Skip to main content

Methods for the Determination of Antioxidant Capacity in Food and Raw Materials

  • Chapter
Bio-Farms for Nutraceuticals

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 698))

Abstract

A comprehensive description of the most frequently used methods to determine the antioxidant activity in food and raw materials is given. The methods are classified into two categories, depending on the type of the assessment carried out. Several methods for the assessment of antioxidant efficacy using free radical scavenging such as Oxygen Radical Absorbance Capacity Assay (ORAC), Total Radical Trapping Antioxidant Parameter assay (TEAC), Ferric reducing antioxidant power assay (FRAP) and 2,2′-diphenyl-1-picrylhydrazyl (DPPH) assay are described. An example of methods based on the assessment of antioxidant efficacy using significant biological substrates is also presented. Critical opinions concerning the proposed methods are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Halliwell B. Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol 2006; 141:312–322.

    Article  PubMed  CAS  Google Scholar 

  2. Somogyi A, Rosta K, Pusztai P et al. Antioxidant measurements Physiol Meas 2007; 28(4):R41–R55.

    Article  PubMed  Google Scholar 

  3. Sies H. Oxidative stress: from basic research to clinical application. Am J Med 1991; 91(3C):31S–38S.

    Article  PubMed  CAS  Google Scholar 

  4. Halliwell B, Gutteridge JMC. Antioxidant defences: endogenous and diet derived in Free Radicals in Biology and Medicine. 4th Ed. Oxford University Press: Clarendon, 2007; 79–81.

    Google Scholar 

  5. Prior RL, Cao G. In vivo total antioxidant capacity: comparison of different analytical methods. Free Rad Bioland Med 1999; 27:1173–1181.

    Article  CAS  Google Scholar 

  6. Meyer AS, Isaksen A. Application of enzymes as food antioxidants. Trends in Food Sci and Technol 1995; 6:300–304.

    Article  CAS  Google Scholar 

  7. Thomas C. Approaches and rationale for the design of synthetic antioxidants as therapeutic agents. In: Packer L, Cadenas E. eds. Handbook of Synthetic Antioxidants 1st ed. New York: Marcel Dekker, 1997; 3–25.

    Google Scholar 

  8. Frankel EN. In search of better methods to evaluate natural antioxidants and oxidative stability in food lipids. Trends Food Sci Technol 1993; 4:220–225.

    Article  CAS  Google Scholar 

  9. Ou B, Huang D, Hampsch-Woodill M et al. Analysis of antioxidant activities of common vegetables employing oxygen radical absorbance capacity (ORAC) and ferric reducing antioxidant power (FRAP) assays: a comparative study. J Agric Food Chem 2002; 50:3122–3128.

    Article  PubMed  CAS  Google Scholar 

  10. Becker EM, Nissen LR, Skibsted LH. Antioxidant evaluation protocols: Food quality or health effects. Eur Food Res Technol 2004; 219:561–571.

    Article  CAS  Google Scholar 

  11. Huang B, Ou B, Prior RL. The chemistry behind antioxidant capacity assays. J Agric Food Chem 2005; 53(6):1841–1856.

    Article  PubMed  CAS  Google Scholar 

  12. Pryor WA. Bio-assay for oxidative stress status (BOSS), Amsterdam: Elsevier Science 2001.

    Google Scholar 

  13. Griffiths SW, Cooney CL. Development of a peptide mapping procedure to identify and quantify methionine oxidation in recombinant human α1-antitrypsin. J Chromatogr A 2002; 942:133–143.

    Article  PubMed  CAS  Google Scholar 

  14. Roginsky V, Lissi E. Review of methods to determine chain-breaking antioxidant activity in food. Food Chemistry 2005; 92(2):235–254.

    Article  CAS  Google Scholar 

  15. Prior RL, Wu X, Schaich K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J Agric Food Chem 2005; 55(11):4028–4041.

    Google Scholar 

  16. Cao G H, Alessio HM, Cutler RG. Oxygen radical absorbency capacity assay for antioxidants. Free Radical Biol Med 1993; 14:303–311.

    Article  CAS  Google Scholar 

  17. Naguib YMA. A Fluorometric method for measurement of oxygen radical-scavenging activity of water-soluble antioxidants. Anal Biochem 2000; 284:93–98.

    Article  PubMed  CAS  Google Scholar 

  18. Ou B, Hampsch-Wbodill M, Prior RL. Development and validation of an improved oxygen radical absorbance capacity (ORAC) assay using fluorescein as the fluorescent probe. J Agric Food Chem 2001; 49:4619–4628.

    Article  PubMed  CAS  Google Scholar 

  19. Huang D, Ou B, Hampsch-Woodill M et al. Development and validation of oxygen radical absorbance capacity assay for lipophilic antioxidants using randomly methylated β-cyclodextrin as the solubility enhancer. J Agric Food Chem 2002; 50:1815–1821.

    Article  PubMed  CAS  Google Scholar 

  20. Wayner DDM, Burton GW, Ingold KU et al. Quantitative measurement of the total peroxyl radical trapping antioxidant capability of human blood plasma by controlled peroxidation. The important contribution made by plasma proteins. FEBS Lett 1985; 187:33–41.

    Article  PubMed  CAS  Google Scholar 

  21. Rice-Evans C, Miller NJ. Total antioxidant status in plasma and body fluids. Meth Enzymol 1994; 234:279–293.

    Article  PubMed  CAS  Google Scholar 

  22. Alho H, Leinonen J. Total antioxidant activity measured by chemiluminescence methods. Meth Enzymol 1999; 299:3–15.

    Article  PubMed  CAS  Google Scholar 

  23. Bors W, Michel C, Saran M et al. The involvement of oxygen radicals during the autoxidation of adrenalin. Biochim Biophys Acta 1978; 540:162–172.

    PubMed  CAS  Google Scholar 

  24. Miller N J, Rice-Evans CA. Antioxidant activity of resveratrol in red wine. Clin Sci 1995; 41:1789–1793.

    CAS  Google Scholar 

  25. Re R, Pellegrini N, Proteggente A et al. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Rad Biol Med 1999; 26:1231–1237.

    Article  PubMed  CAS  Google Scholar 

  26. Pinto PCAG, Saraiva MFSL, Reis S et al. Automatic sequential determination of the hydrogen peroxide scavenging activity and evaluation of the antioxidant potential by the 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) radical cation assay in wines by sequential injection analysis. Anal Chim Acta 2005; 531:25–32.

    Article  CAS  Google Scholar 

  27. Sanchez-Moreno C. Methods used to evaluate the free radical scavenging activity in foods and biological systems. Food Sci Technol Int 2002; 8:121–137.

    CAS  Google Scholar 

  28. Foti MC, Daquino C, Geraci C. Electron-Transfer Reaction of Cinnamic Acids and Their Methyl Esters with the DPPH· Radical in Alcoholic Solutions. J Org Chem 2004; 69:2309–2314.

    Article  PubMed  CAS  Google Scholar 

  29. Niki E. Antioxidants in relation to lipid peroxidation. Chemistry and Physic of lipids 1987; 44:227–253.

    Article  CAS  Google Scholar 

  30. Noguchi N, Gotoh N, Niki E. Dynamics of the oxidation of low density lipoprotein induced by free radicals. Biochim Biophys Acta 1993; 1168:348–357.

    PubMed  CAS  Google Scholar 

  31. Loshadkin D, Roginsky V, Pliss E. Substituted p-hydroquinones as a chain-breaking antioxidant during the oxidation of styrene. Int J Chem Kin 2002; 34:162–171.

    Article  CAS  Google Scholar 

  32. Roginsky V. Kinetics of oxidation of polyunsaturated fatty acid esters inhibited by substituted phenols. Kinetics and Catalysis 1990; 31:475–481.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Landes Bioscience and Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Litescu, S.C., Eremia, S., Radu, G.L. (2010). Methods for the Determination of Antioxidant Capacity in Food and Raw Materials. In: Giardi, M.T., Rea, G., Berra, B. (eds) Bio-Farms for Nutraceuticals. Advances in Experimental Medicine and Biology, vol 698. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-7347-4_18

Download citation

Publish with us

Policies and ethics