Skip to main content
Top
Published in: CNS Drugs 6/2012

01-06-2012 | Leading Article

Antioxidants as Antidepressants

Fact or Fiction?

Authors: Dr Giovanni Scapagnini, Sergio Davinelli, Filippo Drago, Antonino De Lorenzo, Giovannangelo Oriani

Published in: CNS Drugs | Issue 6/2012

Login to get access

Abstract

Depression is a medical condition with a complex biological pattern of aetiology, involving genetic and epigenetic factors, along with different environmental stressors. Recent evidence suggests that oxidative stress pro-cesses might play a relevant role in the pathogenic mechanism(s) underlying many major psychiatric disorders, including depression.
Reactive oxygen and nitrogen species have been shown to modulate levels and activity of noradrenaline (norepinephrine), serotonin, dopamine and glutamate, the principal neurotransmitters involved in the neurobiology of depression. Major depression has been associated with lowered concentrations of several endogenous antioxidant compounds, such as vitamin E, zinc and coenzyme Q10, or enzymes, such as glutathione peroxidase, and with an impairment of the total antioxidant status. These observations introduce new potential targets for the development of therapeutic interventions based on antioxidant compounds.
The present review focuses on the possible role of oxidative stress processes in the pathogenesis of depression. The therapeutic potential of antioxidant compounds as a co-adjuvant treatment to conventional antidepressants is discussed. For instance, N-acetyl-cysteine has been shown to have a signif-icant benefit on depressive symptoms in a randomized placebo-controlled trial. Additionally, curcumin, the yellow pigment of curry, has been shown to strongly interfere with neuronal redox homeostasis in the CNS and to possess antidepressant activity in various animal models of depression, also thanks to its ability to inhibit monoamine oxidases. There is an urgent need to develop better tolerated and more effective treatments for depressive disorders and several antioxidant treatments appear promising and deserve further study.
Literature
1.
go back to reference Murray C, Lopez A. Alternative projections of mortality and disability by cause 1990–2020: Global Burden of Disease Study. Lancet 1997; 349(9064): 1498–504PubMedCrossRef Murray C, Lopez A. Alternative projections of mortality and disability by cause 1990–2020: Global Burden of Disease Study. Lancet 1997; 349(9064): 1498–504PubMedCrossRef
2.
go back to reference Maes M, Leonard B, Fernandez A, et al. (Neuro)in-flammation and neuroprogression as new pathways and drug targets in depression: from antioxidants to kinase inhibitors. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35(3): 659–63PubMedCrossRef Maes M, Leonard B, Fernandez A, et al. (Neuro)in-flammation and neuroprogression as new pathways and drug targets in depression: from antioxidants to kinase inhibitors. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35(3): 659–63PubMedCrossRef
3.
go back to reference Kulkarni S, Dhir A, Akula KK. Potentials of curcumin as an antidepressant. Scientific World J 2009; 9: 1233–41CrossRef Kulkarni S, Dhir A, Akula KK. Potentials of curcumin as an antidepressant. Scientific World J 2009; 9: 1233–41CrossRef
4.
5.
go back to reference Schildkraut JJ. The catecholamine hypothesis of affective disorders: a review of supporting evidence. Am J Psychiatry 1965; 122(5): 509–22PubMed Schildkraut JJ. The catecholamine hypothesis of affective disorders: a review of supporting evidence. Am J Psychiatry 1965; 122(5): 509–22PubMed
6.
go back to reference Owens MJ. Selectivity of antidepressants: from the monoamine hypothesis of depression to the SSRI revolution and beyond. J Clin Psychiatry 2004; 65 Suppl. 4: 5–10PubMed Owens MJ. Selectivity of antidepressants: from the monoamine hypothesis of depression to the SSRI revolution and beyond. J Clin Psychiatry 2004; 65 Suppl. 4: 5–10PubMed
7.
go back to reference Maes M, Bosmans E, Suy E, et al. Immune disturbances during major depression: upregulated expression of interleukin-2 receptors. Neuropsychobiology 1990–1991; 24(3): 115–20PubMedCrossRef Maes M, Bosmans E, Suy E, et al. Immune disturbances during major depression: upregulated expression of interleukin-2 receptors. Neuropsychobiology 1990–1991; 24(3): 115–20PubMedCrossRef
8.
go back to reference Stefansson H, Ophoff RA, Steinberg S, et al. Common variants conferring risk of schizophrenia. Nature 2009; 460(7256): 744–7PubMed Stefansson H, Ophoff RA, Steinberg S, et al. Common variants conferring risk of schizophrenia. Nature 2009; 460(7256): 744–7PubMed
9.
go back to reference Maes M, Smith R, Scharpe S. The monocyte-T-lymphocyte hypothesis of major depression. Psychoneuroendocrinology 1995; 20(2): 111–6PubMedCrossRef Maes M, Smith R, Scharpe S. The monocyte-T-lymphocyte hypothesis of major depression. Psychoneuroendocrinology 1995; 20(2): 111–6PubMedCrossRef
10.
go back to reference Zorrilla EP, Luborsky L, McKay JR, et al. The relationship of depression and stressors to immunological assays: a meta-analytic review. Brain Behav Immun 2001; 15(3): 199–226PubMedCrossRef Zorrilla EP, Luborsky L, McKay JR, et al. The relationship of depression and stressors to immunological assays: a meta-analytic review. Brain Behav Immun 2001; 15(3): 199–226PubMedCrossRef
11.
go back to reference Dowlati Y, Herrmann N, Swardfager W, et al. A metaanalysis of cytokines in major depression. Biol Psychiatry 2010; 67(5): 446–57PubMedCrossRef Dowlati Y, Herrmann N, Swardfager W, et al. A metaanalysis of cytokines in major depression. Biol Psychiatry 2010; 67(5): 446–57PubMedCrossRef
12.
go back to reference Bower JE, Ganz PA, Aziz N, et al. Fatigue and proinflammatory cytokine activity in breast cancer survivors. Psychosom Med 2002; 64(4): 604–11PubMed Bower JE, Ganz PA, Aziz N, et al. Fatigue and proinflammatory cytokine activity in breast cancer survivors. Psychosom Med 2002; 64(4): 604–11PubMed
13.
go back to reference Meyers CA, Albitar M, Estey E. Cognitive impairment, fatigue, and cytokine levels in patients with acute myelogenous leukemia or myelodysplastic syndrome. Cancer 2005; 104(4): 788–93PubMedCrossRef Meyers CA, Albitar M, Estey E. Cognitive impairment, fatigue, and cytokine levels in patients with acute myelogenous leukemia or myelodysplastic syndrome. Cancer 2005; 104(4): 788–93PubMedCrossRef
14.
go back to reference Motivala SJ, Sarfatti A, Olmos L, et al. Inflammatory markers and sleep disturbance in major depression. Psychosom Med 2005; 67(2): 187–94PubMedCrossRef Motivala SJ, Sarfatti A, Olmos L, et al. Inflammatory markers and sleep disturbance in major depression. Psychosom Med 2005; 67(2): 187–94PubMedCrossRef
15.
go back to reference Sprague AH, Khalil RA. Inflammatory cytokines in vascular dysfunction and vascular disease. Biochem Pharmacol 2009; 78(6): 539–52PubMedCrossRef Sprague AH, Khalil RA. Inflammatory cytokines in vascular dysfunction and vascular disease. Biochem Pharmacol 2009; 78(6): 539–52PubMedCrossRef
16.
go back to reference Halliwell B. Biochemistry of oxidative stress. Biochem Soc Trans 2007; 35(Pt 5): 1147–50PubMed Halliwell B. Biochemistry of oxidative stress. Biochem Soc Trans 2007; 35(Pt 5): 1147–50PubMed
17.
go back to reference Edwards R, Peet M, Shay J, et al. Depletion of doco-sahexaenoic acid in red blood cell membranes of depressive patients. Biochem Soc Trans 1998; 26(2): S142PubMed Edwards R, Peet M, Shay J, et al. Depletion of doco-sahexaenoic acid in red blood cell membranes of depressive patients. Biochem Soc Trans 1998; 26(2): S142PubMed
18.
go back to reference Maes M, Christophe A, Delanghe J, et al. Lowered omega3 polyunsaturated fatty acids in serum phospholipids and cholesteryl esters of depressed patients. Psychiatry Res 1999; 85(3): 275–91PubMedCrossRef Maes M, Christophe A, Delanghe J, et al. Lowered omega3 polyunsaturated fatty acids in serum phospholipids and cholesteryl esters of depressed patients. Psychiatry Res 1999; 85(3): 275–91PubMedCrossRef
19.
go back to reference Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of aging. Nature 2000; 408(6809): 239–47PubMedCrossRef Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of aging. Nature 2000; 408(6809): 239–47PubMedCrossRef
20.
go back to reference Bortolato M, Chen K, Shih JC. Monoamine oxidase in-activation: from pathophysiology to therapeutics. Adv Drug Deliv Rev 2008; 60(13–14): 1527–33PubMedCrossRef Bortolato M, Chen K, Shih JC. Monoamine oxidase in-activation: from pathophysiology to therapeutics. Adv Drug Deliv Rev 2008; 60(13–14): 1527–33PubMedCrossRef
21.
go back to reference Gardner A, Pagani M, Wibom R, et al. Alterations of rCBF and mitochondrial dysfunction in major depressive disorder: a case report. Acta Psychiatr Scand 2003; 107(3): 233–9PubMedCrossRef Gardner A, Pagani M, Wibom R, et al. Alterations of rCBF and mitochondrial dysfunction in major depressive disorder: a case report. Acta Psychiatr Scand 2003; 107(3): 233–9PubMedCrossRef
22.
go back to reference Stockmeier CA, Mahajan GJ, Konick LC, et al. Cellular changes in the postmortem hippocampus in major depression. Biol Psychiatry 2004; 56(9): 640–50PubMedCrossRef Stockmeier CA, Mahajan GJ, Konick LC, et al. Cellular changes in the postmortem hippocampus in major depression. Biol Psychiatry 2004; 56(9): 640–50PubMedCrossRef
23.
go back to reference Campbell S, MacQueen G. An update on regional brain volume differences associated with mood disorders. Curr Opin Psychiatry 2006; 19(1): 25–33PubMedCrossRef Campbell S, MacQueen G. An update on regional brain volume differences associated with mood disorders. Curr Opin Psychiatry 2006; 19(1): 25–33PubMedCrossRef
24.
go back to reference Zou K, Deng W, Li T, et al. Changes of brain morphometry in first-episode, drug-naïve, non-late-life adult patients with major depression: an optimized voxel-based morphometry study. Biol Psychiatry 2010; 67(2): 186–8PubMedCrossRef Zou K, Deng W, Li T, et al. Changes of brain morphometry in first-episode, drug-naïve, non-late-life adult patients with major depression: an optimized voxel-based morphometry study. Biol Psychiatry 2010; 67(2): 186–8PubMedCrossRef
25.
go back to reference Baune BT, Miller R, McAfoose J, et al. The role of cognitive impairment in general functioning in major depression. Psychiatry Res 2010; 176(2–3): 183–9PubMedCrossRef Baune BT, Miller R, McAfoose J, et al. The role of cognitive impairment in general functioning in major depression. Psychiatry Res 2010; 176(2–3): 183–9PubMedCrossRef
26.
go back to reference Aznar S, Knudsen GM. Depression and Alzheimer’s disease: is stress the initiating factor in a common neuro-pathological cascade? J Alzheimers Dis 2011; 23(2): 177–93PubMed Aznar S, Knudsen GM. Depression and Alzheimer’s disease: is stress the initiating factor in a common neuro-pathological cascade? J Alzheimers Dis 2011; 23(2): 177–93PubMed
27.
go back to reference Hibbeln JR, Salem Jr N. Dietary polyunsaturated fatty acids and depression: when cholesterol does not satisfy. Am J Clin Nutr 1995; 62(1): 1–9PubMed Hibbeln JR, Salem Jr N. Dietary polyunsaturated fatty acids and depression: when cholesterol does not satisfy. Am J Clin Nutr 1995; 62(1): 1–9PubMed
28.
go back to reference Wolkowitz OM, Mellon SH, Epel ES, et al. Leukocyte telomere length in major depression: correlations with chronicity, inflammation and oxidative stress-preliminary findings. PLoS One 2011; 6(3): e17837PubMedCrossRef Wolkowitz OM, Mellon SH, Epel ES, et al. Leukocyte telomere length in major depression: correlations with chronicity, inflammation and oxidative stress-preliminary findings. PLoS One 2011; 6(3): e17837PubMedCrossRef
29.
go back to reference Eren I, Nazroglu M, Demirdas A, et al. Venlafaxine modulates depression-induced oxidative stress in brain and medulla of rat. Neurochem Res 2007; 32(3): 497–505PubMedCrossRef Eren I, Nazroglu M, Demirdas A, et al. Venlafaxine modulates depression-induced oxidative stress in brain and medulla of rat. Neurochem Res 2007; 32(3): 497–505PubMedCrossRef
30.
go back to reference Bilici M, Efe H, Koroglu MA, et al. Antioxidative enzyme activities and lipid peroxidation in major depression: alterations by antidepressant treatments. J Affective Disord 2001; 64(1): 43–51CrossRef Bilici M, Efe H, Koroglu MA, et al. Antioxidative enzyme activities and lipid peroxidation in major depression: alterations by antidepressant treatments. J Affective Disord 2001; 64(1): 43–51CrossRef
31.
go back to reference Sarandol A, Sarandol E, Eker SS, et al. Major depressive disorder is accompanied with oxidative stress: short-term antidepressant treatment does not alter oxidative-antioxidative systems. Hum Psychopharmacol Clin Exp 2007; 22(2): 67–73CrossRef Sarandol A, Sarandol E, Eker SS, et al. Major depressive disorder is accompanied with oxidative stress: short-term antidepressant treatment does not alter oxidative-antioxidative systems. Hum Psychopharmacol Clin Exp 2007; 22(2): 67–73CrossRef
32.
go back to reference Khanzode SD, Dakhale GN, Khanzode SS, et al. Oxidative damage and major depression: the potential antioxidant action of selective serotonin re-uptake inhibitors. Redox Rep 2003; 8(6): 365–70PubMedCrossRef Khanzode SD, Dakhale GN, Khanzode SS, et al. Oxidative damage and major depression: the potential antioxidant action of selective serotonin re-uptake inhibitors. Redox Rep 2003; 8(6): 365–70PubMedCrossRef
33.
go back to reference Selley ML. Increased (E)-4-hydroxy-2-nonenal and asymmetric dimethylarginine concentrations and decreased nitric oxide concentrations in the plasma of patients with major depression. J Affect Disord. 2004; 80(2–3): 249–56PubMedCrossRef Selley ML. Increased (E)-4-hydroxy-2-nonenal and asymmetric dimethylarginine concentrations and decreased nitric oxide concentrations in the plasma of patients with major depression. J Affect Disord. 2004; 80(2–3): 249–56PubMedCrossRef
34.
go back to reference Britt SG, Chiu VW, Redpath GT, et al. Elimination of ascorbic acid-induced membrane lipid peroxidation and serotonin receptor loss by Trolox-C, a water soluble analogue of vitamin E. J Recept Res 1992; 12(2): 181–200PubMed Britt SG, Chiu VW, Redpath GT, et al. Elimination of ascorbic acid-induced membrane lipid peroxidation and serotonin receptor loss by Trolox-C, a water soluble analogue of vitamin E. J Recept Res 1992; 12(2): 181–200PubMed
35.
go back to reference Takuma Baba A, Matsuda T. Astrocyte apoptosis: implications for neuroprotection. Prog Neurobiol 2004; 72(2): 111–27CrossRef Takuma Baba A, Matsuda T. Astrocyte apoptosis: implications for neuroprotection. Prog Neurobiol 2004; 72(2): 111–27CrossRef
36.
go back to reference Mattson MP. Modification of ion homeostasis by lipid peroxidation: roles in neuronal degeneration and adaptive plasticity. Trends Neurosci 1998; 21(2): 53–7PubMedCrossRef Mattson MP. Modification of ion homeostasis by lipid peroxidation: roles in neuronal degeneration and adaptive plasticity. Trends Neurosci 1998; 21(2): 53–7PubMedCrossRef
37.
go back to reference Maes M, Mihaylova I, Kubera M, et al. IgM-mediated autoimmune responses directed against multiple neoepitopes in depression: new pathways that underpin the inflammatory and neuroprogressive pathophysiology. J Affect Disord 2011; 135(1–3): 414–8PubMedCrossRef Maes M, Mihaylova I, Kubera M, et al. IgM-mediated autoimmune responses directed against multiple neoepitopes in depression: new pathways that underpin the inflammatory and neuroprogressive pathophysiology. J Affect Disord 2011; 135(1–3): 414–8PubMedCrossRef
38.
go back to reference Maes M, Ringel K, Kubera M, et al. Increased autoimmune activity against 5-HT: a key component of depression that is associated with inflammation and activation of cell-mediated immunity, and with severity and staging of depression. J Affect Disord. Epub 2011 Dec 12 Maes M, Ringel K, Kubera M, et al. Increased autoimmune activity against 5-HT: a key component of depression that is associated with inflammation and activation of cell-mediated immunity, and with severity and staging of depression. J Affect Disord. Epub 2011 Dec 12
39.
go back to reference Szuster-Ciesielska A, Slotwińska M, Stachura A, et al. Accelerated apoptosis of blood leukocytes and oxidative stress in blood of patients with major depression. Prog Neuropsychopharmacol Biol Psychiatry 2008; 32(3): 686–94PubMedCrossRef Szuster-Ciesielska A, Slotwińska M, Stachura A, et al. Accelerated apoptosis of blood leukocytes and oxidative stress in blood of patients with major depression. Prog Neuropsychopharmacol Biol Psychiatry 2008; 32(3): 686–94PubMedCrossRef
40.
go back to reference Herken H, Gurel A, Selek S, et al. Adenosine deaminase, nitric oxide, superoxide dismutase, and xanthine oxidase in patients with major depression: impact of antidepressant treatment. Arch Med Res 2007; 38(2): 247–52PubMedCrossRef Herken H, Gurel A, Selek S, et al. Adenosine deaminase, nitric oxide, superoxide dismutase, and xanthine oxidase in patients with major depression: impact of antidepressant treatment. Arch Med Res 2007; 38(2): 247–52PubMedCrossRef
41.
go back to reference Cumurcu BE, Ozyurt H, Etikan I, et al. Total antioxidant capacity and total oxidant status in patients with major depression: impact of antidepressant treatment. Psychiatry Clin Neurosci 2009; 63(5): 639–45PubMedCrossRef Cumurcu BE, Ozyurt H, Etikan I, et al. Total antioxidant capacity and total oxidant status in patients with major depression: impact of antidepressant treatment. Psychiatry Clin Neurosci 2009; 63(5): 639–45PubMedCrossRef
42.
go back to reference Clay HB, Sillivan S, Konradi C. Mitochondrial dysfunction and pathology in bipolar disorder and schizophrenia. Int J Dev Neurosci 2011; 29(3): 311–24PubMedCrossRef Clay HB, Sillivan S, Konradi C. Mitochondrial dysfunction and pathology in bipolar disorder and schizophrenia. Int J Dev Neurosci 2011; 29(3): 311–24PubMedCrossRef
43.
go back to reference Fattal O, Budur K, Vaughan AJ, et al. Review of the literature on major mental disorders in adult patients with mitochondrial diseases. Psychosomatics 2006; 47(1): 1–7PubMedCrossRef Fattal O, Budur K, Vaughan AJ, et al. Review of the literature on major mental disorders in adult patients with mitochondrial diseases. Psychosomatics 2006; 47(1): 1–7PubMedCrossRef
44.
go back to reference Shao L, Martin MV, Watson SJ, et al. Mitochondrial involvement in psychiatric disorders. Ann Med 2008; 40(4): 281–95PubMedCrossRef Shao L, Martin MV, Watson SJ, et al. Mitochondrial involvement in psychiatric disorders. Ann Med 2008; 40(4): 281–95PubMedCrossRef
45.
go back to reference Ben-Shachar D, Karry R. Neuroanatomical pattern of mitochondrial complex I pathology varies between schizophrenia, bipolar disorder and major depression. PLoS One 2008; 3(11):e3676PubMedCrossRef Ben-Shachar D, Karry R. Neuroanatomical pattern of mitochondrial complex I pathology varies between schizophrenia, bipolar disorder and major depression. PLoS One 2008; 3(11):e3676PubMedCrossRef
46.
go back to reference Andreazza AC, Kauer-Sant’anna M, Frey BN, et al. Oxidative stress markers in bipolar disorder: a meta-analysis. J Affect Disord 2008; 111(2–3): 135–44PubMedCrossRef Andreazza AC, Kauer-Sant’anna M, Frey BN, et al. Oxidative stress markers in bipolar disorder: a meta-analysis. J Affect Disord 2008; 111(2–3): 135–44PubMedCrossRef
47.
go back to reference Abdalla DS, Monteiro HP, Oliveira JA, et al. Activities of superoxide dismutase and glutathione peroxidase in schizophrenic and manic-depressive patients. Clin Chem 1986; 32(5): 805–7PubMed Abdalla DS, Monteiro HP, Oliveira JA, et al. Activities of superoxide dismutase and glutathione peroxidase in schizophrenic and manic-depressive patients. Clin Chem 1986; 32(5): 805–7PubMed
48.
go back to reference Kuloglu M, Ustundag B, Atmaca M, et al. Lipid peroxidation and antioxidant enzyme levels in patients with schizophrenia and bipolar disorder. Cell Biochem Funct 2002; 20(2): 171–5PubMedCrossRef Kuloglu M, Ustundag B, Atmaca M, et al. Lipid peroxidation and antioxidant enzyme levels in patients with schizophrenia and bipolar disorder. Cell Biochem Funct 2002; 20(2): 171–5PubMedCrossRef
49.
go back to reference Andreazza AC, Frey BN, Erdtmann B, et al. DNA damage in bipolar disorder. Psychiatry Res 2007; 153(1): 27–32PubMedCrossRef Andreazza AC, Frey BN, Erdtmann B, et al. DNA damage in bipolar disorder. Psychiatry Res 2007; 153(1): 27–32PubMedCrossRef
50.
go back to reference Wang JF, Shao L, Sun X, et al. Increased oxidative stress in the anterior cingulate cortex of subjects with bipolar disorder and schizophrenia. Bipolar Disord 2009; 11(5): 523–9PubMedCrossRef Wang JF, Shao L, Sun X, et al. Increased oxidative stress in the anterior cingulate cortex of subjects with bipolar disorder and schizophrenia. Bipolar Disord 2009; 11(5): 523–9PubMedCrossRef
51.
go back to reference Kato T, Kato N. Mitochondrial dysfunction in bipolar disorder. Bipolar Disord 2000; 2(3 Pt 1): 180–90PubMedCrossRef Kato T, Kato N. Mitochondrial dysfunction in bipolar disorder. Bipolar Disord 2000; 2(3 Pt 1): 180–90PubMedCrossRef
52.
go back to reference Andreazza AC, Kapczinski F, Kauer-Sant’Anna M, et al. 3-Nitrotyrosine and glutathione antioxidant system in patients in the early and late stages of bipolar disorder. J Psychiatry Neurosci 2009; 34(4): 263–71PubMed Andreazza AC, Kapczinski F, Kauer-Sant’Anna M, et al. 3-Nitrotyrosine and glutathione antioxidant system in patients in the early and late stages of bipolar disorder. J Psychiatry Neurosci 2009; 34(4): 263–71PubMed
53.
go back to reference Iwamoto K, Bundo M, Kato T. Altered expression of mitochondria-related genes in postmortem brains of patients with bipolar disorder or schizophrenia, as revealed by large-scale DNA microarray analysis. Hum Mol Genet 2005; 14(2): 241–53PubMedCrossRef Iwamoto K, Bundo M, Kato T. Altered expression of mitochondria-related genes in postmortem brains of patients with bipolar disorder or schizophrenia, as revealed by large-scale DNA microarray analysis. Hum Mol Genet 2005; 14(2): 241–53PubMedCrossRef
54.
go back to reference Huang J, Perlis RH, Lee PH, et al. Cross-disorder genome-wide analysis of schizophrenia, bipolar disorder, and depression. Am J Psychiatry 2010; 167(10): 1254–63PubMedCrossRef Huang J, Perlis RH, Lee PH, et al. Cross-disorder genome-wide analysis of schizophrenia, bipolar disorder, and depression. Am J Psychiatry 2010; 167(10): 1254–63PubMedCrossRef
55.
go back to reference Gawryluk JW, Wang JF, Andreazza AC, et al. Decreased levels of glutathione, the major brain antioxidant, in postmortem prefrontal cortex from patients with psychiatric disorders. Int J Neuropsychopharmacol 2011; 14(1): 123–30PubMedCrossRef Gawryluk JW, Wang JF, Andreazza AC, et al. Decreased levels of glutathione, the major brain antioxidant, in postmortem prefrontal cortex from patients with psychiatric disorders. Int J Neuropsychopharmacol 2011; 14(1): 123–30PubMedCrossRef
56.
go back to reference Gawryluk JW, Wang JF, Andreazza AC, et al. Prefrontal cortex glutathione S-transferase levels in patients with bipolar disorder, major depression and schizophrenia. Int J Neuropsychopharmacol 2011; 14(8): 1069–74PubMedCrossRef Gawryluk JW, Wang JF, Andreazza AC, et al. Prefrontal cortex glutathione S-transferase levels in patients with bipolar disorder, major depression and schizophrenia. Int J Neuropsychopharmacol 2011; 14(8): 1069–74PubMedCrossRef
57.
go back to reference Kapczinski F, Frey BN, Andreazza AC, et al. Increased oxidative stress as a mechanism for decreased BDNF levels in acute manic episodes. Rev Bras Psiquiatr 2008; 30(3): 243–5PubMedCrossRef Kapczinski F, Frey BN, Andreazza AC, et al. Increased oxidative stress as a mechanism for decreased BDNF levels in acute manic episodes. Rev Bras Psiquiatr 2008; 30(3): 243–5PubMedCrossRef
58.
go back to reference Kuloglu M, Atmaca M, Tezcan E, et al. Antioxidant enzyme activities and malondialdehyde levels in patients with obsessive-compulsive disorder. Neuropsychobiology 2002; 46(1): 27–32PubMedCrossRef Kuloglu M, Atmaca M, Tezcan E, et al. Antioxidant enzyme activities and malondialdehyde levels in patients with obsessive-compulsive disorder. Neuropsychobiology 2002; 46(1): 27–32PubMedCrossRef
59.
go back to reference Chakraborty S, Singh OP, Dasgupta A, et al. Correlation between lipid peroxidation-induced TBARS level and disease severity in obsessive-compulsive disorder. Prog Neuropsychopharmacol Biol Psychiatry 2009; 33(2): 363–6PubMedCrossRef Chakraborty S, Singh OP, Dasgupta A, et al. Correlation between lipid peroxidation-induced TBARS level and disease severity in obsessive-compulsive disorder. Prog Neuropsychopharmacol Biol Psychiatry 2009; 33(2): 363–6PubMedCrossRef
60.
go back to reference Ersan S, Bakir S, Erdal Ersan E, et al. Examination of free radical metabolism and antioxidant defence system elements in patients with obsessive-compulsive disorder. Prog Neuropsychopharmacol Biol Psychiatry 2006; 30(6): 1039–42PubMedCrossRef Ersan S, Bakir S, Erdal Ersan E, et al. Examination of free radical metabolism and antioxidant defence system elements in patients with obsessive-compulsive disorder. Prog Neuropsychopharmacol Biol Psychiatry 2006; 30(6): 1039–42PubMedCrossRef
61.
go back to reference Ozdemir E, Cetinkaya S, Ersan S, et al. Serum selenium and plasma malondialdehyde levels and antioxidant enzyme activities in patients with obsessive-compulsive disorder. Prog Neuropsychopharmacol Biol Psychiatry 2009; 33(1): 62–5PubMedCrossRef Ozdemir E, Cetinkaya S, Ersan S, et al. Serum selenium and plasma malondialdehyde levels and antioxidant enzyme activities in patients with obsessive-compulsive disorder. Prog Neuropsychopharmacol Biol Psychiatry 2009; 33(1): 62–5PubMedCrossRef
62.
go back to reference Selek S, Herken H, Bulut M, et al. Oxidative imbalance in obsessive compulsive disorder patients: a total evaluation of oxidant-antioxidant status. Prog Neuropsychopharmacol Biol Psychiatry 2008; 32(2): 487–91PubMedCrossRef Selek S, Herken H, Bulut M, et al. Oxidative imbalance in obsessive compulsive disorder patients: a total evaluation of oxidant-antioxidant status. Prog Neuropsychopharmacol Biol Psychiatry 2008; 32(2): 487–91PubMedCrossRef
63.
go back to reference Halliwell B, Whiteman M. Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean? Br J Pharmacol 2004; 142(2): 231–55PubMedCrossRef Halliwell B, Whiteman M. Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean? Br J Pharmacol 2004; 142(2): 231–55PubMedCrossRef
64.
go back to reference Litescu SC, Eremia S, Radu GL. Methods for the determination of antioxidant capacity in food and raw materials. Adv Exp Med Biol 2011; 698: 241–9CrossRef Litescu SC, Eremia S, Radu GL. Methods for the determination of antioxidant capacity in food and raw materials. Adv Exp Med Biol 2011; 698: 241–9CrossRef
65.
go back to reference Pun PB, Gruber J, Tang SY, et al. Ageing in nematodes: do antioxidants extend lifespan in Caenorhabditis elegans? Biogerontology 2010; 11(1): 17–30PubMedCrossRef Pun PB, Gruber J, Tang SY, et al. Ageing in nematodes: do antioxidants extend lifespan in Caenorhabditis elegans? Biogerontology 2010; 11(1): 17–30PubMedCrossRef
66.
67.
go back to reference Whittle N, Lubec G, Singewald N. Zinc deficiency induces enhanced depression-like behavior and altered limbic activation reversed by antidepressant treatment in mice. Amino Acids 2009; 36: 147–58PubMedCrossRef Whittle N, Lubec G, Singewald N. Zinc deficiency induces enhanced depression-like behavior and altered limbic activation reversed by antidepressant treatment in mice. Amino Acids 2009; 36: 147–58PubMedCrossRef
68.
go back to reference Takeda A, Tamano H, Ogawa T, et al. Significance of serum glucocorticoid and chelatable zinc in depression and cognition in zinc deficiency. Behav Brain Res. Epub 2011 Sep 19 Takeda A, Tamano H, Ogawa T, et al. Significance of serum glucocorticoid and chelatable zinc in depression and cognition in zinc deficiency. Behav Brain Res. Epub 2011 Sep 19
69.
70.
go back to reference Lai J, Moxey A, Nowak G, et al. The efficacy of zinc supplementation in depression: systematic review of randomised controlled trials. J Affect Disord Epub 2011 Jul 26 Lai J, Moxey A, Nowak G, et al. The efficacy of zinc supplementation in depression: systematic review of randomised controlled trials. J Affect Disord Epub 2011 Jul 26
71.
go back to reference Rice ME. Ascorbate regulation and its neuroprotective role in the brain. Trends Neurosci 2000; 23(5): 209–16PubMedCrossRef Rice ME. Ascorbate regulation and its neuroprotective role in the brain. Trends Neurosci 2000; 23(5): 209–16PubMedCrossRef
72.
go back to reference DeSantis J. Scurvy and psychiatric symptoms. Perspec Psychiatr Care 1993; 29(1): 18–22CrossRef DeSantis J. Scurvy and psychiatric symptoms. Perspec Psychiatr Care 1993; 29(1): 18–22CrossRef
73.
go back to reference Coochi P, Silenzi M, Calabri G, et al. Antidepressant effect of vitamin Pediatrics 1980; 65(4): 862–3 Coochi P, Silenzi M, Calabri G, et al. Antidepressant effect of vitamin Pediatrics 1980; 65(4): 862–3
74.
go back to reference Brody S. High-dose ascorbic acid increases intercourse frequency and improves mood: a randomized controlled clinical trial. Biol Psychiatry 2002; 52(4): 371–4PubMedCrossRef Brody S. High-dose ascorbic acid increases intercourse frequency and improves mood: a randomized controlled clinical trial. Biol Psychiatry 2002; 52(4): 371–4PubMedCrossRef
75.
go back to reference Brody S, Preut R, Schommer K, et al. A randomized controlled trial of high dose ascorbic acid for reduction of blood pressure, cortisol, and subjective responses to psychological stress. Psychopharmacology 2002; 159(3): 319–24PubMedCrossRef Brody S, Preut R, Schommer K, et al. A randomized controlled trial of high dose ascorbic acid for reduction of blood pressure, cortisol, and subjective responses to psychological stress. Psychopharmacology 2002; 159(3): 319–24PubMedCrossRef
76.
go back to reference Binfaré RW, Rosa AO, Lobato KR, et al. Ascorbic acid administration produces an antidepressant-like effect: evidence for the involvement of monoaminergic neurotransmission. Prog Neuropsychopharmacol Biol Psychiatry 2009; 33(3): 530–40PubMedCrossRef Binfaré RW, Rosa AO, Lobato KR, et al. Ascorbic acid administration produces an antidepressant-like effect: evidence for the involvement of monoaminergic neurotransmission. Prog Neuropsychopharmacol Biol Psychiatry 2009; 33(3): 530–40PubMedCrossRef
77.
go back to reference Tagliari B, Scherer EB, Machado FR, et al. Antioxidants prevent memory deficits provoked by chronic variable stress in rats. Neurochem Res. Epub 2011 Aug 7 Tagliari B, Scherer EB, Machado FR, et al. Antioxidants prevent memory deficits provoked by chronic variable stress in rats. Neurochem Res. Epub 2011 Aug 7
78.
go back to reference Lobato KR, Cardoso CC, Binfaré RW, et al. alpha-Tocopherol administration produces an antidepressantlike effect in predictive animal models of depression. Behav Brain Res 2010; 209(2): 249–59PubMedCrossRef Lobato KR, Cardoso CC, Binfaré RW, et al. alpha-Tocopherol administration produces an antidepressantlike effect in predictive animal models of depression. Behav Brain Res 2010; 209(2): 249–59PubMedCrossRef
79.
go back to reference Milaneschi Y, Bandinelli S, Penninx BW, et al. The relationship between plasma carotenoids and depressive symptoms in older persons. World J Biol Psychiatry. Epub 2011 Sep Milaneschi Y, Bandinelli S, Penninx BW, et al. The relationship between plasma carotenoids and depressive symptoms in older persons. World J Biol Psychiatry. Epub 2011 Sep
80.
go back to reference Radloff LS. The CES-D scale: a self-report depression scale for research in the general population. Appl Psychol Measure 1977; 1(3): 385–401CrossRef Radloff LS. The CES-D scale: a self-report depression scale for research in the general population. Appl Psychol Measure 1977; 1(3): 385–401CrossRef
81.
go back to reference Aruoma OI, Halliwell B, Hoey BM, et al. The antioxidant action of N-acetylcysteine: its reaction with hydrogen peroxide, hydroxyl radical, superoxide, and hypochlorous acid. Free Radic Biol Med 1989; 6(6): 593–7PubMedCrossRef Aruoma OI, Halliwell B, Hoey BM, et al. The antioxidant action of N-acetylcysteine: its reaction with hydrogen peroxide, hydroxyl radical, superoxide, and hypochlorous acid. Free Radic Biol Med 1989; 6(6): 593–7PubMedCrossRef
82.
go back to reference Holdiness MR. Clinical pharmokinetics of N-acetylcysteine. Clin Pharmacokinet 1991; 20(2): 123–34PubMedCrossRef Holdiness MR. Clinical pharmokinetics of N-acetylcysteine. Clin Pharmacokinet 1991; 20(2): 123–34PubMedCrossRef
83.
go back to reference Dean OM, van den Buuse M, Berk M, et al. N-acetyl cysteine restores brain glutathione loss in combined 2-cyclohexene-1-one and D-amphetamine-treated rats: relevance to schizophrenia and bipolar disorder. Neurosci Lett 2011; 499(3): 149–53PubMedCrossRef Dean OM, van den Buuse M, Berk M, et al. N-acetyl cysteine restores brain glutathione loss in combined 2-cyclohexene-1-one and D-amphetamine-treated rats: relevance to schizophrenia and bipolar disorder. Neurosci Lett 2011; 499(3): 149–53PubMedCrossRef
84.
go back to reference Fontaine MA, Geddes JW, Banks A, et al. Effect of exogenous and endogenous antioxidants on 3-nitropionic acid-induced in vivo oxidative stress and striatal lesions: insights into Huntington’s disease. J Neurochem 2000; 75(4): 1709–15PubMedCrossRef Fontaine MA, Geddes JW, Banks A, et al. Effect of exogenous and endogenous antioxidants on 3-nitropionic acid-induced in vivo oxidative stress and striatal lesions: insights into Huntington’s disease. J Neurochem 2000; 75(4): 1709–15PubMedCrossRef
85.
go back to reference Robinson RA, Joshi G, Huang Q, et al. Proteomic analysis of brain proteins in APP/PS-1 human double mutant knock-in mice with increasing amyloid β-peptide deposition: insights into the effects of in vivo treatment with N-acetylcysteine as a potential therapeutic intervention in mild cognitive impairment and Alzheimer’s disease. Proteomics. Epub 2011 Aug 30 Robinson RA, Joshi G, Huang Q, et al. Proteomic analysis of brain proteins in APP/PS-1 human double mutant knock-in mice with increasing amyloid β-peptide deposition: insights into the effects of in vivo treatment with N-acetylcysteine as a potential therapeutic intervention in mild cognitive impairment and Alzheimer’s disease. Proteomics. Epub 2011 Aug 30
86.
go back to reference Qian HR, Yang Y. Neuron differentiation and neuritogenesis stimulated by N-acetylcysteine (NAC). Acta Pharmacol Sin 2009; 30(7): 907–12PubMedCrossRef Qian HR, Yang Y. Neuron differentiation and neuritogenesis stimulated by N-acetylcysteine (NAC). Acta Pharmacol Sin 2009; 30(7): 907–12PubMedCrossRef
87.
go back to reference Janaky R, Dohovics R, Saransaari P, et al. Modulation of [3H]dopamine release by glutathione in mouse striatal slices. Neurochem Res 2007; 32(8): 1357–64PubMedCrossRef Janaky R, Dohovics R, Saransaari P, et al. Modulation of [3H]dopamine release by glutathione in mouse striatal slices. Neurochem Res 2007; 32(8): 1357–64PubMedCrossRef
88.
go back to reference Khan M, Sekhon B, Jatana M, et al. Administration of N-acetylcysteine after focal cerebral ischemia protects brain and reduces inflammation in a rat model of experimental stroke. J Neurosci Res 2004; 76(4): 519–27PubMedCrossRef Khan M, Sekhon B, Jatana M, et al. Administration of N-acetylcysteine after focal cerebral ischemia protects brain and reduces inflammation in a rat model of experimental stroke. J Neurosci Res 2004; 76(4): 519–27PubMedCrossRef
89.
go back to reference Ferreira FR, Biojone C, Joca SR, et al. Antidepressant-like effects of N-acetyl-L-cysteine in rats. Behav Pharmacol 2008; 19(7): 747–50PubMedCrossRef Ferreira FR, Biojone C, Joca SR, et al. Antidepressant-like effects of N-acetyl-L-cysteine in rats. Behav Pharmacol 2008; 19(7): 747–50PubMedCrossRef
90.
go back to reference Berk M, Copolov D, Dean O, et al. N-acetyl cysteine as a glutathione precursor for schizophrenia: a double-blind, randomized, placebo-controlled trial. Biol Psychiatry 2008; 64(9): 361–8PubMedCrossRef Berk M, Copolov D, Dean O, et al. N-acetyl cysteine as a glutathione precursor for schizophrenia: a double-blind, randomized, placebo-controlled trial. Biol Psychiatry 2008; 64(9): 361–8PubMedCrossRef
91.
go back to reference Lafleur DL, Pittenger C, Kelmendi C, et al. N-acetylcysteine augmentation in serotonin reuptake inhibitor refractory obsessivecompulsive disorder. Psychopharmacology (Berl) 2006; 184(2): 254–6CrossRef Lafleur DL, Pittenger C, Kelmendi C, et al. N-acetylcysteine augmentation in serotonin reuptake inhibitor refractory obsessivecompulsive disorder. Psychopharmacology (Berl) 2006; 184(2): 254–6CrossRef
92.
go back to reference Odlaug BL, Grant JE. N-acetyl cysteine in the treatment of grooming disorders. J Clin Psychopharmacol 2007; 27(2): 227–9PubMedCrossRef Odlaug BL, Grant JE. N-acetyl cysteine in the treatment of grooming disorders. J Clin Psychopharmacol 2007; 27(2): 227–9PubMedCrossRef
93.
go back to reference Grant JE, Kim SW, Odlaug BL. N-acetyl cysteine, a glutamatemodulating agent, in the treatment of pathological gambling: a pilot study. Biol Psychiatry 2007; 62(6): 652–7PubMedCrossRef Grant JE, Kim SW, Odlaug BL. N-acetyl cysteine, a glutamatemodulating agent, in the treatment of pathological gambling: a pilot study. Biol Psychiatry 2007; 62(6): 652–7PubMedCrossRef
94.
go back to reference Mardikian PN, LaRowe SD, Hedden S, et al. An openlabel trial of N-acetylcysteine for the treatment of cocaine dependence: a pilot study. Prog Neuropsychopharmacol Biol Psychiatry 2007; 31(2): 389–94PubMedCrossRef Mardikian PN, LaRowe SD, Hedden S, et al. An openlabel trial of N-acetylcysteine for the treatment of cocaine dependence: a pilot study. Prog Neuropsychopharmacol Biol Psychiatry 2007; 31(2): 389–94PubMedCrossRef
95.
go back to reference Berk M, Copolov DL, Dean O, et al. N-acetyl cysteine for depressive symptoms in bipolar disorder: a double-blind randomized placebo-controlled trial. Biol Psychiatry 2008; 64(6): 468–75PubMedCrossRef Berk M, Copolov DL, Dean O, et al. N-acetyl cysteine for depressive symptoms in bipolar disorder: a double-blind randomized placebo-controlled trial. Biol Psychiatry 2008; 64(6): 468–75PubMedCrossRef
96.
go back to reference Magalhães PV, Dean OM, Bush AI, et al. N-acetyl cysteine add-on treatment for bipolar II disorder: a subgroup analysis of a randomized placebo-controlled trial. J Affect Disord 2011; 129(1–3): 317–20PubMedCrossRef Magalhães PV, Dean OM, Bush AI, et al. N-acetyl cysteine add-on treatment for bipolar II disorder: a subgroup analysis of a randomized placebo-controlled trial. J Affect Disord 2011; 129(1–3): 317–20PubMedCrossRef
97.
go back to reference Berk M, Dean O, Cotton SM, et al. The efficacy of N-acetylcysteine as an adjunctive treatment in bipolar depression: an open label trial. J Affect Disord. Epub 2011 Jun 28 Berk M, Dean O, Cotton SM, et al. The efficacy of N-acetylcysteine as an adjunctive treatment in bipolar depression: an open label trial. J Affect Disord. Epub 2011 Jun 28
98.
go back to reference Scapagnini G, Caruso C, Calabrese V. Therapeutic potential of dietary polyphenols against brain ageing and neurodegenerative disorders. Adv Exp Med Biol 2011; 698: 27–35CrossRef Scapagnini G, Caruso C, Calabrese V. Therapeutic potential of dietary polyphenols against brain ageing and neurodegenerative disorders. Adv Exp Med Biol 2011; 698: 27–35CrossRef
99.
go back to reference Scapagnini G, Vasto S, Abraham NG, et al. Modulation of Nrf2/ARE pathway by food polyphenols: a nutritional neuroprotective strategy for cognitive and neurodegenerative disorders. Mol Neurobiol 2011; 44(2): 192–201PubMedCrossRef Scapagnini G, Vasto S, Abraham NG, et al. Modulation of Nrf2/ARE pathway by food polyphenols: a nutritional neuroprotective strategy for cognitive and neurodegenerative disorders. Mol Neurobiol 2011; 44(2): 192–201PubMedCrossRef
100.
go back to reference Priyadarsini KI, Guha SN, Rao MN. Physicochemical properties and antioxidant activities of methoxy phenols. Free Radic Biol Med 1998; 24(6): 933–41PubMedCrossRef Priyadarsini KI, Guha SN, Rao MN. Physicochemical properties and antioxidant activities of methoxy phenols. Free Radic Biol Med 1998; 24(6): 933–41PubMedCrossRef
101.
go back to reference Sreejayan A, Rao MN. Nitric oxide scavenging by curcuminoids. J Pharm Pharmacol 1997; 49(1): 105–7PubMedCrossRef Sreejayan A, Rao MN. Nitric oxide scavenging by curcuminoids. J Pharm Pharmacol 1997; 49(1): 105–7PubMedCrossRef
102.
go back to reference Masuda T, Hidaka K, Shinohara A, et al. Chemical studies on antioxidant mechanism of curcuminoid: analysis of radical reaction products from curcumin. J Agric Food Chem 1999; 47(1): 71–7PubMedCrossRef Masuda T, Hidaka K, Shinohara A, et al. Chemical studies on antioxidant mechanism of curcuminoid: analysis of radical reaction products from curcumin. J Agric Food Chem 1999; 47(1): 71–7PubMedCrossRef
103.
go back to reference Jovanovic SV, Boone CW, Steenken S. How curcumin works preferentially with water soluble antioxidants. J Am Chem Soc 2001; 123(13): 3064–8PubMedCrossRef Jovanovic SV, Boone CW, Steenken S. How curcumin works preferentially with water soluble antioxidants. J Am Chem Soc 2001; 123(13): 3064–8PubMedCrossRef
104.
go back to reference Huang MT, Newmark HL, Frenkel K. Inhibitory effects of curcumin on tumorigenesis in mice. J Cell Biochem Suppl 1997; 27: 26–34PubMedCrossRef Huang MT, Newmark HL, Frenkel K. Inhibitory effects of curcumin on tumorigenesis in mice. J Cell Biochem Suppl 1997; 27: 26–34PubMedCrossRef
105.
go back to reference Ramos-Gomez M, Kwak MK, Dolan PM, et al. Sensitivity to carcinogenesis is increased and chemoprotective efficacy of enzyme inducers is lost in nrf2 transcription fac-tor-deficient mice. Proc Natl Acad Sci USA 2001; 98(6): 3410–5PubMedCrossRef Ramos-Gomez M, Kwak MK, Dolan PM, et al. Sensitivity to carcinogenesis is increased and chemoprotective efficacy of enzyme inducers is lost in nrf2 transcription fac-tor-deficient mice. Proc Natl Acad Sci USA 2001; 98(6): 3410–5PubMedCrossRef
106.
go back to reference Singh S, Aggarwal Activation of transcription factor NF-kappa B is suppressed by curcumin (diferuloylmethane). J Biol Chem 1995; 270(42): 24995–5000PubMedCrossRef Singh S, Aggarwal Activation of transcription factor NF-kappa B is suppressed by curcumin (diferuloylmethane). J Biol Chem 1995; 270(42): 24995–5000PubMedCrossRef
107.
go back to reference Balogun E, Hoque M, Gong P, et al. Curcumin activates the haem oxygenase-1 gene via regulation of Nrf2 and the antioxidant-responsive element. Biochem J 2003; 371(Pt 3): 887–95PubMedCrossRef Balogun E, Hoque M, Gong P, et al. Curcumin activates the haem oxygenase-1 gene via regulation of Nrf2 and the antioxidant-responsive element. Biochem J 2003; 371(Pt 3): 887–95PubMedCrossRef
108.
go back to reference Kulkarni SK, Bhutani MK, Bishnoi M. Antidepressant activity of curcumin: involvement of serotonin and dopamine system. Psychopharmacology (Berl) 2008; 201(3): 435–42CrossRef Kulkarni SK, Bhutani MK, Bishnoi M. Antidepressant activity of curcumin: involvement of serotonin and dopamine system. Psychopharmacology (Berl) 2008; 201(3): 435–42CrossRef
109.
go back to reference Gupta A, Vij G, Sharma S, et al. Curcumin, a polyphenolic antioxidant, attenuates chronic fatigue syndrome in murine water immersion stress model. Immunobiology 2009; 214(1): 33–9PubMedCrossRef Gupta A, Vij G, Sharma S, et al. Curcumin, a polyphenolic antioxidant, attenuates chronic fatigue syndrome in murine water immersion stress model. Immunobiology 2009; 214(1): 33–9PubMedCrossRef
110.
go back to reference Xu Y, Ku B, Cui L, et al. Curcumin reverses impaired hippocampal neurogenesis and increases ser otonin receptor 1A mRNA and brain-derived neurotrophic factor expression in chronically stressed rats. Brain Res 2007; 1162:9–18PubMedCrossRef Xu Y, Ku B, Cui L, et al. Curcumin reverses impaired hippocampal neurogenesis and increases ser otonin receptor 1A mRNA and brain-derived neurotrophic factor expression in chronically stressed rats. Brain Res 2007; 1162:9–18PubMedCrossRef
111.
go back to reference Xu Y, Ku B, Tie L, et al. Curcumin reverses the effects of chronic stress on behavior, the HPA axis, BDNF expression and phosphorylation of CREB. Brain Res 2006; 1122(1): 56–64PubMedCrossRef Xu Y, Ku B, Tie L, et al. Curcumin reverses the effects of chronic stress on behavior, the HPA axis, BDNF expression and phosphorylation of CREB. Brain Res 2006; 1122(1): 56–64PubMedCrossRef
112.
go back to reference Bhutani MK, Bishnoi M, Kulkarni SK. Anti-depressant like effect of curcumin and its combination with piperine in unpredictable chronic stress-induced behavioral, biochemical and neurochemical changes. Pharmacol Biochem Behav 2009; 92(1): 39–43PubMedCrossRef Bhutani MK, Bishnoi M, Kulkarni SK. Anti-depressant like effect of curcumin and its combination with piperine in unpredictable chronic stress-induced behavioral, biochemical and neurochemical changes. Pharmacol Biochem Behav 2009; 92(1): 39–43PubMedCrossRef
113.
go back to reference Zeni AL, Zomkowski AD, Maraschin M. Ferulic acid exerts antidepressant-like effect in the tail suspension test in mice: evidence for the involvement of the serotonergic system. Eur J Pharmacol. Epub 2012 Jan 12 Zeni AL, Zomkowski AD, Maraschin M. Ferulic acid exerts antidepressant-like effect in the tail suspension test in mice: evidence for the involvement of the serotonergic system. Eur J Pharmacol. Epub 2012 Jan 12
114.
go back to reference Sachdeva AK, Kuhad A, Chopra K. Epigallocatechin gallate ameliorates behavioral and biochemical deficits in rat model of load-induced chronic fatigue syndrome. Brain Res Bull 2011; 86(3–4): 165–72PubMedCrossRef Sachdeva AK, Kuhad A, Chopra K. Epigallocatechin gallate ameliorates behavioral and biochemical deficits in rat model of load-induced chronic fatigue syndrome. Brain Res Bull 2011; 86(3–4): 165–72PubMedCrossRef
115.
go back to reference Zhu WL, Shi HS, Wei YM, et al. Green tea polyphenols produce antidepressant-like effects in adult mice. Pharmacol Res 2012; 65(1): 74–80PubMedCrossRef Zhu WL, Shi HS, Wei YM, et al. Green tea polyphenols produce antidepressant-like effects in adult mice. Pharmacol Res 2012; 65(1): 74–80PubMedCrossRef
116.
go back to reference Rojas P, Serrano-García N, Medina-Campos ON, et al. Antidepressant-like effect of a Ginkgo biloba extract (EGb761) in the mouse forced swimming test: role of oxidative stress. Neurochem Int 2011; 59(5): 628–36PubMedCrossRef Rojas P, Serrano-García N, Medina-Campos ON, et al. Antidepressant-like effect of a Ginkgo biloba extract (EGb761) in the mouse forced swimming test: role of oxidative stress. Neurochem Int 2011; 59(5): 628–36PubMedCrossRef
Metadata
Title
Antioxidants as Antidepressants
Fact or Fiction?
Authors
Dr Giovanni Scapagnini
Sergio Davinelli
Filippo Drago
Antonino De Lorenzo
Giovannangelo Oriani
Publication date
01-06-2012
Publisher
Springer International Publishing
Published in
CNS Drugs / Issue 6/2012
Print ISSN: 1172-7047
Electronic ISSN: 1179-1934
DOI
https://doi.org/10.2165/11633190-000000000-00000

Other articles of this Issue 6/2012

CNS Drugs 6/2012 Go to the issue