Skip to main content
Top
Published in: Sports Medicine 6/2012

01-06-2012 | Leading Article

Genetic Inheritance Effects on Endurance and Muscle Strength

An Update

Authors: Aldo M. Costa, Luiza Breitenfeld, António J. Silva, Ana Pereira, Dr Mikel Izquierdo, Mário C. Marques

Published in: Sports Medicine | Issue 6/2012

Login to get access

Abstract

Top-level sport seems to play a natural Darwinian stage. The most outstanding athletes appear to emerge as a result of exogenous influences of nature and/or coincidence, namely, the contingency of practicing certain sport for which their talents best fit. This coincidence arises because certain individuals possess anatomical, metabolic, functional and behavioural characteristics that are precisely those required to excel in a given sport. Apart from the effects of training, there is strong evidence of genetic influence upon athletic performance. This article reviews the current state of knowledge regarding heritable genetic effects upon endurance and muscle strength, as reported by several twin and family studies. Due, probably, to the inaccuracy of the measurement procedures and sampling error, heritability estimates differ widely between studies. Even so, the genetic inheritence effects seem incontrovertible in most physical traits: ~40–70% for peak oxygen uptake and cardiac mass and structure, and ~30–90% for anaerobic power and capacity, ranging according to the metabolic category. Studies in development by several researchers at this present time seem to guarantee that future reviews will include twins and family studies concerning genes associated with the adaptive processes against hormetic agents, such as exercise, heat and oxidative stress.
Literature
1.
go back to reference Yang Y, Jemiolo B, Trappe S. Proteolytic mRNA expression in response to acute resistance exercise in human single skeletal muscle fibers. J Appl Physiol 2006; 101 (5): 1442–50PubMedCrossRef Yang Y, Jemiolo B, Trappe S. Proteolytic mRNA expression in response to acute resistance exercise in human single skeletal muscle fibers. J Appl Physiol 2006; 101 (5): 1442–50PubMedCrossRef
2.
go back to reference Freedson P, Evenson S. Familial aggregation in physical activity. Res Q Exerc Sport 1991; 62: 384–9PubMedCrossRef Freedson P, Evenson S. Familial aggregation in physical activity. Res Q Exerc Sport 1991; 62: 384–9PubMedCrossRef
3.
go back to reference Kristjansdottir G, Vilhjalmsson R. Sociodemographic differences in patterns of sedentary and physically active behavior in older children and adolescents. Acta Paediatr 2001; 90 (4): 429–35PubMedCrossRef Kristjansdottir G, Vilhjalmsson R. Sociodemographic differences in patterns of sedentary and physically active behavior in older children and adolescents. Acta Paediatr 2001; 90 (4): 429–35PubMedCrossRef
4.
go back to reference Maia JA, Thomis M, Beunen G. Genetic factors in physical activity levels: a twin study. Am J Prev Med 2002; 23 (2 Suppl.): 87–91PubMedCrossRef Maia JA, Thomis M, Beunen G. Genetic factors in physical activity levels: a twin study. Am J Prev Med 2002; 23 (2 Suppl.): 87–91PubMedCrossRef
5.
go back to reference Simonen RL, Pérusse L, Rankinen T, et al. Familial aggregation of physical activity levels in the Québec family study. Med Sci Sports Exerc 2002; 4: 1137–42 Simonen RL, Pérusse L, Rankinen T, et al. Familial aggregation of physical activity levels in the Québec family study. Med Sci Sports Exerc 2002; 4: 1137–42
6.
go back to reference Bouchard C, Malina R, Perusse L. Genetics of Fitness and Physical Performance. Champaign (IL): Human Kinetics, 1997 Bouchard C, Malina R, Perusse L. Genetics of Fitness and Physical Performance. Champaign (IL): Human Kinetics, 1997
7.
go back to reference Brutsaert TD, Parra EJ. Nature versus nurture in determining athletic ability. Med Sport Sci 2009; 54: 11–27PubMedCrossRef Brutsaert TD, Parra EJ. Nature versus nurture in determining athletic ability. Med Sport Sci 2009; 54: 11–27PubMedCrossRef
8.
go back to reference Lucia A, Moran M, Zihong H, et al. Elite athletes: are the genes the champions? Int J Sports Physiol Perform 2010; 5 (1): 98–102PubMed Lucia A, Moran M, Zihong H, et al. Elite athletes: are the genes the champions? Int J Sports Physiol Perform 2010; 5 (1): 98–102PubMed
9.
go back to reference Rankinen T, Roth SM, Bray MS, et al. Advances in exercise, fitness, and performance genomics. Med Sci Sports Exerc 2010; 42 (5): 835–46PubMedCrossRef Rankinen T, Roth SM, Bray MS, et al. Advances in exercise, fitness, and performance genomics. Med Sci Sports Exerc 2010; 42 (5): 835–46PubMedCrossRef
10.
go back to reference Beunen G, Thomis M. Gene powered? Where to go from heritability (h2) in muscle strength and power? Exerc Sport Sci Rev 2004; 32 (4): 148–54PubMedCrossRef Beunen G, Thomis M. Gene powered? Where to go from heritability (h2) in muscle strength and power? Exerc Sport Sci Rev 2004; 32 (4): 148–54PubMedCrossRef
11.
go back to reference Calvo M, Rodas G, Vallejo M, et al. Heritability of explosive power and anaerobic capacity in humans. Eur J Appl Physiol 2002; 86 (3): 218–25PubMedCrossRef Calvo M, Rodas G, Vallejo M, et al. Heritability of explosive power and anaerobic capacity in humans. Eur J Appl Physiol 2002; 86 (3): 218–25PubMedCrossRef
12.
go back to reference Tiainen K, Sipila S, Alen M, et al. Heritability of maximal isometric muscle strength in older female twins. J Appl Physiol 2004; 96 (1): 173–80PubMedCrossRef Tiainen K, Sipila S, Alen M, et al. Heritability of maximal isometric muscle strength in older female twins. J Appl Physiol 2004; 96 (1): 173–80PubMedCrossRef
13.
go back to reference Maes HH, Beunen GP, Vlietinck RF, et al. Inheritance of physical fitness in 10-yr-old twins and their parents. Med Sci Sports Exerc 1996; 28 (12): 1479–91PubMedCrossRef Maes HH, Beunen GP, Vlietinck RF, et al. Inheritance of physical fitness in 10-yr-old twins and their parents. Med Sci Sports Exerc 1996; 28 (12): 1479–91PubMedCrossRef
14.
go back to reference Thomis MA, Beunen GP, Van Leemputte M, et al. Inheritance of static and dynamic arm strength and some of its determinants. Acta Physiol Scand 1998; 163 (1): 59–71PubMedCrossRef Thomis MA, Beunen GP, Van Leemputte M, et al. Inheritance of static and dynamic arm strength and some of its determinants. Acta Physiol Scand 1998; 163 (1): 59–71PubMedCrossRef
15.
go back to reference Buxens A, Ruiz JR, Arteta D, et al. Can we predict top-level sports performance in power vs endurance events? A genetic approach. Scand J Med Sci Sports 2011; 21 (4): 570–9PubMedCrossRef Buxens A, Ruiz JR, Arteta D, et al. Can we predict top-level sports performance in power vs endurance events? A genetic approach. Scand J Med Sci Sports 2011; 21 (4): 570–9PubMedCrossRef
16.
go back to reference Eynon N, Ruiz JR, Oliveira J, et al. Genes and elite athletes: a roadmap for future research. J Physiol 2011; 589 (Pt 13): 3063–7016PubMedCrossRef Eynon N, Ruiz JR, Oliveira J, et al. Genes and elite athletes: a roadmap for future research. J Physiol 2011; 589 (Pt 13): 3063–7016PubMedCrossRef
17.
go back to reference Ruiz JR, Arteta D, Buxens A, et al. Can we identify a power-oriented polygenic profile? J Appl Physiol 2010; 108 (3): 561–6PubMedCrossRef Ruiz JR, Arteta D, Buxens A, et al. Can we identify a power-oriented polygenic profile? J Appl Physiol 2010; 108 (3): 561–6PubMedCrossRef
18.
go back to reference Gonzalez-Freire M, Santiago C, Verde Z, et al. Unique among unique. Is it genetically determined? Br J Sports Med 2009; 43 (4): 307–9PubMedCrossRef Gonzalez-Freire M, Santiago C, Verde Z, et al. Unique among unique. Is it genetically determined? Br J Sports Med 2009; 43 (4): 307–9PubMedCrossRef
19.
go back to reference Bouchard C. Overcoming barriers to progress in exercise genomics. Exerc Sports Rev 2011; 39 (4): 212–7 Bouchard C. Overcoming barriers to progress in exercise genomics. Exerc Sports Rev 2011; 39 (4): 212–7
20.
go back to reference Klissouras V. Heritability of adaptive variation. J Appl Physiol 1971; 31 (3): 338–44PubMed Klissouras V. Heritability of adaptive variation. J Appl Physiol 1971; 31 (3): 338–44PubMed
21.
go back to reference Klissouras V. Prediction of potential performance with special reference to heredity. J Sports Med Phys Fitness 1973; 13 (2): 100–7PubMed Klissouras V. Prediction of potential performance with special reference to heredity. J Sports Med Phys Fitness 1973; 13 (2): 100–7PubMed
22.
go back to reference Bouchard C, Lesage R, Lortie G, et al. Aerobic performance in brothers, dizygotic and monozygotic twins. Med Sci Sports Exerc 1986; 18 (6): 639–46PubMed Bouchard C, Lesage R, Lortie G, et al. Aerobic performance in brothers, dizygotic and monozygotic twins. Med Sci Sports Exerc 1986; 18 (6): 639–46PubMed
23.
go back to reference Fagard R, Bielen E, Amery A. Heritability of aerobic power and anaerobic energy generation during exercise. J Appl Physiol 1991; 70 (1): 357–62PubMed Fagard R, Bielen E, Amery A. Heritability of aerobic power and anaerobic energy generation during exercise. J Appl Physiol 1991; 70 (1): 357–62PubMed
24.
go back to reference Bouchard C, Daw EW, Rice T, et al. Familial resemblance for VO2max in the sedentary state: the HERITAGE Family Study. Med Sci Sports Exerc 1998; 30 (2): 252–8PubMedCrossRef Bouchard C, Daw EW, Rice T, et al. Familial resemblance for VO2max in the sedentary state: the HERITAGE Family Study. Med Sci Sports Exerc 1998; 30 (2): 252–8PubMedCrossRef
25.
go back to reference Bouchard C, An P, Rice T, et al. Familial aggregation of VO(2max) response to exercise training: results from the HERITAGE Family Study. J Appl Physiol 1999; 87 (3): 1003–8PubMed Bouchard C, An P, Rice T, et al. Familial aggregation of VO(2max) response to exercise training: results from the HERITAGE Family Study. J Appl Physiol 1999; 87 (3): 1003–8PubMed
26.
go back to reference Perusse L, Gagnon J, Province MA, et al. Familial aggregation of submaximal aerobic performance in the HERITAGE Family study. Med Sci Sports Exerc 2001; 33 (4): 597–604PubMed Perusse L, Gagnon J, Province MA, et al. Familial aggregation of submaximal aerobic performance in the HERITAGE Family study. Med Sci Sports Exerc 2001; 33 (4): 597–604PubMed
27.
go back to reference Gaskill SE, Rice T, Bouchard C, et al. Familial resemblance in ventilatory threshold: the HERITAGE Family Study. Med Sci Sports Exerc 2001; 33 (11): 1832–40PubMedCrossRef Gaskill SE, Rice T, Bouchard C, et al. Familial resemblance in ventilatory threshold: the HERITAGE Family Study. Med Sci Sports Exerc 2001; 33 (11): 1832–40PubMedCrossRef
28.
go back to reference Mustelin L, Latvala A, Pietilainen KH, et al. Associations between sports participation, cardiorespiratory fitness, and adiposity in young adult twins. J Appl Physiol 2001; 110 (3): 681–6CrossRef Mustelin L, Latvala A, Pietilainen KH, et al. Associations between sports participation, cardiorespiratory fitness, and adiposity in young adult twins. J Appl Physiol 2001; 110 (3): 681–6CrossRef
29.
go back to reference Prud’homme D, Bouchard C, Leblanc C, et al. Sensitivity of maximal aerobic power to training is genotype-dependent. Med Sci Sports Exerc 1984; 16 (5): 489–93PubMedCrossRef Prud’homme D, Bouchard C, Leblanc C, et al. Sensitivity of maximal aerobic power to training is genotype-dependent. Med Sci Sports Exerc 1984; 16 (5): 489–93PubMedCrossRef
30.
go back to reference Sundet JM, Magnus P, Tambs K. The heritability of maximal aerobic power: a study of Norwegian twins. Scand J Med Sci Sports 1994; 4: 181–5CrossRef Sundet JM, Magnus P, Tambs K. The heritability of maximal aerobic power: a study of Norwegian twins. Scand J Med Sci Sports 1994; 4: 181–5CrossRef
31.
go back to reference Lortie G, Bouchard C, Leblanc C, et al. Familial similarity in aerobic power. Hum Biol 1982; 54 (4): 801–12PubMed Lortie G, Bouchard C, Leblanc C, et al. Familial similarity in aerobic power. Hum Biol 1982; 54 (4): 801–12PubMed
32.
go back to reference Montoye HJ, Gayle R. Familial relationships in maximal oxygen uptake. Hum Biol 1978; 50 (3): 241–9PubMed Montoye HJ, Gayle R. Familial relationships in maximal oxygen uptake. Hum Biol 1978; 50 (3): 241–9PubMed
33.
go back to reference Roth SM. Genetics Primer for Exercise Science and Health. 2nd rev. ed. Champaign (IL): Human Kinetics, 2007 Roth SM. Genetics Primer for Exercise Science and Health. 2nd rev. ed. Champaign (IL): Human Kinetics, 2007
34.
go back to reference Garner C, Lecomte E, Visvikis S, et al. Genetic and environmental influences on left ventricular mass. A family study. Hypertension 2000; 36 (5): 740–6CrossRef Garner C, Lecomte E, Visvikis S, et al. Genetic and environmental influences on left ventricular mass. A family study. Hypertension 2000; 36 (5): 740–6CrossRef
35.
go back to reference Mayosi BM, Keavney B, Kardos A, et al. Electrocardio-graphic measures of left ventricular hypertrophy show greater heritability than echocardiographic left ventricular mass. Eur Heart J 2002; 23: 1963–71PubMedCrossRef Mayosi BM, Keavney B, Kardos A, et al. Electrocardio-graphic measures of left ventricular hypertrophy show greater heritability than echocardiographic left ventricular mass. Eur Heart J 2002; 23: 1963–71PubMedCrossRef
36.
go back to reference Swan L, Birnie DH, Padmanabhan S, et al. The genetic determination of left ventricular mass in healthy adults. Eur Heart J 2003; 24: 577–82PubMedCrossRef Swan L, Birnie DH, Padmanabhan S, et al. The genetic determination of left ventricular mass in healthy adults. Eur Heart J 2003; 24: 577–82PubMedCrossRef
37.
go back to reference Bella JN, MacCluer JW, Roman MJ, et al. Heritability of left ventricular dimensions and mass in American Indians: The Strong Heart Study. J Hypertens 2004; 22 (2): 281–6PubMedCrossRef Bella JN, MacCluer JW, Roman MJ, et al. Heritability of left ventricular dimensions and mass in American Indians: The Strong Heart Study. J Hypertens 2004; 22 (2): 281–6PubMedCrossRef
38.
go back to reference Juo S, Tullio M, Lin H, et al. Heritability of left ventricular mass and other morphologic variables in Caribbean Hispanic subjects: the Northern Manhattan family study. J Am Coll Cardiol 2005; 46: 735–7PubMedCrossRef Juo S, Tullio M, Lin H, et al. Heritability of left ventricular mass and other morphologic variables in Caribbean Hispanic subjects: the Northern Manhattan family study. J Am Coll Cardiol 2005; 46: 735–7PubMedCrossRef
39.
go back to reference Sharma P, Middelberg RP, Andrew T, et al. Heritability of left ventricular mass in a large cohort of twins. J Hypertens 2006; 24 (2): 321–4PubMedCrossRef Sharma P, Middelberg RP, Andrew T, et al. Heritability of left ventricular mass in a large cohort of twins. J Hypertens 2006; 24 (2): 321–4PubMedCrossRef
40.
go back to reference Busjahn CA, Schulz-Menger J, Abdel-Aty H, et al. Heritability of left ventricular and papillary muscle heart size: a twin study with cardiac magnetic resonance imaging. Eur Heart J 2009; 30 (13): 1643–7PubMedCrossRef Busjahn CA, Schulz-Menger J, Abdel-Aty H, et al. Heritability of left ventricular and papillary muscle heart size: a twin study with cardiac magnetic resonance imaging. Eur Heart J 2009; 30 (13): 1643–7PubMedCrossRef
41.
go back to reference Bielen E, Fagard R, Amery A. Inheritance of heart structure and physical exercise capacity: a study of left ventricular structure and exercise capacity in 7-year-old twins. Eur Heart J 1990; 11 (1): 7–16PubMed Bielen E, Fagard R, Amery A. Inheritance of heart structure and physical exercise capacity: a study of left ventricular structure and exercise capacity in 7-year-old twins. Eur Heart J 1990; 11 (1): 7–16PubMed
42.
go back to reference Hannukainen JC, Kujala UM, Toikka J, et al. Cardiac structure and function in monozygotic twin pairs discordant for physical fitness. J Appl Physiol 2005; 99 (2): 535–41PubMedCrossRef Hannukainen JC, Kujala UM, Toikka J, et al. Cardiac structure and function in monozygotic twin pairs discordant for physical fitness. J Appl Physiol 2005; 99 (2): 535–41PubMedCrossRef
43.
go back to reference Fagard R, Van Den Broeke C, Bielen E, et al. Maximum oxygen uptake and cardiac size and function in twins. Am J Cardiol 1987 1; 60 (16): 1362–7PubMedCrossRef Fagard R, Van Den Broeke C, Bielen E, et al. Maximum oxygen uptake and cardiac size and function in twins. Am J Cardiol 1987 1; 60 (16): 1362–7PubMedCrossRef
44.
go back to reference Chen Y. Genetics and pulmonary medicine. 10: Genetic epidemiology of pulmonary function. Thorax 1999; 54 (9): 818–24 Chen Y. Genetics and pulmonary medicine. 10: Genetic epidemiology of pulmonary function. Thorax 1999; 54 (9): 818–24
45.
go back to reference Wells JC. The thrifty phenotype as an adaptive maternal effect. Biol Rev Camb Philos Soc 2007; 82 (1): 143–72PubMedCrossRef Wells JC. The thrifty phenotype as an adaptive maternal effect. Biol Rev Camb Philos Soc 2007; 82 (1): 143–72PubMedCrossRef
46.
go back to reference Astemborski JA, Beaty TH, Cohen BH. Variance components analysis of forced expiration in families. Am J Med Genet 1985; 21:741–53PubMedCrossRef Astemborski JA, Beaty TH, Cohen BH. Variance components analysis of forced expiration in families. Am J Med Genet 1985; 21:741–53PubMedCrossRef
47.
go back to reference Lewitter FI, Tager IB, McGue M, et al. Genetic and environmental determinants of level of pulmonary function. Am J Epidemiol 1984; 120: 518–30PubMed Lewitter FI, Tager IB, McGue M, et al. Genetic and environmental determinants of level of pulmonary function. Am J Epidemiol 1984; 120: 518–30PubMed
48.
go back to reference Hubert H, Fabsitz R, Feinleib M, et al. Genetic and environmental influences on pulmonary function in adult twins. Am Rev Respir Dis 1982; 125: 409–15PubMed Hubert H, Fabsitz R, Feinleib M, et al. Genetic and environmental influences on pulmonary function in adult twins. Am Rev Respir Dis 1982; 125: 409–15PubMed
49.
go back to reference Redline S, Tishler PV, Lewitter FI, et al. Assessment of genetic and non-genetic influences on pulmonary function: a twin study. Am Rev Respir Dis 1987; 135: 217–22PubMed Redline S, Tishler PV, Lewitter FI, et al. Assessment of genetic and non-genetic influences on pulmonary function: a twin study. Am Rev Respir Dis 1987; 135: 217–22PubMed
50.
go back to reference Ghio AJ, Crapo RO, Elliott CG, et al. Heritability estimates of pulmonary function. Chest 1989; 96 (4): 743–6PubMedCrossRef Ghio AJ, Crapo RO, Elliott CG, et al. Heritability estimates of pulmonary function. Chest 1989; 96 (4): 743–6PubMedCrossRef
51.
go back to reference Takabatake N, Toriyama S, Takeishi Y, et al. A non-functioning single nucleotide polymorphism in olfactory receptor gene family is associated with the forced expiratory volume in the first second/the forced vital capacity values of pulmonary function test in a Japanese population. Biochem Biophys Res Commun 2007; 364 (3): 662–7PubMedCrossRef Takabatake N, Toriyama S, Takeishi Y, et al. A non-functioning single nucleotide polymorphism in olfactory receptor gene family is associated with the forced expiratory volume in the first second/the forced vital capacity values of pulmonary function test in a Japanese population. Biochem Biophys Res Commun 2007; 364 (3): 662–7PubMedCrossRef
52.
go back to reference Wilk JB, Chen TH, Gottlieb DJ, et al. A genome-wide association study of pulmonary function measures in the Framingham Heart Study. PLoS Genet 2009; 5 (3): e1000429PubMedCrossRef Wilk JB, Chen TH, Gottlieb DJ, et al. A genome-wide association study of pulmonary function measures in the Framingham Heart Study. PLoS Genet 2009; 5 (3): e1000429PubMedCrossRef
53.
go back to reference Wilk JB, Walter RE, Laramie JM, et al. Framingham Heart Study genome-wide association: results for pulmonary function measures. BMC Med Genet 2007; 8 Suppl. 1: S8PubMedCrossRef Wilk JB, Walter RE, Laramie JM, et al. Framingham Heart Study genome-wide association: results for pulmonary function measures. BMC Med Genet 2007; 8 Suppl. 1: S8PubMedCrossRef
54.
go back to reference Hancock DB, Eijgelsheim M, Wilk JB, et al. Meta-analyses of genome-wide association studies identify multiple loci associated with pulmonary function. Nat Genet 2010; 42 (1): 45–52PubMedCrossRef Hancock DB, Eijgelsheim M, Wilk JB, et al. Meta-analyses of genome-wide association studies identify multiple loci associated with pulmonary function. Nat Genet 2010; 42 (1): 45–52PubMedCrossRef
55.
go back to reference Mounier R, Pialoux V, Schmitt L, et al. Effects of acute hypoxia tests on blood markers in high-level endurance athletes. Eur J Appl Physiol 2009; 106 (5): 713–20PubMedCrossRef Mounier R, Pialoux V, Schmitt L, et al. Effects of acute hypoxia tests on blood markers in high-level endurance athletes. Eur J Appl Physiol 2009; 106 (5): 713–20PubMedCrossRef
56.
go back to reference Flueck M. Myocellular limitations of human performance and their modification through genome-dependent responses at altitude. Exp Physiol 2010; 95 (3): 451–62PubMedCrossRef Flueck M. Myocellular limitations of human performance and their modification through genome-dependent responses at altitude. Exp Physiol 2010; 95 (3): 451–62PubMedCrossRef
57.
go back to reference Anderson HR, Anderson JR, King HO, et al. Variations in the lung size of children in Papua New Guinea: genetic and environmental factors. Ann Hum Biol 1978; 5: 209–18PubMedCrossRef Anderson HR, Anderson JR, King HO, et al. Variations in the lung size of children in Papua New Guinea: genetic and environmental factors. Ann Hum Biol 1978; 5: 209–18PubMedCrossRef
58.
go back to reference Mueller WH, Chakraborty R, Barton SA, et al. Genes and epidemiology in anthropological adaptation studies: familial correlations in lung function in population residing at different altitudes in Chile. Med Anthrop 1980; 4: 367–84CrossRef Mueller WH, Chakraborty R, Barton SA, et al. Genes and epidemiology in anthropological adaptation studies: familial correlations in lung function in population residing at different altitudes in Chile. Med Anthrop 1980; 4: 367–84CrossRef
59.
go back to reference Lahiri S, Delaney RG, Brody JS, et al. Relative role of environmental and genetic factors in respiratory adaptation to high altitude. Nature 1976; 261: 133–5PubMedCrossRef Lahiri S, Delaney RG, Brody JS, et al. Relative role of environmental and genetic factors in respiratory adaptation to high altitude. Nature 1976; 261: 133–5PubMedCrossRef
60.
go back to reference Praagh EV. Pediatric anaerobic performance. Champaign (IL): Human Kinetics, 1998 Praagh EV. Pediatric anaerobic performance. Champaign (IL): Human Kinetics, 1998
61.
go back to reference Serresse O, Ama PF, Simoneau JA, et al. Anaerobic performance of sedentary and trained subjects. Can J Appl Sport Sci 1989; 14: 146–52 Serresse O, Ama PF, Simoneau JA, et al. Anaerobic performance of sedentary and trained subjects. Can J Appl Sport Sci 1989; 14: 146–52
62.
63.
go back to reference Bottinelli R, Reggiani C. Human skeletal muscle fibres: molecular and functional diversity. Prog Biophys Mol Biol 2000; 73 (2–4): 195–262PubMedCrossRef Bottinelli R, Reggiani C. Human skeletal muscle fibres: molecular and functional diversity. Prog Biophys Mol Biol 2000; 73 (2–4): 195–262PubMedCrossRef
64.
go back to reference Canepari M, Pellegrino MA, D’Antona G, et al. Skeletal muscle fibre diversity and the underlying mechanisms. Acta Physiol (Oxf) 2010; 199 (4): 465–76CrossRef Canepari M, Pellegrino MA, D’Antona G, et al. Skeletal muscle fibre diversity and the underlying mechanisms. Acta Physiol (Oxf) 2010; 199 (4): 465–76CrossRef
65.
go back to reference Beunen G, Thomis M. Gene driven power athletes? Genetic variation in muscular strength and power. Br J Sports Med 2006; 40 (10): 822–3CrossRef Beunen G, Thomis M. Gene driven power athletes? Genetic variation in muscular strength and power. Br J Sports Med 2006; 40 (10): 822–3CrossRef
66.
go back to reference Ahmetov II, Rogozkin VA. Genes, athlete status and training: an overview. Med Sport Sci 2009; 54: 43–71PubMedCrossRef Ahmetov II, Rogozkin VA. Genes, athlete status and training: an overview. Med Sport Sci 2009; 54: 43–71PubMedCrossRef
67.
go back to reference Thomis MA, Beunen GP, Maes HH, et al. Strength training: importance of genetic factors. Med Sci Sports Exerc 1998; 30 (5): 724–31PubMedCrossRef Thomis MA, Beunen GP, Maes HH, et al. Strength training: importance of genetic factors. Med Sci Sports Exerc 1998; 30 (5): 724–31PubMedCrossRef
68.
go back to reference Arden NK, Spector TD. Genetic influences on muscle strength, lean body mass, and bone mineral density: a twin study. J Bone Miner Res 1997; 12 (12): 2076–81PubMedCrossRef Arden NK, Spector TD. Genetic influences on muscle strength, lean body mass, and bone mineral density: a twin study. J Bone Miner Res 1997; 12 (12): 2076–81PubMedCrossRef
69.
go back to reference Zhai G, Stankovich J, Ding C, et al. The genetic contribution to muscle strength, knee pain, cartilage volume, bone size, and radiographic osteoarthritis: a sibpair study. Arthritis Rheum 2004; 50 (3): 805–10PubMedCrossRef Zhai G, Stankovich J, Ding C, et al. The genetic contribution to muscle strength, knee pain, cartilage volume, bone size, and radiographic osteoarthritis: a sibpair study. Arthritis Rheum 2004; 50 (3): 805–10PubMedCrossRef
70.
go back to reference Thomis MA, Beunen GP, Van LM, et al. M. Inheritance of static and dynamic arm strength and some of its determinants. Acta Physiol Scand 1998; 163 (1): 59–71CrossRef Thomis MA, Beunen GP, Van LM, et al. M. Inheritance of static and dynamic arm strength and some of its determinants. Acta Physiol Scand 1998; 163 (1): 59–71CrossRef
71.
go back to reference Jones B, Klissouras V. Genetic variation in the force-velocity relation of human muscle. Champain (IL): Human Kinetics, 1985 Jones B, Klissouras V. Genetic variation in the force-velocity relation of human muscle. Champain (IL): Human Kinetics, 1985
72.
go back to reference Komi P, Karlsson J. Physical performance, skeletal muscle enzyme activities, and fibers types in monozygous and dizigous twins of both sexes. Acta Physiol Scand 1979; 462: 1–28 Komi P, Karlsson J. Physical performance, skeletal muscle enzyme activities, and fibers types in monozygous and dizigous twins of both sexes. Acta Physiol Scand 1979; 462: 1–28
73.
go back to reference Tiainen K, Sipila S, Kauppinen M, et al. Genetic and environmental effects on isometric muscle strength and leg extensor power followed up for three years among older female twins. J Appl Physiol 2009 May; 106 (5): 1604–10PubMedCrossRef Tiainen K, Sipila S, Kauppinen M, et al. Genetic and environmental effects on isometric muscle strength and leg extensor power followed up for three years among older female twins. J Appl Physiol 2009 May; 106 (5): 1604–10PubMedCrossRef
74.
go back to reference Carmelli D, Reed T. Stability and change in genetic and environmental influences on hand-grip strength in older male twins. J Appl Physiol 2000; 89: 1879–83PubMed Carmelli D, Reed T. Stability and change in genetic and environmental influences on hand-grip strength in older male twins. J Appl Physiol 2000; 89: 1879–83PubMed
75.
go back to reference Komi P, Klissouras V, Karvinen E. Genetic variation in neuromuscular. Eur J Appl Physiol Occup Physiol 1973; 31:289–330CrossRef Komi P, Klissouras V, Karvinen E. Genetic variation in neuromuscular. Eur J Appl Physiol Occup Physiol 1973; 31:289–330CrossRef
76.
go back to reference Simoneau JA, Lortie G, Leblanc C, et al. Anaerobic alactacid work capacity in adopted and biological siblings. In: Malina R, Bouchard C, editors. Champaign (IL): Human Kinetics, 1986 Simoneau JA, Lortie G, Leblanc C, et al. Anaerobic alactacid work capacity in adopted and biological siblings. In: Malina R, Bouchard C, editors. Champaign (IL): Human Kinetics, 1986
77.
go back to reference Wolanski N, Tomonori K, Siniaraka A. Genetics and the motor development of man. J Hum Ecol 1980; 46: 169–91CrossRef Wolanski N, Tomonori K, Siniaraka A. Genetics and the motor development of man. J Hum Ecol 1980; 46: 169–91CrossRef
78.
go back to reference Missitzi J, Geladas N, Klissouras V. Heritability in neuromuscular coordination: implications for motor control strategies. Med Sci Sports Exerc 2004; 36 (2): 233–40PubMedCrossRef Missitzi J, Geladas N, Klissouras V. Heritability in neuromuscular coordination: implications for motor control strategies. Med Sci Sports Exerc 2004; 36 (2): 233–40PubMedCrossRef
79.
go back to reference Maridaki M. Heritability of neuromuscular performance and anaerobic power in preadolescent and adolescent girls. J Sports Med Phys Fitness 2006; 46: 540–7PubMed Maridaki M. Heritability of neuromuscular performance and anaerobic power in preadolescent and adolescent girls. J Sports Med Phys Fitness 2006; 46: 540–7PubMed
80.
go back to reference Loos R, Thomis M, Maes HH, et al. Gender-specific regional changes in genetic structure of muscularity in early adolescence. J Appl Physiol 1997; 82 (6): 1802–10PubMed Loos R, Thomis M, Maes HH, et al. Gender-specific regional changes in genetic structure of muscularity in early adolescence. J Appl Physiol 1997; 82 (6): 1802–10PubMed
81.
go back to reference Sanchez-Andres A, Mesa MS. Heritabilities of morphological and body composition characteristics in a Spanish population. Anthropol Anz 1994; 52 (4): 341–9PubMed Sanchez-Andres A, Mesa MS. Heritabilities of morphological and body composition characteristics in a Spanish population. Anthropol Anz 1994; 52 (4): 341–9PubMed
82.
go back to reference Komi P, Viitasalo JT, Havu M, et al. Skeletal muscle fibers and muscle enzyme activities in monozygous and dizygous twins of both sexes. Acta Physiol Scand 1977; 100: 385–92PubMed Komi P, Viitasalo JT, Havu M, et al. Skeletal muscle fibers and muscle enzyme activities in monozygous and dizygous twins of both sexes. Acta Physiol Scand 1977; 100: 385–92PubMed
83.
go back to reference Simoneau JA, Bouchard C. Skeletal muscle metabolism and body fat content in men and women. Obes Res 1995; 3 (1): 23–9PubMedCrossRef Simoneau JA, Bouchard C. Skeletal muscle metabolism and body fat content in men and women. Obes Res 1995; 3 (1): 23–9PubMedCrossRef
84.
go back to reference Thibault MC, Simoneau JA, Cote C, et al. Inheritance of human muscle enzyme adaptation to isokinetic strength training. Hum Hered 1986; 36 (6): 341–7PubMedCrossRef Thibault MC, Simoneau JA, Cote C, et al. Inheritance of human muscle enzyme adaptation to isokinetic strength training. Hum Hered 1986; 36 (6): 341–7PubMedCrossRef
85.
go back to reference Gibbons LE, Videman T, Battie MC. Determinants of isokinetic and psychophysical lifting strength and static back muscle endurance: a study of male monozygotic twins. Spine (Phila Pa 1976) 1997; 22 (24): 2983–90CrossRef Gibbons LE, Videman T, Battie MC. Determinants of isokinetic and psychophysical lifting strength and static back muscle endurance: a study of male monozygotic twins. Spine (Phila Pa 1976) 1997; 22 (24): 2983–90CrossRef
86.
go back to reference Peeters MW, Thomis MA, Maes HH, et al. Genetic and environmental causes of tracking in explosive strength during adolescence. Behav Genet 2005; 35 (5): 551–63PubMedCrossRef Peeters MW, Thomis MA, Maes HH, et al. Genetic and environmental causes of tracking in explosive strength during adolescence. Behav Genet 2005; 35 (5): 551–63PubMedCrossRef
87.
go back to reference Prior SJ, Roth SM, Wang X, et al. Genetic and environmental influences on skeletal muscle phenotypes as a function of age and sex in large, multigenerational families of African heritage. J Appl Physiol 2007; 103 (4): 1121–7PubMedCrossRef Prior SJ, Roth SM, Wang X, et al. Genetic and environmental influences on skeletal muscle phenotypes as a function of age and sex in large, multigenerational families of African heritage. J Appl Physiol 2007; 103 (4): 1121–7PubMedCrossRef
Metadata
Title
Genetic Inheritance Effects on Endurance and Muscle Strength
An Update
Authors
Aldo M. Costa
Luiza Breitenfeld
António J. Silva
Ana Pereira
Dr Mikel Izquierdo
Mário C. Marques
Publication date
01-06-2012
Publisher
Springer International Publishing
Published in
Sports Medicine / Issue 6/2012
Print ISSN: 0112-1642
Electronic ISSN: 1179-2035
DOI
https://doi.org/10.2165/11650560-000000000-00000

Other articles of this Issue 6/2012

Sports Medicine 6/2012 Go to the issue