem. 2011;286(15):13460–9.PubMedPubMedCentralCrossRef
51.
go back to reference Caligiuri A, Bertolani C, Guerra CT, et al. Adenosine monophosphate-activated protein kinase modulates the activated phenotype of hepatic stellate cells. Hepatology. 2008;47(2):668–76.PubMedCrossRef Caligiuri A, Bertolani C, Guerra CT, et al. Adenosine monophosphate-activated protein kinase modulates the activated phenotype of hepatic stellate cells. Hepatology. 2008;47(2):668–76.PubMedCrossRef
52.
53.
go back to reference McCullough RL, McMullen MR, Sheehan MM, et al. Complement factor D protects mice from ethanol-induced inflammation and liver injury. Am J Physiol Gastrointest Liver Physiol. 2018;315(1):G66–79.PubMedPubMedCentralCrossRef McCullough RL, McMullen MR, Sheehan MM, et al. Complement factor D protects mice from ethanol-induced inflammation and liver injury. Am J Physiol Gastrointest Liver Physiol. 2018;315(1):G66–79.PubMedPubMedCentralCrossRef
54.
go back to reference Scheele C, Wolfrum C. Brown adipose crosstalk in tissue plasticity and human metabolism. Endocr Rev. 2020;41(1):53–65.PubMedCrossRef Scheele C, Wolfrum C. Brown adipose crosstalk in tissue plasticity and human metabolism. Endocr Rev. 2020;41(1):53–65.PubMedCrossRef
55.
go back to reference BonDurant LD, Ameka M, Naber MC, et al. FGF21 regulates metabolism through adipose-dependent and -independent mechanisms. Cell Metab. 2017;25(4). BonDurant LD, Ameka M, Naber MC, et al. FGF21 regulates metabolism through adipose-dependent and -independent mechanisms. Cell Metab. 2017;25(4).
56.
go back to reference Schlein C, Talukdar S, Heine M, et al. FGF21 lowers plasma triglycerides by accelerating lipoprotein catabolism in white and brown adipose tissues. Cell Metab. 2016;23(3):441–53.PubMedCrossRef Schlein C, Talukdar S, Heine M, et al. FGF21 lowers plasma triglycerides by accelerating lipoprotein catabolism in white and brown adipose tissues. Cell Metab. 2016;23(3):441–53.PubMedCrossRef
57.
go back to reference Lin Z, Tian H, Lam KSL, et al. Adiponectin mediates the metabolic effects of FGF21 on glucose homeostasis and insulin sensitivity in mice. Cell Metab. 2013;17(5):779–89.PubMedCrossRef Lin Z, Tian H, Lam KSL, et al. Adiponectin mediates the metabolic effects of FGF21 on glucose homeostasis and insulin sensitivity in mice. Cell Metab. 2013;17(5):779–89.PubMedCrossRef
58.
go back to reference Geng L, Lam KSL, Xu A. The therapeutic potential of FGF21 in metabolic diseases: from bench to clinic. Nat Rev Endocrinol. 2020;16(11):654–67.PubMedCrossRef Geng L, Lam KSL, Xu A. The therapeutic potential of FGF21 in metabolic diseases: from bench to clinic. Nat Rev Endocrinol. 2020;16(11):654–67.PubMedCrossRef
59.
go back to reference Wang GX, Zhao XY, Meng ZX, et al. The brown fat-enriched secreted factor Nrg4 preserves metabolic homeostasis through attenuation of hepatic lipogenesis. Nat Med. 2014;20(12):1436–43.PubMedPubMedCentralCrossRef Wang GX, Zhao XY, Meng ZX, et al. The brown fat-enriched secreted factor Nrg4 preserves metabolic homeostasis through attenuation of hepatic lipogenesis. Nat Med. 2014;20(12):1436–43.PubMedPubMedCentralCrossRef
60.
go back to reference Rosell M, Kaforou M, Frontini A, et al. Brown and white adipose tissues: intrinsic differences in gene expression and response to cold exposure in mice. Am J Physiol Endocrinol Metab. 2014;306(8):E945-964.PubMedPubMedCentralCrossRef Rosell M, Kaforou M, Frontini A, et al. Brown and white adipose tissues: intrinsic differences in gene expression and response to cold exposure in mice. Am J Physiol Endocrinol Metab. 2014;306(8):E945-964.PubMedPubMedCentralCrossRef
61.
go back to reference •• Shi L, Li Y, Xu X, et al. Brown adipose tissue-derived Nrg4 alleviates endothelial inflammation and atherosclerosis in male mice. Nat Metab. 2022;4(11):1573–90. This study demonstrates that BAT-derived Nrg4 inhibited endothelial inflammation, decreased leukocyte homing and macrophage accumulation, and improved atherosclerotic plaque stability, via the ErbB4–Akt–NF-κB pathway.PubMedPubMedCentralCrossRef •• Shi L, Li Y, Xu X, et al. Brown adipose tissue-derived Nrg4 alleviates endothelial inflammation and atherosclerosis in male mice. Nat Metab. 2022;4(11):1573–90. This study demonstrates that BAT-derived Nrg4 inhibited endothelial inflammation, decreased leukocyte homing and macrophage accumulation, and improved atherosclerotic plaque stability, via the ErbB4–Akt–NF-κB pathway.PubMedPubMedCentralCrossRef
62.
go back to reference Deshmukh AS, Peijs L, Beaudry JL, et al. Proteomics-based comparative mapping of the secretomes of human brown and white adipocytes reveals EPDR1 as a novel batokine. Cell Metab. 2019;30(5). Deshmukh AS, Peijs L, Beaudry JL, et al. Proteomics-based comparative mapping of the secretomes of human brown and white adipocytes reveals EPDR1 as a novel batokine. Cell Metab. 2019;30(5).
63.
go back to reference Cataldo LR, Gao Q, Argemi-Muntadas L, et al. The human batokine EPDR1 regulates β-cell metabolism and function. Molecular Metabolism. 2022;66: 101629.PubMedPubMedCentralCrossRef Cataldo LR, Gao Q, Argemi-Muntadas L, et al. The human batokine EPDR1 regulates β-cell metabolism and function. Molecular Metabolism. 2022;66: 101629.PubMedPubMedCentralCrossRef
64.
go back to reference Pinckard KM, Shettigar VK, Wright KR, et al. A novel endocrine role for the BAT-released lipokine 12,13-diHOME to mediate cardiac function. Circulation. 2021;143(2):145–59.PubMedCrossRef Pinckard KM, Shettigar VK, Wright KR, et al. A novel endocrine role for the BAT-released lipokine 12,13-diHOME to mediate cardiac function. Circulation. 2021;143(2):145–59.PubMedCrossRef
65.
go back to reference Machado SA, Pasquarelli-do-Nascimento G, da Silva DS, et al. Browning of the white adipose tissue regulation: new insights into nutritional and metabolic relevance in health and diseases. Nutr Metab (Lond). 2022;19(1):61.PubMedPubMedCentralCrossRef Machado SA, Pasquarelli-do-Nascimento G, da Silva DS, et al. Browning of the white adipose tissue regulation: new insights into nutritional and metabolic relevance in health and diseases. Nutr Metab (Lond). 2022;19(1):61.PubMedPubMedCentralCrossRef
67.
go back to reference Zhu Y, Qi Z, Ding S. Exercise-induced adipose tissue thermogenesis and browning: how to explain the conflicting findings? Int J Mol Sci. 2022;23(21). Zhu Y, Qi Z, Ding S. Exercise-induced adipose tissue thermogenesis and browning: how to explain the conflicting findings? Int J Mol Sci. 2022;23(21).
68.
go back to reference Kim HJ, Kim YJ, Seong JK. AMP-activated protein kinase activation in skeletal muscle modulates exercise-induced uncoupled protein 1 expression in brown adipocyte in mouse model. J Physiol. 2022;600(10):2359–76.PubMedCrossRef Kim HJ, Kim YJ, Seong JK. AMP-activated protein kinase activation in skeletal muscle modulates exercise-induced uncoupled protein 1 expression in brown adipocyte in mouse model. J Physiol. 2022;600(10):2359–76.PubMedCrossRef
69.
go back to reference Picoli CC, Gilio GR, Henriques F, et al. Resistance exercise training induces subcutaneous and visceral adipose tissue browning in Swiss mice. J Appl Physiol (1985). 2020;129(1):66–74. Picoli CC, Gilio GR, Henriques F, et al. Resistance exercise training induces subcutaneous and visceral adipose tissue browning in Swiss mice. J Appl Physiol (1985). 2020;129(1):66–74.
70.
go back to reference Wu MV, Bikopoulos G, Hung S, Ceddia RB. Thermogenic capacity is antagonistically regulated in classical brown and white subcutaneous fat depots by high fat diet and endurance training in rats: impact on whole-body energy expenditure. J Biol Chem. 2014;289(49):34129–40.PubMedPubMedCentralCrossRef Wu MV, Bikopoulos G, Hung S, Ceddia RB. Thermogenic capacity is antagonistically regulated in classical brown and white subcutaneous fat depots by high fat diet and endurance training in rats: impact on whole-body energy expenditure. J Biol Chem. 2014;289(49):34129–40.PubMedPubMedCentralCrossRef
71.
go back to reference May FJ, Baer LA, Lehnig AC, et al. Lipidomic adaptations in white and brown adipose tissue in response to exercise demonstrate molecular species-specific remodeling. Cell Rep. 2017;18(6):1558–72.PubMedPubMedCentralCrossRef May FJ, Baer LA, Lehnig AC, et al. Lipidomic adaptations in white and brown adipose tissue in response to exercise demonstrate molecular species-specific remodeling. Cell Rep. 2017;18(6):1558–72.PubMedPubMedCentralCrossRef
72.
go back to reference Lehnig AC, Dewal RS, Baer LA, et al. Exercise training induces depot-specific adaptations to white and brown adipose tissue. iScience. 2019;11:425–439. Lehnig AC, Dewal RS, Baer LA, et al. Exercise training induces depot-specific adaptations to white and brown adipose tissue. iScience. 2019;11:425–439.
73.
go back to reference Pino MF, Parsons SA, Smith SR, Sparks LM. Active individuals have high mitochondrial content and oxidative markers in their abdominal subcutaneous adipose tissue. Obesity (Silver Spring). 2016;24(12):2467–70.PubMedCrossRef Pino MF, Parsons SA, Smith SR, Sparks LM. Active individuals have high mitochondrial content and oxidative markers in their abdominal subcutaneous adipose tissue. Obesity (Silver Spring). 2016;24(12):2467–70.PubMedCrossRef
74.
go back to reference Nozu T, Kikuchi K, Ogawa K, Kuroshima A. Effects of running training on in vitro brown adipose tissue thermogenesis in rats. Int J Biometeorol. 1992;36(2):88–92.PubMedCrossRef Nozu T, Kikuchi K, Ogawa K, Kuroshima A. Effects of running training on in vitro brown adipose tissue thermogenesis in rats. Int J Biometeorol. 1992;36(2):88–92.PubMedCrossRef
75.
go back to reference Vosselman MJ, Hoeks J, Brans B, et al. Low brown adipose tissue activity in endurance-trained compared with lean sedentary men. Int J Obes (Lond). 2015;39(12):1696–702.PubMedCrossRef Vosselman MJ, Hoeks J, Brans B, et al. Low brown adipose tissue activity in endurance-trained compared with lean sedentary men. Int J Obes (Lond). 2015;39(12):1696–702.PubMedCrossRef
76.
go back to reference •• Martinez-Tellez B, Sanchez-Delgado G, Acosta FM, et al. No evidence of brown adipose tissue activation after 24 weeks of supervised exercise training in young sedentary adults in the ACTIBATE randomized controlled trial. Nat Commun. 2022;13(1):5259. There was no evidence of changes on BAT volume or activity after 24-week supervised exercise intervention combining resistance and endurance training at different intensities in young sedentary adults.PubMedPubMedCentralCrossRef •• Martinez-Tellez B, Sanchez-Delgado G, Acosta FM, et al. No evidence of brown adipose tissue activation after 24 weeks of supervised exercise training in young sedentary adults in the ACTIBATE randomized controlled trial. Nat Commun. 2022;13(1):5259. There was no evidence of changes on BAT volume or activity after 24-week supervised exercise intervention combining resistance and endurance training at different intensities in young sedentary adults.PubMedPubMedCentralCrossRef
77.
go back to reference Aldiss P, Lewis JE, Lupini I, et al. Exercise training in obese rats does not induce browning at thermoneutrality and induces a muscle-like signature in brown adipose tissue. Front Endocrinol (Lausanne). 2020;11:97.PubMedCrossRef Aldiss P, Lewis JE, Lupini I, et al. Exercise training in obese rats does not induce browning at thermoneutrality and induces a muscle-like signature in brown adipose tissue. Front Endocrinol (Lausanne). 2020;11:97.PubMedCrossRef
78.
go back to reference Sutherland LN, Bomhof MR, Capozzi LC, Basaraba SA, Wright DC. Exercise and adrenaline increase PGC-1{alpha} mRNA expression in rat adipose tissue. J Physiol. 2009;587(Pt 7):1607–17.PubMedPubMedCentralCrossRef Sutherland LN, Bomhof MR, Capozzi LC, Basaraba SA, Wright DC. Exercise and adrenaline increase PGC-1{alpha} mRNA expression in rat adipose tissue. J Physiol. 2009;587(Pt 7):1607–17.PubMedPubMedCentralCrossRef
79.
go back to reference Xu X, Ying Z, Cai M, et al. Exercise ameliorates high-fat diet-induced metabolic and vascular dysfunction, and increases adipocyte progenitor cell population in brown adipose tissue. Am J Physiol Regul Integr Comp Physiol. 2011;300(5):R1115-1125.PubMedPubMedCentralCrossRef Xu X, Ying Z, Cai M, et al. Exercise ameliorates high-fat diet-induced metabolic and vascular dysfunction, and increases adipocyte progenitor cell population in brown adipose tissue. Am J Physiol Regul Integr Comp Physiol. 2011;300(5):R1115-1125.PubMedPubMedCentralCrossRef
80.
go back to reference Motiani P, Virtanen KA, Motiani KK, et al. Decreased insulin-stimulated brown adipose tissue glucose uptake after short-term exercise training in healthy middle-aged men. Diabetes Obes Metab. 2017;19(10):1379–88.PubMedPubMedCentralCrossRef Motiani P, Virtanen KA, Motiani KK, et al. Decreased insulin-stimulated brown adipose tissue glucose uptake after short-term exercise training in healthy middle-aged men. Diabetes Obes Metab. 2017;19(10):1379–88.PubMedPubMedCentralCrossRef
81.
go back to reference Otero-Díaz B, Rodríguez-Flores M, Sánchez-Muñoz V, et al. Exercise induces white adipose tissue browning across the weight spectrum in humans. Front Physiol. 2018;9:1781.PubMedPubMedCentralCrossRef Otero-Díaz B, Rodríguez-Flores M, Sánchez-Muñoz V, et al. Exercise induces white adipose tissue browning across the weight spectrum in humans. Front Physiol. 2018;9:1781.PubMedPubMedCentralCrossRef
82.
go back to reference Guo Y, Zhang Q, Zheng L, et al. Depot-specific adaption of adipose tissue for different exercise approaches in high-fat diet/streptozocin-induced diabetic mice. Front Physiol. 2023;14:1189528.PubMedPubMedCentralCrossRef Guo Y, Zhang Q, Zheng L, et al. Depot-specific adaption of adipose tissue for different exercise approaches in high-fat diet/streptozocin-induced diabetic mice. Front Physiol. 2023;14:1189528.PubMedPubMedCentralCrossRef
83.
go back to reference Félix-Soriano E, Sáinz N, Gil-Iturbe E, et al. Differential remodeling of subcutaneous white and interscapular brown adipose tissue by long-term exercise training in aged obese female mice. J Physiol Biochem. 2023;79(2):451–65.PubMedPubMedCentralCrossRef Félix-Soriano E, Sáinz N, Gil-Iturbe E, et al. Differential remodeling of subcutaneous white and interscapular brown adipose tissue by long-term exercise training in aged obese female mice. J Physiol Biochem. 2023;79(2):451–65.PubMedPubMedCentralCrossRef
84.
go back to reference Nakhuda A, Josse AR, Gburcik V, et al. Biomarkers of browning of white adipose tissue and their regulation during exercise- and diet-induced weight loss. Am J Clin Nutr. 2016;104(3):557–65.PubMedPubMedCentralCrossRef Nakhuda A, Josse AR, Gburcik V, et al. Biomarkers of browning of white adipose tissue and their regulation during exercise- and diet-induced weight loss. Am J Clin Nutr. 2016;104(3):557–65.PubMedPubMedCentralCrossRef
85.
go back to reference De Matteis R, Lucertini F, Guescini M, et al. Exercise as a new physiological stimulus for brown adipose tissue activity. Nutr Metab Cardiovasc Dis. 2013;23(6):582–90.PubMedCrossRef De Matteis R, Lucertini F, Guescini M, et al. Exercise as a new physiological stimulus for brown adipose tissue activity. Nutr Metab Cardiovasc Dis. 2013;23(6):582–90.PubMedCrossRef
86.
go back to reference Stinkens R, Brouwers B, Jocken JW, et al. Exercise training-induced effects on the abdominal subcutaneous adipose tissue phenotype in humans with obesity. J Appl Physiol (Bethesda, Md : 1985). 2018;125(5):1585–1593. Stinkens R, Brouwers B, Jocken JW, et al. Exercise training-induced effects on the abdominal subcutaneous adipose tissue phenotype in humans with obesity. J Appl Physiol (Bethesda, Md : 1985). 2018;125(5):1585–1593.
87.
go back to reference Zouhal H, Jacob C, Delamarche P, Gratas-Delamarche A. Catecholamines and the effects of exercise, training and gender. Sports Med. 2008;38(5):401–23.PubMedCrossRef Zouhal H, Jacob C, Delamarche P, Gratas-Delamarche A. Catecholamines and the effects of exercise, training and gender. Sports Med. 2008;38(5):401–23.PubMedCrossRef
88.
go back to reference Notarius CF, Floras JS. Sympathetic neural responses in heart failure during exercise and after exercise training. Clin Sci (Lond). 2021;135(4):651–69.PubMedCrossRef Notarius CF, Floras JS. Sympathetic neural responses in heart failure during exercise and after exercise training. Clin Sci (Lond). 2021;135(4):651–69.PubMedCrossRef
89.
go back to reference Daniela M, Catalina L, Ilie O, Paula M, Daniel-Andrei I, Ioana B. Effects of exercise training on the autonomic nervous system with a focus on anti-inflammatory and antioxidants effects. Antioxidants (Basel). 2022;11(2). Daniela M, Catalina L, Ilie O, Paula M, Daniel-Andrei I, Ioana B. Effects of exercise training on the autonomic nervous system with a focus on anti-inflammatory and antioxidants effects. Antioxidants (Basel). 2022;11(2).
90.
go back to reference Pearson MJ, Smart NA. Exercise therapy and autonomic function in heart failure patients: a systematic review and meta-analysis. Heart Fail Rev. 2018;23(1):91–108.PubMedCrossRef Pearson MJ, Smart NA. Exercise therapy and autonomic function in heart failure patients: a systematic review and meta-analysis. Heart Fail Rev. 2018;23(1):91–108.PubMedCrossRef
91.
go back to reference Jeong J, Sprick JD, DaCosta DR, Mammino K, Nocera JR, Park J. Exercise modulates sympathetic and vascular function in chronic kidney disease. JCI Insight. 2023;8(4). Jeong J, Sprick JD, DaCosta DR, Mammino K, Nocera JR, Park J. Exercise modulates sympathetic and vascular function in chronic kidney disease. JCI Insight. 2023;8(4).
92.
go back to reference Björntorp P. Hypertension and exercise. Hypertension 1982;4(5 Pt 2):Iii56–59. Björntorp P. Hypertension and exercise. Hypertension 1982;4(5 Pt 2):Iii56–59.
93.
go back to reference Lehmann M, Schmid P, Keul J. Age- and exercise-related sympathetic activity in untrained volunteers, trained athletes and patients with impaired left-ventricular contractility. Eur Heart J. 1984;5 Suppl E:1–7. Lehmann M, Schmid P, Keul J. Age- and exercise-related sympathetic activity in untrained volunteers, trained athletes and patients with impaired left-ventricular contractility. Eur Heart J. 1984;5 Suppl E:1–7.
95.
go back to reference Pedersen BK, Febbraio MA. Muscle as an endocrine organ: focus on muscle-derived interleukin-6. Physiol Rev. 2008;88(4):1379–406.PubMedCrossRef Pedersen BK, Febbraio MA. Muscle as an endocrine organ: focus on muscle-derived interleukin-6. Physiol Rev. 2008;88(4):1379–406.PubMedCrossRef
96.
go back to reference Zhang Y, Li R, Meng Y, et al. Irisin stimulates browning of white adipocytes through mitogen-activated protein kinase p38 MAP kinase and ERK MAP kinase signaling. Diabetes. 2014;63(2):514–25.PubMedCrossRef Zhang Y, Li R, Meng Y, et al. Irisin stimulates browning of white adipocytes through mitogen-activated protein kinase p38 MAP kinase and ERK MAP kinase signaling. Diabetes. 2014;63(2):514–25.PubMedCrossRef
97.
go back to reference Boström P, Wu J, Jedrychowski MP, et al. A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature. 2012;481(7382):463–8.PubMedPubMedCentralCrossRef Boström P, Wu J, Jedrychowski MP, et al. A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature. 2012;481(7382):463–8.PubMedPubMedCentralCrossRef
98.
go back to reference Huh JY, Dincer F, Mesfum E, Mantzoros CS. Irisin stimulates muscle growth-related genes and regulates adipocyte differentiation and metabolism in humans. Int J Obes (Lond). 2014;38(12):1538–44.PubMedCrossRef Huh JY, Dincer F, Mesfum E, Mantzoros CS. Irisin stimulates muscle growth-related genes and regulates adipocyte differentiation and metabolism in humans. Int J Obes (Lond). 2014;38(12):1538–44.PubMedCrossRef
99.
100.
go back to reference Zheng Y, He J, Yang D, et al. Irisin reduces the abnormal reproductive and metabolic phenotypes of PCOS by regulating the activity of brown adipose tissue in mice. Biol Reprod. 2022;107(4):1046–58.PubMedPubMedCentral Zheng Y, He J, Yang D, et al. Irisin reduces the abnormal reproductive and metabolic phenotypes of PCOS by regulating the activity of brown adipose tissue in mice. Biol Reprod. 2022;107(4):1046–58.PubMedPubMedCentral
101.
go back to reference Fox J, Rioux BV, Goulet EDB, et al. Effect of an acute exercise bout on immediate post-exercise irisin concentration in adults: a meta-analysis. Scand J Med Sci Sports. 2018;28(1):16–28.PubMedCrossRef Fox J, Rioux BV, Goulet EDB, et al. Effect of an acute exercise bout on immediate post-exercise irisin concentration in adults: a meta-analysis. Scand J Med Sci Sports. 2018;28(1):16–28.PubMedCrossRef
102.
go back to reference Guo L, Quan M, Pang W, Yin Y, Li F. Cytokines and exosomal miRNAs in skeletal muscle-adipose crosstalk. Trends Endocrinol Metab. 2023;34(10):666–81.PubMedCrossRef Guo L, Quan M, Pang W, Yin Y, Li F. Cytokines and exosomal miRNAs in skeletal muscle-adipose crosstalk. Trends Endocrinol Metab. 2023;34(10):666–81.PubMedCrossRef
103.
go back to reference Labbé SM, Caron A, Bakan I, et al. In vivo measurement of energy substrate contribution to cold-induced brown adipose tissue thermogenesis. Faseb j. 2015;29(5):2046–58.PubMedCrossRef Labbé SM, Caron A, Bakan I, et al. In vivo measurement of energy substrate contribution to cold-induced brown adipose tissue thermogenesis. Faseb j. 2015;29(5):2046–58.PubMedCrossRef
104.
go back to reference Okamatsu-Ogura Y, Kuroda M, Tsutsumi R, et al. UCP1-dependent and UCP1-independent metabolic changes induced by acute cold exposure in brown adipose tissue of mice. Metabolism. 2020;113: 154396.PubMedCrossRef Okamatsu-Ogura Y, Kuroda M, Tsutsumi R, et al. UCP1-dependent and UCP1-independent metabolic changes induced by acute cold exposure in brown adipose tissue of mice. Metabolism. 2020;113: 154396.PubMedCrossRef
105.
go back to reference •• Song A, Dai W, Jang MJ, et al. Low- and high-thermogenic brown adipocyte subpopulations coexist in murine adipose tissue. J Clin Invest. 2020;130(1):247–57. This study reports the discovery of a low-thermogenic brown adipocyte subpopulation with unique molecular and metabolic features, coexisting with the classical high-thermogenic brown adipocytes in vivo.PubMedCrossRef •• Song A, Dai W, Jang MJ, et al. Low- and high-thermogenic brown adipocyte subpopulations coexist in murine adipose tissue. J Clin Invest. 2020;130(1):247–57. This study reports the discovery of a low-thermogenic brown adipocyte subpopulation with unique molecular and metabolic features, coexisting with the classical high-thermogenic brown adipocytes in vivo.PubMedCrossRef
106.
go back to reference Abe Y, Fujiwara Y, Takahashi H, et al. Histone demethylase JMJD1A coordinates acute and chronic adaptation to cold stress via thermogenic phospho-switch. Nat Commun. 2018;9(1):1566.PubMedPubMedCentralCrossRef Abe Y, Fujiwara Y, Takahashi H, et al. Histone demethylase JMJD1A coordinates acute and chronic adaptation to cold stress via thermogenic phospho-switch. Nat Commun. 2018;9(1):1566.PubMedPubMedCentralCrossRef
107.
go back to reference Chen Y, Ikeda K, Yoneshiro T, et al. Thermal stress induces glycolytic beige fat formation via a myogenic state. Nature. 2019;565(7738):180–5.PubMedCrossRef Chen Y, Ikeda K, Yoneshiro T, et al. Thermal stress induces glycolytic beige fat formation via a myogenic state. Nature. 2019;565(7738):180–5.PubMedCrossRef
109.
go back to reference Ouellet V, Labbé SM, Blondin DP, et al. Brown adipose tissue oxidative metabolism contributes to energy expenditure during acute cold exposure in humans. J Clin Invest. 2012;122(2):545–52.PubMedPubMedCentralCrossRef Ouellet V, Labbé SM, Blondin DP, et al. Brown adipose tissue oxidative metabolism contributes to energy expenditure during acute cold exposure in humans. J Clin Invest. 2012;122(2):545–52.PubMedPubMedCentralCrossRef
110.
go back to reference Muzik O, Mangner TJ, Leonard WR, Kumar A, Janisse J, Granneman JG. 15O PET measurement of blood flow and oxygen consumption in cold-activated human brown fat. J Nucl Med. 2013;54(4):523–31.PubMedCrossRef Muzik O, Mangner TJ, Leonard WR, Kumar A, Janisse J, Granneman JG. 15O PET measurement of blood flow and oxygen consumption in cold-activated human brown fat. J Nucl Med. 2013;54(4):523–31.PubMedCrossRef
111.
go back to reference Kern PA, Finlin BS, Zhu B, et al. The effects of temperature and seasons on subcutaneous white adipose tissue in humans: evidence for thermogenic gene induction. J Clin Endocrinol Metab. 2014;99(12):E2772-2779.PubMedPubMedCentralCrossRef Kern PA, Finlin BS, Zhu B, et al. The effects of temperature and seasons on subcutaneous white adipose tissue in humans: evidence for thermogenic gene induction. J Clin Endocrinol Metab. 2014;99(12):E2772-2779.PubMedPubMedCentralCrossRef
112.
go back to reference Blondin DP, Labbé SM, Phoenix S, et al. Contributions of white and brown adipose tissues and skeletal muscles to acute cold-induced metabolic responses in healthy men. J Physiol. 2015;593(3):701–14.PubMedCrossRef Blondin DP, Labbé SM, Phoenix S, et al. Contributions of white and brown adipose tissues and skeletal muscles to acute cold-induced metabolic responses in healthy men. J Physiol. 2015;593(3):701–14.PubMedCrossRef
113.
go back to reference van der Lans AA, Hoeks J, Brans B, et al. Cold acclimation recruits human brown fat and increases nonshivering thermogenesis. J Clin Invest. 2013;123(8):3395–403.PubMedPubMedCentralCrossRef van der Lans AA, Hoeks J, Brans B, et al. Cold acclimation recruits human brown fat and increases nonshivering thermogenesis. J Clin Invest. 2013;123(8):3395–403.PubMedPubMedCentralCrossRef
114.
go back to reference Muzik O, Mangner TJ, Leonard WR, Kumar A, Granneman JG. Sympathetic innervation of cold-activated brown and white fat in lean young adults. J Nucl Med. 2017;58(5):799–806.PubMedPubMedCentralCrossRef Muzik O, Mangner TJ, Leonard WR, Kumar A, Granneman JG. Sympathetic innervation of cold-activated brown and white fat in lean young adults. J Nucl Med. 2017;58(5):799–806.PubMedPubMedCentralCrossRef
115.
go back to reference Blondin DP, Labbé SM, Tingelstad HC, et al. Increased brown adipose tissue oxidative capacity in cold-acclimated humans. J Clin Endocrinol Metab. 2014;99(3):E438-446.PubMedPubMedCentralCrossRef Blondin DP, Labbé SM, Tingelstad HC, et al. Increased brown adipose tissue oxidative capacity in cold-acclimated humans. J Clin Endocrinol Metab. 2014;99(3):E438-446.PubMedPubMedCentralCrossRef
116.
go back to reference Finlin BS, Memetimin H, Confides AL, et al. Human adipose beiging in response to cold and mirabegron. JCI Insight. 2018;3(15). Finlin BS, Memetimin H, Confides AL, et al. Human adipose beiging in response to cold and mirabegron. JCI Insight. 2018;3(15).
117.
118.
go back to reference Shore AM, Karamitri A, Kemp P, Speakman JR, Graham NS, Lomax MA. Cold-induced changes in gene expression in brown adipose tissue, white adipose tissue and liver. PLoS ONE. 2013;8(7): e68933.PubMedPubMedCentralCrossRef Shore AM, Karamitri A, Kemp P, Speakman JR, Graham NS, Lomax MA. Cold-induced changes in gene expression in brown adipose tissue, white adipose tissue and liver. PLoS ONE. 2013;8(7): e68933.PubMedPubMedCentralCrossRef
119.
go back to reference Blondin DP, Daoud A, Taylor T, et al. Four-week cold acclimation in adult humans shifts uncoupling thermogenesis from skeletal muscles to brown adipose tissue. J Physiol. 2017;595(6):2099–113.PubMedPubMedCentralCrossRef Blondin DP, Daoud A, Taylor T, et al. Four-week cold acclimation in adult humans shifts uncoupling thermogenesis from skeletal muscles to brown adipose tissue. J Physiol. 2017;595(6):2099–113.PubMedPubMedCentralCrossRef
120.
go back to reference Gordon K, Blondin DP, Friesen BJ, Tingelstad HC, Kenny GP, Haman F. Seven days of cold acclimation substantially reduces shivering intensity and increases nonshivering thermogenesis in adult humans. J Appl Physiol (1985). 2019;126(6):1598–606.PubMedCrossRef Gordon K, Blondin DP, Friesen BJ, Tingelstad HC, Kenny GP, Haman F. Seven days of cold acclimation substantially reduces shivering intensity and increases nonshivering thermogenesis in adult humans. J Appl Physiol (1985). 2019;126(6):1598–606.PubMedCrossRef
121.
go back to reference Sakers A, De Siqueira MK, Seale P, Villanueva CJ. Adipose-tissue plasticity in health and disease. Cell. 2022;185(3):419–46.PubMedCrossRef Sakers A, De Siqueira MK, Seale P, Villanueva CJ. Adipose-tissue plasticity in health and disease. Cell. 2022;185(3):419–46.PubMedCrossRef
122.
go back to reference Singh R, Barrios A, Dirakvand G, Pervin S. Human brown adipose tissue and metabolic health: potential for therapeutic avenues. Cells. 2021;10(11). Singh R, Barrios A, Dirakvand G, Pervin S. Human brown adipose tissue and metabolic health: potential for therapeutic avenues. Cells. 2021;10(11).
123.
go back to reference Ballard-Croft C, Maass DL, Sikes P, White J, Horton J. Activation of stress-responsive pathways by the sympathetic nervous system in burn trauma. Shock. 2002;18(1):38–45.PubMedCrossRef Ballard-Croft C, Maass DL, Sikes P, White J, Horton J. Activation of stress-responsive pathways by the sympathetic nervous system in burn trauma. Shock. 2002;18(1):38–45.PubMedCrossRef
124.
go back to reference Tsoli M, Moore M, Burg D, et al. Activation of thermogenesis in brown adipose tissue and dysregulated lipid metabolism associated with cancer cachexia in mice. Cancer Res. 2012;72(17):4372–82.PubMedCrossRef Tsoli M, Moore M, Burg D, et al. Activation of thermogenesis in brown adipose tissue and dysregulated lipid metabolism associated with cancer cachexia in mice. Cancer Res. 2012;72(17):4372–82.PubMedCrossRef
125.
126.
go back to reference Stanojcic M, Abdullahi A, Rehou S, Parousis A, Jeschke M. Pathophysiological response to burn injury in adults. Ann Surg. 2018;267(3):576–84.PubMedCrossRef Stanojcic M, Abdullahi A, Rehou S, Parousis A, Jeschke M. Pathophysiological response to burn injury in adults. Ann Surg. 2018;267(3):576–84.PubMedCrossRef
127.
go back to reference Carter EA, Bonab AA, Hamrahi V, et al. Effects of burn injury, cold stress and cutaneous wound injury on the morphology and energy metabolism of murine brown adipose tissue (BAT) in vivo. Life Sci. 2011;89(3–4):78–85.PubMedPubMedCentralCrossRef Carter EA, Bonab AA, Hamrahi V, et al. Effects of burn injury, cold stress and cutaneous wound injury on the morphology and energy metabolism of murine brown adipose tissue (BAT) in vivo. Life Sci. 2011;89(3–4):78–85.PubMedPubMedCentralCrossRef
128.
go back to reference Porter C, Herndon DN, Bhattarai N, et al. Severe burn injury induces thermogenically functional mitochondria in murine white adipose tissue. Shock. 2015;44(3):258–64.PubMedPubMedCentralCrossRef Porter C, Herndon DN, Bhattarai N, et al. Severe burn injury induces thermogenically functional mitochondria in murine white adipose tissue. Shock. 2015;44(3):258–64.PubMedPubMedCentralCrossRef
129.
go back to reference Sidossis LS, Porter C, Saraf MK, et al. Browning of subcutaneous white adipose tissue in humans after severe adrenergic stress. Cell Metab. 2015;22(2):219–27.PubMedPubMedCentralCrossRef Sidossis LS, Porter C, Saraf MK, et al. Browning of subcutaneous white adipose tissue in humans after severe adrenergic stress. Cell Metab. 2015;22(2):219–27.PubMedPubMedCentralCrossRef
130.
go back to reference •• Knuth CM, Ricciuti Z, Barayan D, et al. Single-nuclei RNA profiling reveals disruption of adipokine and inflammatory signaling in adipose tissue of burn patients. Ann Surg. 2023;278(6):e1267–76. In this cohort study, the authors provide novel insight toward the effect of burns on adipokine release, inflammatory signaling pathways, and adipose heterogeneity during the acute and chronic stages postburn.PubMedCrossRef •• Knuth CM, Ricciuti Z, Barayan D, et al. Single-nuclei RNA profiling reveals disruption of adipokine and inflammatory signaling in adipose tissue of burn patients. Ann Surg. 2023;278(6):e1267–76. In this cohort study, the authors provide novel insight toward the effect of burns on adipokine release, inflammatory signaling pathways, and adipose heterogeneity during the acute and chronic stages postburn.PubMedCrossRef
131.
go back to reference Thomas SA, Palmiter RD. Thermoregulatory and metabolic phenotypes of mice lacking noradrenaline and adrenaline. Nature. 1997;387(6628):94–7.PubMedCrossRef Thomas SA, Palmiter RD. Thermoregulatory and metabolic phenotypes of mice lacking noradrenaline and adrenaline. Nature. 1997;387(6628):94–7.PubMedCrossRef
132.
go back to reference Kawakami M, He J, Sakamoto T, Okada Y. Catecholamines play a role in the production of interleukin-6 and interleukin-1alpha in unburned skin after burn injury in mice. Crit Care Med. 2001;29(4):796–801.PubMedCrossRef Kawakami M, He J, Sakamoto T, Okada Y. Catecholamines play a role in the production of interleukin-6 and interleukin-1alpha in unburned skin after burn injury in mice. Crit Care Med. 2001;29(4):796–801.PubMedCrossRef
133.
go back to reference Stanford KI, Middelbeek RJW, Townsend KL, et al. Brown adipose tissue regulates glucose homeostasis and insulin sensitivity. J Clin Investig. 2013;123(1):215–23.PubMedCrossRef Stanford KI, Middelbeek RJW, Townsend KL, et al. Brown adipose tissue regulates glucose homeostasis and insulin sensitivity. J Clin Investig. 2013;123(1):215–23.PubMedCrossRef
134.
go back to reference Caldwell FT, Wallace BH, Cone JB, Manuel L. Control of the hypermetabolic response to burn injury using environmental factors. Ann Surg. 1992;215(5). Caldwell FT, Wallace BH, Cone JB, Manuel L. Control of the hypermetabolic response to burn injury using environmental factors. Ann Surg. 1992;215(5).
135.
go back to reference Pei Y, Otieno D, Gu I, et al. Effect of quercetin on nonshivering thermogenesis of brown adipose tissue in high-fat diet-induced obese mice. J Nutr Biochem. 2021;88: 108532.PubMedCrossRef Pei Y, Otieno D, Gu I, et al. Effect of quercetin on nonshivering thermogenesis of brown adipose tissue in high-fat diet-induced obese mice. J Nutr Biochem. 2021;88: 108532.PubMedCrossRef
136.
go back to reference Blondin DP, Nielsen S, Kuipers EN, et al. Human brown adipocyte thermogenesis is driven by β2-AR stimulation. Cell Metab. 2020;32(2). Blondin DP, Nielsen S, Kuipers EN, et al. Human brown adipocyte thermogenesis is driven by β2-AR stimulation. Cell Metab. 2020;32(2).
137.
go back to reference Rosenbaum M, Malbon CC, Hirsch J, Leibel RL. Lack of beta 3-adrenergic effect on lipolysis in human subcutaneous adipose tissue. J Clin Endocrinol Metab. 1993;77(2):352–5.PubMed Rosenbaum M, Malbon CC, Hirsch J, Leibel RL. Lack of beta 3-adrenergic effect on lipolysis in human subcutaneous adipose tissue. J Clin Endocrinol Metab. 1993;77(2):352–5.PubMed
138.
go back to reference Cao D-x, Wu G-h, Yang Z-a, et al. Role of β1-adrenoceptor in increased lipolysis in cancer cachexia. Cancer Sci. 2010;101(7):1639–45.PubMedCrossRef Cao D-x, Wu G-h, Yang Z-a, et al. Role of β1-adrenoceptor in increased lipolysis in cancer cachexia. Cancer Sci. 2010;101(7):1639–45.PubMedCrossRef
139.
go back to reference Moins-Teisserenc H, Cordeiro DJ, Audigier V, et al. Severe altered immune status after burn injury is associated with bacterial infection and septic shock. Front Immunol. 2021;12: 586195.PubMedPubMedCentralCrossRef Moins-Teisserenc H, Cordeiro DJ, Audigier V, et al. Severe altered immune status after burn injury is associated with bacterial infection and septic shock. Front Immunol. 2021;12: 586195.PubMedPubMedCentralCrossRef
140.
go back to reference Jeschke MG, Gauglitz GG, Finnerty CC, Kraft R, Mlcak RP, Herndon DN. Survivors versus nonsurvivors postburn: differences in inflammatory and hypermetabolic trajectories. Ann Surg. 2014;259(4):814–23.PubMedCrossRef Jeschke MG, Gauglitz GG, Finnerty CC, Kraft R, Mlcak RP, Herndon DN. Survivors versus nonsurvivors postburn: differences in inflammatory and hypermetabolic trajectories. Ann Surg. 2014;259(4):814–23.PubMedCrossRef
141.
go back to reference Mulder PPG, Koenen HJPM, Vlig M, Joosten I, de Vries RBM, Boekema BKHL. Burn-induced local and systemic immune response: systematic review and meta-analysis of animal studies. J Invest Dermatol. 2022;142(11). Mulder PPG, Koenen HJPM, Vlig M, Joosten I, de Vries RBM, Boekema BKHL. Burn-induced local and systemic immune response: systematic review and meta-analysis of animal studies. J Invest Dermatol. 2022;142(11).
142.
go back to reference Abdullahi A, Auger C, Stanojcic M, et al. Alternatively activated macrophages drive browning of white adipose tissue in burns. Ann Surg. 2019;269(3):554–63.PubMedCrossRef Abdullahi A, Auger C, Stanojcic M, et al. Alternatively activated macrophages drive browning of white adipose tissue in burns. Ann Surg. 2019;269(3):554–63.PubMedCrossRef
143.
go back to reference Babaei R, Schuster M, Meln I, et al. Jak-TGFβ cross-talk links transient adipose tissue inflammation to beige adipogenesis. Sci Signal. 2018;11(527). Babaei R, Schuster M, Meln I, et al. Jak-TGFβ cross-talk links transient adipose tissue inflammation to beige adipogenesis. Sci Signal. 2018;11(527).
144.
go back to reference Abdullahi A, Samadi O, Auger C, et al. Browning of white adipose tissue after a burn injury promotes hepatic steatosis and dysfunction. Cell Death Dis. 2019;10(12):870.PubMedPubMedCentralCrossRef Abdullahi A, Samadi O, Auger C, et al. Browning of white adipose tissue after a burn injury promotes hepatic steatosis and dysfunction. Cell Death Dis. 2019;10(12):870.PubMedPubMedCentralCrossRef
145.
go back to reference Vinaik R, Barayan D, Abdullahi A, Jeschke MG. NLRP3 inflammasome mediates white adipose tissue browning after burn. Am J Physiol Endocrinol Metab. 2019;317(5):E751–9.PubMedPubMedCentralCrossRef Vinaik R, Barayan D, Abdullahi A, Jeschke MG. NLRP3 inflammasome mediates white adipose tissue browning after burn. Am J Physiol Endocrinol Metab. 2019;317(5):E751–9.PubMedPubMedCentralCrossRef
146.
147.
go back to reference •• Kaur S, Auger C, Barayan D, et al. Adipose-specific ATGL ablation reduces burn injury-induced metabolic derangements in mice. Clin Transl Med. 2021;11(6): e417. This study demonstrates that countering WAT lipolysis by genetic knockdown and pharmacological inhibition of adipose triglyceride lipase (ATGL) would have therapeutic benefits in hypermetabolic conditions.PubMedPubMedCentralCrossRef •• Kaur S, Auger C, Barayan D, et al. Adipose-specific ATGL ablation reduces burn injury-induced metabolic derangements in mice. Clin Transl Med. 2021;11(6): e417. This study demonstrates that countering WAT lipolysis by genetic knockdown and pharmacological inhibition of adipose triglyceride lipase (ATGL) would have therapeutic benefits in hypermetabolic conditions.PubMedPubMedCentralCrossRef
148.
go back to reference Qi P, Abdullahi A, Stanojcic M, Patsouris D, Jeschke MG. Lipidomic analysis enables prediction of clinical outcomes in burn patients. Sci Rep. 2016;6. Qi P, Abdullahi A, Stanojcic M, Patsouris D, Jeschke MG. Lipidomic analysis enables prediction of clinical outcomes in burn patients. Sci Rep. 2016;6.
149.
go back to reference Zhao HL, Sui Y, Guan J, et al. Fat redistribution and adipocyte transformation in uninephrectomized rats. Kidney Int. 2008;74(4):467–77.PubMedCrossRef Zhao HL, Sui Y, Guan J, et al. Fat redistribution and adipocyte transformation in uninephrectomized rats. Kidney Int. 2008;74(4):467–77.PubMedCrossRef
150.
go back to reference Abe I, Oguri Y, Verkerke ARP, et al. Lipolysis-derived linoleic acid drives beige fat progenitor cell proliferation. Dev Cell. 2022;57(23):2623-2637.e2628.PubMedPubMedCentralCrossRef Abe I, Oguri Y, Verkerke ARP, et al. Lipolysis-derived linoleic acid drives beige fat progenitor cell proliferation. Dev Cell. 2022;57(23):2623-2637.e2628.PubMedPubMedCentralCrossRef
151.
152.
go back to reference Barayan D, Vinaik R, Auger C, Knuth CM, Abdullahi A, Jeschke MG. Inhibition of lipolysis with acipimox attenuates postburn white adipose tissue browning and hepatic fat infiltration. Shock. 2020;53(2):137–45.PubMedPubMedCentralCrossRef Barayan D, Vinaik R, Auger C, Knuth CM, Abdullahi A, Jeschke MG. Inhibition of lipolysis with acipimox attenuates postburn white adipose tissue browning and hepatic fat infiltration. Shock. 2020;53(2):137–45.PubMedPubMedCentralCrossRef
153.
go back to reference •• Auger C, Knuth C, Abdullahi A, Samadi O, Parousis A, Jeschke M. Metformin prevents the pathological browning of subcutaneous white adipose tissue. Molecular metabolism. 2019;29:12–23. This study provides novel insights into the therapeutic benefits of metformin to prevent the lipotoxicity and adipose browning associated with hypermetabolism.PubMedPubMedCentralCrossRef •• Auger C, Knuth C, Abdullahi A, Samadi O, Parousis A, Jeschke M. Metformin prevents the pathological browning of subcutaneous white adipose tissue. Molecular metabolism. 2019;29:12–23. This study provides novel insights into the therapeutic benefits of metformin to prevent the lipotoxicity and adipose browning associated with hypermetabolism.PubMedPubMedCentralCrossRef
154.
go back to reference Rydén M, Arner P. Fat loss in cachexia–is there a role for adipocyte lipolysis? Clin Nutr. 2007;26(1):1–6.PubMedCrossRef Rydén M, Arner P. Fat loss in cachexia–is there a role for adipocyte lipolysis? Clin Nutr. 2007;26(1):1–6.PubMedCrossRef
155.
go back to reference Shellock F, Riedinger M, Fishbein M. Brown adipose tissue in cancer patients: possible cause of cancer-induced cachexia. J Cancer Res Clin Oncol. 1986;111(1):82–5.PubMedCrossRef Shellock F, Riedinger M, Fishbein M. Brown adipose tissue in cancer patients: possible cause of cancer-induced cachexia. J Cancer Res Clin Oncol. 1986;111(1):82–5.PubMedCrossRef
156.
go back to reference Bianchi A, Bruce J, Cooper A, et al. Increased brown adipose tissue activity in children with malignant disease. Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme. 1989;21(11):640–1.PubMedCrossRef Bianchi A, Bruce J, Cooper A, et al. Increased brown adipose tissue activity in children with malignant disease. Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme. 1989;21(11):640–1.PubMedCrossRef
157.
go back to reference Oudart H, Calgari C, Andriamampandry M, Le Maho Y, Malan A. Stimulation of brown adipose tissue activity in tumor-bearing rats. Can J Physiol Pharmacol. 1995;73(11):1625–31.PubMedCrossRef Oudart H, Calgari C, Andriamampandry M, Le Maho Y, Malan A. Stimulation of brown adipose tissue activity in tumor-bearing rats. Can J Physiol Pharmacol. 1995;73(11):1625–31.PubMedCrossRef
158.
go back to reference Petruzzelli M, Schweiger M, Schreiber R, et al. A switch from white to brown fat increases energy expenditure in cancer-associated cachexia. Cell Metab. 2014;20(3):433–47.PubMedCrossRef Petruzzelli M, Schweiger M, Schreiber R, et al. A switch from white to brown fat increases energy expenditure in cancer-associated cachexia. Cell Metab. 2014;20(3):433–47.PubMedCrossRef
159.
go back to reference Lee P, Greenfield JR, Ho KKY, Fulham MJ. A critical appraisal of the prevalence and metabolic significance of brown adipose tissue in adult humans. Am J Physiol Endocrinol Metab. 2010;299(4):E601–6.PubMedCrossRef Lee P, Greenfield JR, Ho KKY, Fulham MJ. A critical appraisal of the prevalence and metabolic significance of brown adipose tissue in adult humans. Am J Physiol Endocrinol Metab. 2010;299(4):E601–6.PubMedCrossRef
160.
go back to reference Becker AS, Zellweger C, Bacanovic S, et al. Brown fat does not cause cachexia in cancer patients: a large retrospective longitudinal FDG-PET/CT cohort study. PLoS ONE. 2020;15(10): e0239990.PubMedPubMedCentralCrossRef Becker AS, Zellweger C, Bacanovic S, et al. Brown fat does not cause cachexia in cancer patients: a large retrospective longitudinal FDG-PET/CT cohort study. PLoS ONE. 2020;15(10): e0239990.PubMedPubMedCentralCrossRef
161.
go back to reference Brooks SL, Neville AM, Rothwell NJ, Stock MJ, Wilson S. Sympathetic activation of brown-adipose-tissue thermogenesis in cachexia. Biosci Rep. 1981;1(6):509–17.PubMedCrossRef Brooks SL, Neville AM, Rothwell NJ, Stock MJ, Wilson S. Sympathetic activation of brown-adipose-tissue thermogenesis in cachexia. Biosci Rep. 1981;1(6):509–17.PubMedCrossRef
162.
go back to reference Anderson LJ, Lee J, Anderson B, et al. Whole-body and adipose tissue metabolic phenotype in cancer patients. J Cachexia Sarcopenia Muscle. 2022;13(2):1124–33.PubMedPubMedCentralCrossRef Anderson LJ, Lee J, Anderson B, et al. Whole-body and adipose tissue metabolic phenotype in cancer patients. J Cachexia Sarcopenia Muscle. 2022;13(2):1124–33.PubMedPubMedCentralCrossRef
163.
go back to reference Pototschnig I, Feiler U, Diwoky C, et al. Interleukin-6 initiates muscle- and adipose tissue wasting in a novel C57BL/6 model of cancer-associated cachexia. J Cachexia Sarcopenia Muscle. 2023;14(1). Pototschnig I, Feiler U, Diwoky C, et al. Interleukin-6 initiates muscle- and adipose tissue wasting in a novel C57BL/6 model of cancer-associated cachexia. J Cachexia Sarcopenia Muscle. 2023;14(1).
164.
go back to reference •• Xie H, Heier C, Meng X, et al. An immune-sympathetic neuron communication axis guides adipose tissue browning in cancer-associated cachexia. Proc Natl Acad Sci USA. 2022;119(9). This study highlights the important roles of adipose tissue macrophage-sympathetic neuron cross-talk in the metabolic switch toward white adipose tissue catabolism in murine models of Cancer-associated cachexia (CAC). •• Xie H, Heier C, Meng X, et al. An immune-sympathetic neuron communication axis guides adipose tissue browning in cancer-associated cachexia. Proc Natl Acad Sci USA. 2022;119(9). This study highlights the important roles of adipose tissue macrophage-sympathetic neuron cross-talk in the metabolic switch toward white adipose tissue catabolism in murine models of Cancer-associated cachexia (CAC).
165.
go back to reference Pagnotta P, Gantov M, Fletcher S, et al. Peritumoral adipose tissue promotes lipolysis and white adipocytes browning by paracrine action. Front Endocrinol (Lausanne). 2023;14:1144016.PubMedCrossRef Pagnotta P, Gantov M, Fletcher S, et al. Peritumoral adipose tissue promotes lipolysis and white adipocytes browning by paracrine action. Front Endocrinol (Lausanne). 2023;14:1144016.PubMedCrossRef
166.
go back to reference Kir S, White JP, Kleiner S, et al. Tumour-derived PTH-related protein triggers adipose tissue browning and cancer cachexia. Nature. 2014;513(7516):100–4.PubMedPubMedCentralCrossRef Kir S, White JP, Kleiner S, et al. Tumour-derived PTH-related protein triggers adipose tissue browning and cancer cachexia. Nature. 2014;513(7516):100–4.PubMedPubMedCentralCrossRef
167.
go back to reference Elattar S, Dimri M, Satyanarayana A. The tumor secretory factor ZAG promotes white adipose tissue browning and energy wasting. FASEB J. 2018;32(9):4727–43.PubMedPubMedCentralCrossRef Elattar S, Dimri M, Satyanarayana A. The tumor secretory factor ZAG promotes white adipose tissue browning and energy wasting. FASEB J. 2018;32(9):4727–43.PubMedPubMedCentralCrossRef
168.
go back to reference Paré M, Darini CY, Yao X, et al. Breast cancer mammospheres secrete Adrenomedullin to induce lipolysis and browning of adjacent adipocytes. BMC Cancer. 2020;20(1):784.PubMedPubMedCentralCrossRef Paré M, Darini CY, Yao X, et al. Breast cancer mammospheres secrete Adrenomedullin to induce lipolysis and browning of adjacent adipocytes. BMC Cancer. 2020;20(1):784.PubMedPubMedCentralCrossRef
169.
go back to reference Hu W, Ru Z, Xiao W, et al. Adipose tissue browning in cancer-associated cachexia can be attenuated by inhibition of exosome generation. Biochem Biophys Res Commun. 2018;506(1):122–9.PubMedCrossRef Hu W, Ru Z, Xiao W, et al. Adipose tissue browning in cancer-associated cachexia can be attenuated by inhibition of exosome generation. Biochem Biophys Res Commun. 2018;506(1):122–9.PubMedCrossRef
170.
go back to reference Shibata C, Otsuka M, Seimiya T, Kishikawa T, Ishigaki K, Fujishiro M. Lipolysis by pancreatic cancer-derived extracellular vesicles in cancer-associated cachexia via specific integrins. Clin Transl Med. 2022;12(11): e1089.PubMedPubMedCentralCrossRef Shibata C, Otsuka M, Seimiya T, Kishikawa T, Ishigaki K, Fujishiro M. Lipolysis by pancreatic cancer-derived extracellular vesicles in cancer-associated cachexia via specific integrins. Clin Transl Med. 2022;12(11): e1089.PubMedPubMedCentralCrossRef
171.
go back to reference Di W, Zhang W, Zhu B, Li X, Tang Q, Zhou Y. Colorectal cancer prompted adipose tissue browning and cancer cachexia through transferring exosomal miR-146b-5p. J Cell Physiol. 2021;236(7):5399–410.PubMedCrossRef Di W, Zhang W, Zhu B, Li X, Tang Q, Zhou Y. Colorectal cancer prompted adipose tissue browning and cancer cachexia through transferring exosomal miR-146b-5p. J Cell Physiol. 2021;236(7):5399–410.PubMedCrossRef
172.
go back to reference Morley JE, Thomas DR, Wilson MM. Cachexia: pathophysiology and clinical relevance. Am J Clin Nutr. 2006;83(4):735–43.PubMedCrossRef Morley JE, Thomas DR, Wilson MM. Cachexia: pathophysiology and clinical relevance. Am J Clin Nutr. 2006;83(4):735–43.PubMedCrossRef
173.
go back to reference Querfeld U, Mak RH. Vitamin D deficiency and toxicity in chronic kidney disease: in search of the therapeutic window. Pediatr Nephrol. 2010;25(12):2413–30.PubMedCrossRef Querfeld U, Mak RH. Vitamin D deficiency and toxicity in chronic kidney disease: in search of the therapeutic window. Pediatr Nephrol. 2010;25(12):2413–30.PubMedCrossRef
174.
go back to reference Malloy PJ, Feldman BJ. Cell-autonomous regulation of brown fat identity gene UCP1 by unliganded vitamin D receptor. Mol Endocrinol. 2013;27(10):1632–42.PubMedPubMedCentralCrossRef Malloy PJ, Feldman BJ. Cell-autonomous regulation of brown fat identity gene UCP1 by unliganded vitamin D receptor. Mol Endocrinol. 2013;27(10):1632–42.PubMedPubMedCentralCrossRef
175.
176.
go back to reference Kir S, Komaba H, Garcia AP, et al. PTH/PTHrP receptor mediates cachexia in models of kidney failure and cancer. Cell Metab. 2016;23(2):315–23.PubMedCrossRef Kir S, Komaba H, Garcia AP, et al. PTH/PTHrP receptor mediates cachexia in models of kidney failure and cancer. Cell Metab. 2016;23(2):315–23.PubMedCrossRef
177.
go back to reference Bordicchia M, Liu D, Amri EZ, et al. Cardiac natriuretic peptides act via p38 MAPK to induce the brown fat thermogenic program in mouse and human adipocytes. J Clin Invest. 2012;122(3):1022–36.PubMedPubMedCentralCrossRef Bordicchia M, Liu D, Amri EZ, et al. Cardiac natriuretic peptides act via p38 MAPK to induce the brown fat thermogenic program in mouse and human adipocytes. J Clin Invest. 2012;122(3):1022–36.PubMedPubMedCentralCrossRef
178.
go back to reference Rial-Pensado E, Rivas-Limeres V, Grijota-Martínez C, et al. Temperature modulates systemic and central actions of thyroid hormones on BAT thermogenesis. Front Physiol. 2022;13:1017381.PubMedPubMedCentralCrossRef Rial-Pensado E, Rivas-Limeres V, Grijota-Martínez C, et al. Temperature modulates systemic and central actions of thyroid hormones on BAT thermogenesis. Front Physiol. 2022;13:1017381.PubMedPubMedCentralCrossRef
179.
go back to reference Silva JE, Bianco SDC. Thyroid-adrenergic interactions: physiological and clinical implications. Thyroid. 2008;18(2):157–65.PubMedCrossRef Silva JE, Bianco SDC. Thyroid-adrenergic interactions: physiological and clinical implications. Thyroid. 2008;18(2):157–65.PubMedCrossRef
180.
go back to reference Branco M, Ribeiro M, Negrão N, Bianco AC. 3,5,3’-Triiodothyronine actively stimulates UCP in brown fat under minimal sympathetic activity. Am J Physiol. 1999;276(1):E179–87.PubMed Branco M, Ribeiro M, Negrão N, Bianco AC. 3,5,3’-Triiodothyronine actively stimulates UCP in brown fat under minimal sympathetic activity. Am J Physiol. 1999;276(1):E179–87.PubMed
181.
go back to reference Yau WW, Yen PM. Thermogenesis in adipose tissue activated by thyroid hormone. Int J Mol Sci. 2020;21(8). Yau WW, Yen PM. Thermogenesis in adipose tissue activated by thyroid hormone. Int J Mol Sci. 2020;21(8).
182.
go back to reference •• Yau WW, Singh BK, Lesmana R, et al. Thyroid hormone (T3) stimulates brown adipose tissue activation via mitochondrial biogenesis and MTOR-mediated mitophagy. Autophagy. 2019;15(1):131–50. This study demonstrates that thyroid hormone triiodothyronine (T33) exhibits cell autonomous effects on mitochondrial autophagy, activity, and turnover in BAT, and suggest that T33 or its analogs may have potential beneficial effects on obesity and metabolic diseases.PubMedCrossRef •• Yau WW, Singh BK, Lesmana R, et al. Thyroid hormone (T3) stimulates brown adipose tissue activation via mitochondrial biogenesis and MTOR-mediated mitophagy. Autophagy. 2019;15(1):131–50. This study demonstrates that thyroid hormone triiodothyronine (T33exhibits cell autonomous effects on mitochondrial autophagy, activity, and turnover in BAT, and suggest that T33 or its analogs may have potential beneficial effects on obesity and metabolic diseases.PubMedCrossRef
183.
go back to reference Lahesmaa M, Orava J, Schalin-Jäntti C, et al. Hyperthyroidism increases brown fat metabolism in humans. J Clin Endocrinol Metab. 2014;99(1):E28–35.PubMedCrossRef Lahesmaa M, Orava J, Schalin-Jäntti C, et al. Hyperthyroidism increases brown fat metabolism in humans. J Clin Endocrinol Metab. 2014;99(1):E28–35.PubMedCrossRef
184.
go back to reference Zhao J, Li M, Chen Y, et al. Elevated serum growth differentiation factor 15 levels in hyperthyroid patients. Front Endocrinol. 2018;9:793.CrossRef Zhao J, Li M, Chen Y, et al. Elevated serum growth differentiation factor 15 levels in hyperthyroid patients. Front Endocrinol. 2018;9:793.CrossRef
185.
go back to reference Chrysovergis K, Wang X, Kosak J, et al. NAG-1/GDF-15 prevents obesity by increasing thermogenesis, lipolysis and oxidative metabolism. Int J Obes (Lond). 2014;38(12):1555–64.PubMedCrossRef Chrysovergis K, Wang X, Kosak J, et al. NAG-1/GDF-15 prevents obesity by increasing thermogenesis, lipolysis and oxidative metabolism. Int J Obes (Lond). 2014;38(12):1555–64.PubMedCrossRef
186.
go back to reference •• Jing X, Wu J, Dong C, et al. COVID-19 instigates adipose browning and atrophy through VEGF in small mammals. Nat Metab. 2022;4(12):1674–83. This study suggests that adipose tissue browning induced by COVID-19 contributes to adipose tissue atrophy and weight loss observed during infection.PubMedPubMedCentralCrossRef •• Jing X, Wu J, Dong C, et al. COVID-19 instigates adipose browning and atrophy through VEGF in small mammals. Nat Metab. 2022;4(12):1674–83. This study suggests that adipose tissue browning induced by COVID-19 contributes to adipose tissue atrophy and weight loss observed during infection.PubMedPubMedCentralCrossRef
187.
go back to reference Di Filippo L, De Lorenzo R, D’Amico M, et al. COVID-19 is associated with clinically significant weight loss and risk of malnutrition, independent of hospitalisation: a post-hoc analysis of a prospective cohort study. Clin Nutr. 2021;40(4):2420–6.PubMedCrossRef Di Filippo L, De Lorenzo R, D’Amico M, et al. COVID-19 is associated with clinically significant weight loss and risk of malnutrition, independent of hospitalisation: a post-hoc analysis of a prospective cohort study. Clin Nutr. 2021;40(4):2420–6.PubMedCrossRef
188.
go back to reference Tomasoni D, Italia L, Adamo M, et al. COVID-19 and heart failure: from infection to inflammation and angiotensin II stimulation. Searching for evidence from a new disease. Eur J Heart Fail. 2020;22(6):957–66.PubMedCrossRef Tomasoni D, Italia L, Adamo M, et al. COVID-19 and heart failure: from infection to inflammation and angiotensin II stimulation. Searching for evidence from a new disease. Eur J Heart Fail. 2020;22(6):957–66.PubMedCrossRef
189.
190.
go back to reference Huang SC, Everts B, Ivanova Y, et al. Cell-intrinsic lysosomal lipolysis is essential for alternative activation of macrophages. Nat Immunol. 2014;15(9):846–55.PubMedPubMedCentralCrossRef Huang SC, Everts B, Ivanova Y, et al. Cell-intrinsic lysosomal lipolysis is essential for alternative activation of macrophages. Nat Immunol. 2014;15(9):846–55.PubMedPubMedCentralCrossRef
191.
go back to reference Song Q, Chen Y, Ding Q, et al. mTORC1 inhibition uncouples lipolysis and thermogenesis in white adipose tissue to contribute to alcoholic liver disease. Hepatol Commun. 2023;7(3): e0059.PubMedPubMedCentralCrossRef Song Q, Chen Y, Ding Q, et al. mTORC1 inhibition uncouples lipolysis and thermogenesis in white adipose tissue to contribute to alcoholic liver disease. Hepatol Commun. 2023;7(3): e0059.PubMedPubMedCentralCrossRef
192.
go back to reference Das S, Eder S, Schauer S, et al. Adipose triglyceride lipase contributes to cancer-associated cachexia. Science (New York, NY). 2011;333(6039):233–8.CrossRef Das S, Eder S, Schauer S, et al. Adipose triglyceride lipase contributes to cancer-associated cachexia. Science (New York, NY). 2011;333(6039):233–8.CrossRef
193.
go back to reference Silverio R, Lira FS, Oyama LM, et al. Lipases and lipid droplet-associated protein expression in subcutaneous white adipose tissue of cachectic patients with cancer. Lipids Health Dis. 2017;16(1):159.PubMedPubMedCentralCrossRef Silverio R, Lira FS, Oyama LM, et al. Lipases and lipid droplet-associated protein expression in subcutaneous white adipose tissue of cachectic patients with cancer. Lipids Health Dis. 2017;16(1):159.PubMedPubMedCentralCrossRef
194.
go back to reference Steinhoff KG, Krause K, Linder N, et al. Effects of hyperthyroidism on adipose tissue activity and distribution in adults. Thyroid. 2021;31(3):519–27.PubMedCrossRef Steinhoff KG, Krause K, Linder N, et al. Effects of hyperthyroidism on adipose tissue activity and distribution in adults. Thyroid. 2021;31(3):519–27.PubMedCrossRef
195.
go back to reference Johann K, Cremer AL, Fischer AW, et al. Thyroid-hormone-induced browning of white adipose tissue does not contribute to thermogenesis and glucose consumption. Cell Rep. 2019;27(11). Johann K, Cremer AL, Fischer AW, et al. Thyroid-hormone-induced browning of white adipose tissue does not contribute to thermogenesis and glucose consumption. Cell Rep. 2019;27(11).
196.
go back to reference Ji C, Guo X. The clinical potential of circulating microRNAs in obesity. Nat Rev Endocrinol. 2019;15(12):731–43.PubMedCrossRef Ji C, Guo X. The clinical potential of circulating microRNAs in obesity. Nat Rev Endocrinol. 2019;15(12):731–43.PubMedCrossRef
197.
go back to reference Feldmann HM, Golozoubova V, Cannon B, Nedergaard J. UCP1 ablation induces obesity and abolishes diet-induced thermogenesis in mice exempt from thermal stress by living at thermoneutrality. Cell Metab. 2009;9(2):203–9.PubMedCrossRef Feldmann HM, Golozoubova V, Cannon B, Nedergaard J. UCP1 ablation induces obesity and abolishes diet-induced thermogenesis in mice exempt from thermal stress by living at thermoneutrality. Cell Metab. 2009;9(2):203–9.PubMedCrossRef
198.
go back to reference Hoeke G, Kooijman S, Boon M, Rensen P, Berbée J. Role of brown fat in lipoprotein metabolism and atherosclerosis. Circ Res. 2016;118(1):173–82.PubMedCrossRef Hoeke G, Kooijman S, Boon M, Rensen P, Berbée J. Role of brown fat in lipoprotein metabolism and atherosclerosis. Circ Res. 2016;118(1):173–82.PubMedCrossRef
199.
go back to reference Ying Z, Tramper N, Zhou E, Boon MR, Rensen PCN, Kooijman S. Role of thermogenic adipose tissue in lipid metabolism and atherosclerotic cardiovascular disease: lessons from studies in mice and humans. Cardiovasc Res. 2023;119(4):905–18.PubMedCrossRef Ying Z, Tramper N, Zhou E, Boon MR, Rensen PCN, Kooijman S. Role of thermogenic adipose tissue in lipid metabolism and atherosclerotic cardiovascular disease: lessons from studies in mice and humans. Cardiovasc Res. 2023;119(4):905–18.PubMedCrossRef
200.
go back to reference Cypess AM, Weiner LS, Roberts-Toler C, et al. Activation of human brown adipose tissue by a β3-adrenergic receptor agonist. Cell Metab. 2015;21(1):33–8.PubMedPubMedCentralCrossRef Cypess AM, Weiner LS, Roberts-Toler C, et al. Activation of human brown adipose tissue by a β3-adrenergic receptor agonist. Cell Metab. 2015;21(1):33–8.PubMedPubMedCentralCrossRef
201.
go back to reference Dehvari N, Sato M, Bokhari MH, et al. The metabolic effects of mirabegron are mediated primarily by β3-adrenoceptors. Pharmacol Res Perspect. 2020;8(5): e00643.PubMedPubMedCentralCrossRef Dehvari N, Sato M, Bokhari MH, et al. The metabolic effects of mirabegron are mediated primarily by β3-adrenoceptors. Pharmacol Res Perspect. 2020;8(5): e00643.PubMedPubMedCentralCrossRef
202.
go back to reference Dąbrowska AM, Dudka J. Mirabegron, a selective β3-adrenergic receptor agonist, as a potential anti-obesity drug. J Clin Med. 2023;12(21). Dąbrowska AM, Dudka J. Mirabegron, a selective β3-adrenergic receptor agonist, as a potential anti-obesity drug. J Clin Med. 2023;12(21).
203.
go back to reference Finlin BS, Memetimin H, Zhu B, et al. The β3-adrenergic receptor agonist mirabegron improves glucose homeostasis in obese humans. J Clin Investig. 2020;130(5):2319–31.PubMedPubMedCentralCrossRef Finlin BS, Memetimin H, Zhu B, et al. The β3-adrenergic receptor agonist mirabegron improves glucose homeostasis in obese humans. J Clin Investig. 2020;130(5):2319–31.PubMedPubMedCentralCrossRef
204.
go back to reference O’Mara AE, Johnson JW, Linderman JD, et al. Chronic mirabegron treatment increases human brown fat, HDL cholesterol, and insulin sensitivity. J Clin Investig. 2020;130(5):2209–19.PubMedPubMedCentralCrossRef O’Mara AE, Johnson JW, Linderman JD, et al. Chronic mirabegron treatment increases human brown fat, HDL cholesterol, and insulin sensitivity. J Clin Investig. 2020;130(5):2209–19.PubMedPubMedCentralCrossRef
205.
go back to reference Loh RKC, Formosa MF, Eikelis N, et al. Pioglitazone reduces cold-induced brown fat glucose uptake despite induction of browning in cultured human adipocytes: a randomised, controlled trial in humans. Diabetologia. 2018;61(1):220–30.PubMedCrossRef Loh RKC, Formosa MF, Eikelis N, et al. Pioglitazone reduces cold-induced brown fat glucose uptake despite induction of browning in cultured human adipocytes: a randomised, controlled trial in humans. Diabetologia. 2018;61(1):220–30.PubMedCrossRef
206.
go back to reference Wu D, Eeda V, Undi RB, et al. A novel peroxisome proliferator-activated receptor gamma ligand improves insulin sensitivity and promotes browning of white adipose tissue in obese mice. Molecular Metabolism. 2021;54: 101363.PubMedPubMedCentralCrossRef Wu D, Eeda V, Undi RB, et al. A novel peroxisome proliferator-activated receptor gamma ligand improves insulin sensitivity and promotes browning of white adipose tissue in obese mice. Molecular Metabolism. 2021;54: 101363.PubMedPubMedCentralCrossRef
207.
go back to reference Coelho MS, de Lima CL, Royer C, et al. GQ-16, a TZD-derived partial PPARγ agonist, induces the expression of thermogenesis-related genes in brown fat and visceral white fat and decreases visceral adiposity in obese and hyperglycemic mice. PLoS ONE. 2016;11(5): e0154310.PubMedPubMedCentralCrossRef Coelho MS, de Lima CL, Royer C, et al. GQ-16, a TZD-derived partial PPARγ agonist, induces the expression of thermogenesis-related genes in brown fat and visceral white fat and decreases visceral adiposity in obese and hyperglycemic mice. PLoS ONE. 2016;11(5): e0154310.PubMedPubMedCentralCrossRef
208.
go back to reference Gutierrez AD, Gao Z, Hamidi V, et al. Anti-diabetic effects of GLP1 analogs are mediated by thermogenic interleukin-6 signaling in adipocytes. Cell Rep Med. 2022;3(11): 100813.PubMedPubMedCentralCrossRef Gutierrez AD, Gao Z, Hamidi V, et al. Anti-diabetic effects of GLP1 analogs are mediated by thermogenic interleukin-6 signaling in adipocytes. Cell Rep Med. 2022;3(11): 100813.PubMedPubMedCentralCrossRef
209.
go back to reference Collier JJ, Batdorf HM, Merrifield KL, et al. Pioglitazone reverses markers of islet beta-cell de-differentiation in db/db mice while modulating expression of genes controlling inflammation and browning in white adipose tissue from insulin-resistant mice and humans. Biomedicines. 2021;9(9). Collier JJ, Batdorf HM, Merrifield KL, et al. Pioglitazone reverses markers of islet beta-cell de-differentiation in db/db mice while modulating expression of genes controlling inflammation and browning in white adipose tissue from insulin-resistant mice and humans. Biomedicines. 2021;9(9).
210.
go back to reference Kuryłowicz A, Puzianowska-Kuźnicka M. Induction of adipose tissue browning as a strategy to combat obesity. Int J Mol Sci. 2020;21(17). Kuryłowicz A, Puzianowska-Kuźnicka M. Induction of adipose tissue browning as a strategy to combat obesity. Int J Mol Sci. 2020;21(17).
211.
go back to reference Zuo L, Geng Z, Song X, et al: Browning of mesenteric white adipose tissue in Crohn’s disease: a new pathological change and therapeutic target. J Crohn’s Colitis. 2023. Zuo L, Geng Z, Song X, et al: Browning of mesenteric white adipose tissue in Crohn’s disease: a new pathological change and therapeutic target. J Crohn’s Colitis. 2023.
212.
go back to reference Jeschke M, Finnerty C, Emdad F, et al. Mild obesity is protective after severe burn injury. Ann Surg. 2013;258(6):1119–29.PubMedCrossRef Jeschke M, Finnerty C, Emdad F, et al. Mild obesity is protective after severe burn injury. Ann Surg. 2013;258(6):1119–29.PubMedCrossRef
213.
go back to reference Jeschke MG. Postburn hypermetabolism: past, present, and future. J Burn Care Res. 2016;37(2):86–96.PubMedCrossRef Jeschke MG. Postburn hypermetabolism: past, present, and future. J Burn Care Res. 2016;37(2):86–96.PubMedCrossRef
214.
go back to reference Ohashi K, Iwatani H, Kihara S, et al. Exacerbation of albuminuria and renal fibrosis in subtotal renal ablation model of adiponectin-knockout mice. Arterioscler Thromb Vasc Biol. 2007;27(9):1910–7.PubMedCrossRef Ohashi K, Iwatani H, Kihara S, et al. Exacerbation of albuminuria and renal fibrosis in subtotal renal ablation model of adiponectin-knockout mice. Arterioscler Thromb Vasc Biol. 2007;27(9):1910–7.PubMedCrossRef
215.
go back to reference Sweiss N, Sharma K. Adiponectin effects on the kidney. Best Pract Res Clin Endocrinol Metab. 2014;28(1):71–9.PubMedCrossRef Sweiss N, Sharma K. Adiponectin effects on the kidney. Best Pract Res Clin Endocrinol Metab. 2014;28(1):71–9.PubMedCrossRef
216.
go back to reference Hui X, Gu P, Zhang J, et al. Adiponectin enhances cold-induced browning of subcutaneous adipose tissue via promoting M2 macrophage proliferation. Cell Metab. 2015;22(2):279–90.PubMedCrossRef Hui X, Gu P, Zhang J, et al. Adiponectin enhances cold-induced browning of subcutaneous adipose tissue via promoting M2 macrophage proliferation. Cell Metab. 2015;22(2):279–90.PubMedCrossRef
217.
go back to reference Sun L, Goh HJ, Verma S, et al. Brown adipose tissues mediate the metabolism of branched chain amino acids during the transitioning from hyperthyroidism to euthyroidism (TRIBUTE). Sci Rep. 2022;12(1):3693.PubMedPubMedCentralCrossRef Sun L, Goh HJ, Verma S, et al. Brown adipose tissues mediate the metabolism of branched chain amino acids during the transitioning from hyperthyroidism to euthyroidism (TRIBUTE). Sci Rep. 2022;12(1):3693.PubMedPubMedCentralCrossRef
218.
go back to reference Sun L, Goh HJ, Verma S, et al. Metabolic effects of brown fat in transitioning from hyperthyroidism to euthyroidism. Eur J Endocrinol. 2021;185(4):553–63.PubMedPubMedCentralCrossRef Sun L, Goh HJ, Verma S, et al. Metabolic effects of brown fat in transitioning from hyperthyroidism to euthyroidism. Eur J Endocrinol. 2021;185(4):553–63.PubMedPubMedCentralCrossRef
Metadata
Title
The Different Shades of Thermogenic Adipose Tissue
Authors
Yunwen Hu
Yijie Huang
Yangjing Jiang
Lvkan Weng
Zhaohua Cai
Ben He
Publication date
12-04-2024
Publisher
Springer US
Published in
Current Obesity Reports
Electronic ISSN: 2162-4968
DOI
https://doi.org/10.1007/s13679-024-00559-y
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.