Skip to main content
Top
Published in: Inflammation 3/2016

01-06-2016 | ORIGINAL ARTICLE

Lipoic Acid Exerts Antioxidant and Anti-inflammatory Effects in Response to Heat Shock in C2C12 Myotubes

Authors: Cheng-Tse Lee, Li-Ching Chang, Pei-Fung Wu

Published in: Inflammation | Issue 3/2016

Login to get access

Abstract

This study explored that lipoic acid treatment for 24 h significantly upregulated and promoted heat shock-induced catalase expression and downregulated GPx1 messenger RNA (mRNA) expression, indicating that lipoic acid exhibits antioxidant activity in the decomposition of hydrogen peroxide by upregulating catalase expression. Moreover, lipoic acid treatment for 3 h increased and promoted heat shock-induced interleukin (IL)-6 mRNA and protein levels and that for 24 h downregulated IL-6 mRNA expression, suggesting a dual effect of lipoic acid on IL-6 regulation. Lipoic acid alone failed to increase or reduce tumor necrosis factor (TNF)-α mRNA and protein levels, whereas heat shock alone downregulated TNF-α mRNA and protein expression. These data suggest that lipoic acid does not have a proinflammatory role and that heat shock acts as an anti-inflammatory agent by downregulating TNF-α expression in C2C12 myotubes. Moreover, lipoic acid or heat shock alone upregulated the IL-6 receptor (IL-6R-α) and glycoprotein 130 (gp130) mRNA expression followed by IL-6 expression; these data indicate that the regulation of lipoic acid or heat shock is mediated by IL-6R signaling, thus suggesting that C2C12 myotubes possesses a mechanism for regulating IL-6R and gp130 expression following lipoic acid treatment or heat shock.
Literature
1.
go back to reference Akerfelt, M., R.I. Morimoto, and L. Sistonen. 2010. Heat shock factors: integrators of cell stress, development and lifespan. Nature Reviews Molecular Cell Biology 11: 545–555.CrossRefPubMedPubMedCentral Akerfelt, M., R.I. Morimoto, and L. Sistonen. 2010. Heat shock factors: integrators of cell stress, development and lifespan. Nature Reviews Molecular Cell Biology 11: 545–555.CrossRefPubMedPubMedCentral
2.
go back to reference Demarco, V.G., P.O. Scumpia, J.P. Bosanquet, and J.W. Skimming. 2004. Alpha-lipoic acid inhibits endotoxin-stimulated expression of iNOS and nitric oxide independent of the heat shock response in RAW 264.7 cells. Free Radical Research 38: 675–682.CrossRefPubMed Demarco, V.G., P.O. Scumpia, J.P. Bosanquet, and J.W. Skimming. 2004. Alpha-lipoic acid inhibits endotoxin-stimulated expression of iNOS and nitric oxide independent of the heat shock response in RAW 264.7 cells. Free Radical Research 38: 675–682.CrossRefPubMed
3.
go back to reference Tyagi, N., and R. Tyagi. 2015. The wonderous chaperones: a highlight on therapeutics of cancer and potentially malignant disorders. Journal of Oral and Maxillofacial Pathology 19: 212–220.CrossRefPubMedPubMedCentral Tyagi, N., and R. Tyagi. 2015. The wonderous chaperones: a highlight on therapeutics of cancer and potentially malignant disorders. Journal of Oral and Maxillofacial Pathology 19: 212–220.CrossRefPubMedPubMedCentral
4.
go back to reference Wieten, L., F. Broere, R. van der Zee, E.K. Koerkamp, J. Wagenaar, and W. van Eden. 2007. Cell stress induced HSP are targets of regulatory T cells: a role for HSP inducing compounds as anti-inflammatory immuno-modulators? FEBS Letters 581: 3716–3722.CrossRefPubMed Wieten, L., F. Broere, R. van der Zee, E.K. Koerkamp, J. Wagenaar, and W. van Eden. 2007. Cell stress induced HSP are targets of regulatory T cells: a role for HSP inducing compounds as anti-inflammatory immuno-modulators? FEBS Letters 581: 3716–3722.CrossRefPubMed
5.
go back to reference Kim, I., H.M. Shin, and W. Baek. 2005. Heat-shock response is associated with decreased production of interleukin-6 in murine aortic vascular smooth muscle cells. Naunyn-Schmiedeberg's Archives of Pharmacology 371: 27–33.CrossRefPubMed Kim, I., H.M. Shin, and W. Baek. 2005. Heat-shock response is associated with decreased production of interleukin-6 in murine aortic vascular smooth muscle cells. Naunyn-Schmiedeberg's Archives of Pharmacology 371: 27–33.CrossRefPubMed
6.
go back to reference Pockley, A.G., S.K. Calderwood, and G. Multhoff. 2009. The atheroprotective properties of Hsp70: a role for Hsp70-endothelial interactions? Cell Stress & Chaperones 14: 545–553.CrossRef Pockley, A.G., S.K. Calderwood, and G. Multhoff. 2009. The atheroprotective properties of Hsp70: a role for Hsp70-endothelial interactions? Cell Stress & Chaperones 14: 545–553.CrossRef
7.
go back to reference Bast, A., and G.R. Haenen. 1988. Interplay between lipoic acid and glutathione in the protection against microsomal lipid peroxidation. Biochimica et Biophysica Acta 963: 558–561.CrossRefPubMed Bast, A., and G.R. Haenen. 1988. Interplay between lipoic acid and glutathione in the protection against microsomal lipid peroxidation. Biochimica et Biophysica Acta 963: 558–561.CrossRefPubMed
8.
go back to reference Maczurek, A., K. Hager, M. Kenklies, M. Sharman, R. Martins, J. Enge, D.A. Carlson, and G. Münch. 2008. Lipoic acid as an anti-inflammatory and neuroprotective treatment for Alzheimer's disease. Advanced Drug Delivery Reviews 60: 1463–1470.CrossRefPubMed Maczurek, A., K. Hager, M. Kenklies, M. Sharman, R. Martins, J. Enge, D.A. Carlson, and G. Münch. 2008. Lipoic acid as an anti-inflammatory and neuroprotective treatment for Alzheimer's disease. Advanced Drug Delivery Reviews 60: 1463–1470.CrossRefPubMed
9.
go back to reference Petronilho, F., D. Florentino, L.G. Danielski, L.C. Vieira, M.M. Martins, A. Vieira, S. Bonfante, M.P. Goldim, and F. Vuolo. 2015. Alpha-Lipoic Acid Attenuates Oxidative Damage in Organs After Sepsis. Inflammation Oct 2. Petronilho, F., D. Florentino, L.G. Danielski, L.C. Vieira, M.M. Martins, A. Vieira, S. Bonfante, M.P. Goldim, and F. Vuolo. 2015. Alpha-Lipoic Acid Attenuates Oxidative Damage in Organs After Sepsis. Inflammation Oct 2.
10.
go back to reference Gorąca, A., H. Huk-Kolega, A. Piechota, P. Kleniewska, E. Ciejka, and B. Skibska. 2011. Lipoic acid—biological activity and therapeutic potential. Pharmacological Reports 63: 849–858.CrossRefPubMed Gorąca, A., H. Huk-Kolega, A. Piechota, P. Kleniewska, E. Ciejka, and B. Skibska. 2011. Lipoic acid—biological activity and therapeutic potential. Pharmacological Reports 63: 849–858.CrossRefPubMed
11.
go back to reference Gianturco, V., A. Bellomo, E. D'Ottavio, V. Formosa, A. Iori, M. Mancinella, G. Troisi, and V. Marigliano. 2009. Impact of therapy with alpha-lipoic acid (ALA) on the oxidative stress in the controlled NIDDM: a possible preventive way against the organ dysfunction? Archives of Gerontology and Geriatrics 49(Suppl 1): 129–133.CrossRefPubMed Gianturco, V., A. Bellomo, E. D'Ottavio, V. Formosa, A. Iori, M. Mancinella, G. Troisi, and V. Marigliano. 2009. Impact of therapy with alpha-lipoic acid (ALA) on the oxidative stress in the controlled NIDDM: a possible preventive way against the organ dysfunction? Archives of Gerontology and Geriatrics 49(Suppl 1): 129–133.CrossRefPubMed
12.
go back to reference Kiemer, A.K., C. Müller, and A.M. Vollmar. 2002. Inhibition of LPS-induced nitric oxide and TNF-alpha production by alpha-lipoic acid in rat Kupffer cells and in RAW 264.7 murine macrophages. Immunology and Cell Biology 80: 550–557.CrossRefPubMed Kiemer, A.K., C. Müller, and A.M. Vollmar. 2002. Inhibition of LPS-induced nitric oxide and TNF-alpha production by alpha-lipoic acid in rat Kupffer cells and in RAW 264.7 murine macrophages. Immunology and Cell Biology 80: 550–557.CrossRefPubMed
13.
go back to reference Zhang, W.J., and B. Frei. 2001. Alpha-lipoic acid inhibits TNF-alpha-induced NF-kappaB activation and adhesion molecule expression in human aortic endothelial cells. The FASEB Journal 15: 2423–2432.CrossRefPubMed Zhang, W.J., and B. Frei. 2001. Alpha-lipoic acid inhibits TNF-alpha-induced NF-kappaB activation and adhesion molecule expression in human aortic endothelial cells. The FASEB Journal 15: 2423–2432.CrossRefPubMed
14.
go back to reference Wong, A., S. Dukic-Stefanovic, J. Gasic-Milenkovic, R. Schinzel, H. Wiesinger, P. Riederer, and G. Münch. 2001. Anti-inflammatory antioxidants attenuate the expression of inducible nitric oxide synthase mediated by advanced glycation endproducts in murine microglia. European Journal of Neuroscience 14: 1961–1967.CrossRefPubMed Wong, A., S. Dukic-Stefanovic, J. Gasic-Milenkovic, R. Schinzel, H. Wiesinger, P. Riederer, and G. Münch. 2001. Anti-inflammatory antioxidants attenuate the expression of inducible nitric oxide synthase mediated by advanced glycation endproducts in murine microglia. European Journal of Neuroscience 14: 1961–1967.CrossRefPubMed
15.
go back to reference Bierhaus, A., S. Chevion, M. Chevion, M. Hofmann, P. Quehenberger, T. Illmer, T. Luther, E. Berentshtein, H. Tritschler, M. Müller, P. Wahl, R. Ziegler, and P.P. Nawroth. 1997. Advanced glycation end product-induced activation of NF-kappaB is suppressed by alpha-lipoic acid in cultured endothelial cells. Diabetes 46: 1481–1490.CrossRefPubMed Bierhaus, A., S. Chevion, M. Chevion, M. Hofmann, P. Quehenberger, T. Illmer, T. Luther, E. Berentshtein, H. Tritschler, M. Müller, P. Wahl, R. Ziegler, and P.P. Nawroth. 1997. Advanced glycation end product-induced activation of NF-kappaB is suppressed by alpha-lipoic acid in cultured endothelial cells. Diabetes 46: 1481–1490.CrossRefPubMed
16.
go back to reference Wollin, S.D., and P.J.H. Jones. 2003. α-lipoic acid and cardiovascular disease. Journal of Nutrition 133: 3327–3330.PubMed Wollin, S.D., and P.J.H. Jones. 2003. α-lipoic acid and cardiovascular disease. Journal of Nutrition 133: 3327–3330.PubMed
17.
go back to reference Xiao, Z.Q., L. Moragoda, R. Jaszewski, J.A. Hatfield, S.E.G. Fligiel, and A.P.N. Majumdar. 2001. Aging is associated with increased proliferation and decreased apoptosis in the colonic mucosa. Mechanisms of Ageing and Development 122: 1849–1864.CrossRefPubMed Xiao, Z.Q., L. Moragoda, R. Jaszewski, J.A. Hatfield, S.E.G. Fligiel, and A.P.N. Majumdar. 2001. Aging is associated with increased proliferation and decreased apoptosis in the colonic mucosa. Mechanisms of Ageing and Development 122: 1849–1864.CrossRefPubMed
18.
go back to reference Bertolotto, F., and A. Massone. 2012. Combination of alpha lipoic acid and superoxide dismutase leads to physiological and symptomatic improvements in diabetic neuropathy. Drugs in R&D 12: 29–34.CrossRef Bertolotto, F., and A. Massone. 2012. Combination of alpha lipoic acid and superoxide dismutase leads to physiological and symptomatic improvements in diabetic neuropathy. Drugs in R&D 12: 29–34.CrossRef
19.
go back to reference Hirano, T. 1998. Interleukin 6 and its receptor: ten years later. International Reviews of Immunology 16: 249–284.CrossRefPubMed Hirano, T. 1998. Interleukin 6 and its receptor: ten years later. International Reviews of Immunology 16: 249–284.CrossRefPubMed
20.
go back to reference Conti, B., I. Tabarean, C. Andrei, and T. Bartfai. 2004. Cytokines and fever. Frontiers in Bioscience 9: 1433–1449.CrossRefPubMed Conti, B., I. Tabarean, C. Andrei, and T. Bartfai. 2004. Cytokines and fever. Frontiers in Bioscience 9: 1433–1449.CrossRefPubMed
21.
go back to reference Nagaraju, K., N. Raben, G. Merritt, L. Loeffler, K. Kirk, and P. Plotz. 1998. A variety of cytokines and immunologically relevant surface molecules are expressed by normal human skeletal muscle cells under proinflammatory stimuli. Clinical and Experimental Immunology 113: 407–414.CrossRefPubMedPubMedCentral Nagaraju, K., N. Raben, G. Merritt, L. Loeffler, K. Kirk, and P. Plotz. 1998. A variety of cytokines and immunologically relevant surface molecules are expressed by normal human skeletal muscle cells under proinflammatory stimuli. Clinical and Experimental Immunology 113: 407–414.CrossRefPubMedPubMedCentral
22.
go back to reference Ostrowski, K., T. Rohde, M. Zacho, S. Asp, and B.K. Pedersen. 1998. Evidence that interleukin-6 is produced in human skeletal muscle during prolonged running. The Journal of Physiology 508: 949–953.CrossRefPubMedPubMedCentral Ostrowski, K., T. Rohde, M. Zacho, S. Asp, and B.K. Pedersen. 1998. Evidence that interleukin-6 is produced in human skeletal muscle during prolonged running. The Journal of Physiology 508: 949–953.CrossRefPubMedPubMedCentral
23.
go back to reference Kosmidou, I., T. Vassilakopoulos, A. Xagorari, S. Zakynthinos, A. Papapetropoulos, and C. Roussos. 2002. Production of interleukin-6 by skeletal myotubes: role of reactive oxygen species. American Journal of Respiratory Cell and Molecular Biology 26: 587–593.CrossRefPubMed Kosmidou, I., T. Vassilakopoulos, A. Xagorari, S. Zakynthinos, A. Papapetropoulos, and C. Roussos. 2002. Production of interleukin-6 by skeletal myotubes: role of reactive oxygen species. American Journal of Respiratory Cell and Molecular Biology 26: 587–593.CrossRefPubMed
24.
go back to reference Welc, S.S., N.A. Phillips, J. Oca-Cossio, S.M. Wallet, D.L. Chen, and T.L. Clanton. 2012. Hyperthermia increases interleukin-6 in mouse skeletal muscle. American Journal of Physiology - Cell Physiology 303: C455–466.CrossRefPubMedPubMedCentral Welc, S.S., N.A. Phillips, J. Oca-Cossio, S.M. Wallet, D.L. Chen, and T.L. Clanton. 2012. Hyperthermia increases interleukin-6 in mouse skeletal muscle. American Journal of Physiology - Cell Physiology 303: C455–466.CrossRefPubMedPubMedCentral
25.
go back to reference Welc, S.S., A.R. Judge, and T.L. Clanton. 2013. Skeletal muscle interleukin-6 regulation in hyperthermia. American Journal of Physiology - Cell Physiology 305: C406–413.CrossRefPubMed Welc, S.S., A.R. Judge, and T.L. Clanton. 2013. Skeletal muscle interleukin-6 regulation in hyperthermia. American Journal of Physiology - Cell Physiology 305: C406–413.CrossRefPubMed
26.
go back to reference Pedersen, B.K., and M.A. Febbraio. 2008. Muscle as an endocrine organ: focus on muscle-derived interleukin-6. Physiological Reviews 88: 1379–1406.CrossRefPubMed Pedersen, B.K., and M.A. Febbraio. 2008. Muscle as an endocrine organ: focus on muscle-derived interleukin-6. Physiological Reviews 88: 1379–1406.CrossRefPubMed
27.
go back to reference Portier, G.L., A.G. Benders, A. Oosterhof, J.H. Veerkamp, and T.H. van Kuppevelt. 1999. Differentiation markers of mouse C2C12 and rat L6 myogenic cell lines and the effect of the differentiation medium. In Vitro Cellular and Developmental Biology Animal 35: 219–227.CrossRefPubMed Portier, G.L., A.G. Benders, A. Oosterhof, J.H. Veerkamp, and T.H. van Kuppevelt. 1999. Differentiation markers of mouse C2C12 and rat L6 myogenic cell lines and the effect of the differentiation medium. In Vitro Cellular and Developmental Biology Animal 35: 219–227.CrossRefPubMed
28.
go back to reference Wu, P.F., S.C. Luo, and L.C. Chang. 2015. Heat-shock-induced glucose transporter 4 in the slow-twitch muscle of rats. Physiological Research 64: 523–530.PubMed Wu, P.F., S.C. Luo, and L.C. Chang. 2015. Heat-shock-induced glucose transporter 4 in the slow-twitch muscle of rats. Physiological Research 64: 523–530.PubMed
29.
go back to reference Fridovich, I. 1995. Superoxide radical and superoxide dismutases. Annual Review of Biochemistry 64: 97–112.CrossRefPubMed Fridovich, I. 1995. Superoxide radical and superoxide dismutases. Annual Review of Biochemistry 64: 97–112.CrossRefPubMed
30.
go back to reference Kirkman, H.N., and G.F. Gaetani. 2007. Mammalian catalase: a venerable enzyme with new mysteries. Trends in Biochemical Sciences 32: 44–50.CrossRefPubMed Kirkman, H.N., and G.F. Gaetani. 2007. Mammalian catalase: a venerable enzyme with new mysteries. Trends in Biochemical Sciences 32: 44–50.CrossRefPubMed
31.
go back to reference Chada, S., C. Whitney, and P.E. Newburger. 1989. Post-transcriptional regulation of glutathione peroxidase gene expression by selenium in the HL-60 human myeloid cell line. Blood 74: 2535–2541.PubMed Chada, S., C. Whitney, and P.E. Newburger. 1989. Post-transcriptional regulation of glutathione peroxidase gene expression by selenium in the HL-60 human myeloid cell line. Blood 74: 2535–2541.PubMed
32.
go back to reference Mihara, M., M. Hashizume, H. Yoshida, M. Suzuki, and M. Shiina. 2012. IL-6/IL-6 receptor system and its role in physiological and pathological conditions. Clinical Science (London, England : 1979) 122: 143–159.CrossRef Mihara, M., M. Hashizume, H. Yoshida, M. Suzuki, and M. Shiina. 2012. IL-6/IL-6 receptor system and its role in physiological and pathological conditions. Clinical Science (London, England : 1979) 122: 143–159.CrossRef
33.
go back to reference Rose-John, S. 2012. IL-6 trans-signaling via the soluble IL-6 receptor: importance for the pro-inflammatory activities of IL-6. International Journal of Biological Sciences 8: 1237–1247.CrossRefPubMedPubMedCentral Rose-John, S. 2012. IL-6 trans-signaling via the soluble IL-6 receptor: importance for the pro-inflammatory activities of IL-6. International Journal of Biological Sciences 8: 1237–1247.CrossRefPubMedPubMedCentral
34.
go back to reference Muñoz-Cánoves, P., C. Scheele, B.K. Pedersen, and A.L. Serrano. 2013. Interleukin-6 myokine signaling in skeletal muscle: a double-edged sword? FEBS Journal 280: 4131–4148.CrossRefPubMedPubMedCentral Muñoz-Cánoves, P., C. Scheele, B.K. Pedersen, and A.L. Serrano. 2013. Interleukin-6 myokine signaling in skeletal muscle: a double-edged sword? FEBS Journal 280: 4131–4148.CrossRefPubMedPubMedCentral
35.
go back to reference Kostek, M.C., K. Nagaraju, E. Pistilli, A. Sali, S.H. Lai, B. Gordon, and Y.W. Chen. 2012. IL-6 signaling blockade increases inflammation but does not affect muscle function in the mdx mouse. BMC Musculoskeletal Disorders 13: 106.CrossRefPubMedPubMedCentral Kostek, M.C., K. Nagaraju, E. Pistilli, A. Sali, S.H. Lai, B. Gordon, and Y.W. Chen. 2012. IL-6 signaling blockade increases inflammation but does not affect muscle function in the mdx mouse. BMC Musculoskeletal Disorders 13: 106.CrossRefPubMedPubMedCentral
36.
go back to reference Starkie, R., S.R. Ostrowski, S. Jauffred, M. Febbraio, and B.K. Pedersen. 2003. Exercise and IL-6 infusion inhibit endotoxin-induced TNF-alpha production in humans. The FASEB Journal 17: 884–886.PubMed Starkie, R., S.R. Ostrowski, S. Jauffred, M. Febbraio, and B.K. Pedersen. 2003. Exercise and IL-6 infusion inhibit endotoxin-induced TNF-alpha production in humans. The FASEB Journal 17: 884–886.PubMed
37.
go back to reference Jones, S.A., J. Scheller, and S. Rose-John. 2011. Therapeutic strategies for the clinical blockade of IL-6/gp130 signaling. The Journal of Clinical Investigation 121: 3375–3383.CrossRefPubMedPubMedCentral Jones, S.A., J. Scheller, and S. Rose-John. 2011. Therapeutic strategies for the clinical blockade of IL-6/gp130 signaling. The Journal of Clinical Investigation 121: 3375–3383.CrossRefPubMedPubMedCentral
38.
go back to reference Kishimoto, T. 2010. IL-6: from its discovery to clinical applications. International Immunology 22: 347–352.CrossRefPubMed Kishimoto, T. 2010. IL-6: from its discovery to clinical applications. International Immunology 22: 347–352.CrossRefPubMed
39.
go back to reference Burton, M.D., N.L. Sparkman, and R.W. Johnson. 2011. Inhibition of interleukin-6 trans-signaling in the brain facilitates recovery from lipopolysaccharide-induced sickness behavior. Journal of Neuroinflammation 8: 54.CrossRefPubMedPubMedCentral Burton, M.D., N.L. Sparkman, and R.W. Johnson. 2011. Inhibition of interleukin-6 trans-signaling in the brain facilitates recovery from lipopolysaccharide-induced sickness behavior. Journal of Neuroinflammation 8: 54.CrossRefPubMedPubMedCentral
40.
go back to reference Campbell, I.L., M. Erta, S.L. Lim, R. Frausto, U. May, S. Rose-John, J. Scheller, and J. Hidalgo. 2014. Trans-signaling is a dominant mechanism for the pathogenic actions of interleukin-6 in the brain. The Journal of Neuroscience 34: 2503–2513.CrossRefPubMed Campbell, I.L., M. Erta, S.L. Lim, R. Frausto, U. May, S. Rose-John, J. Scheller, and J. Hidalgo. 2014. Trans-signaling is a dominant mechanism for the pathogenic actions of interleukin-6 in the brain. The Journal of Neuroscience 34: 2503–2513.CrossRefPubMed
Metadata
Title
Lipoic Acid Exerts Antioxidant and Anti-inflammatory Effects in Response to Heat Shock in C2C12 Myotubes
Authors
Cheng-Tse Lee
Li-Ching Chang
Pei-Fung Wu
Publication date
01-06-2016
Publisher
Springer US
Published in
Inflammation / Issue 3/2016
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-016-0350-2

Other articles of this Issue 3/2016

Inflammation 3/2016 Go to the issue