Skip to main content
Top
Published in: CNS Drugs 7/2009

01-07-2009 | Leading Article

Lacosamide

A New Approach to Target Voltage-Gated Sodium Currents in Epileptic Disorders

Authors: Giulia Curia, Giuseppe Biagini, Emilio Perucca, Dr Massimo Avoli

Published in: CNS Drugs | Issue 7/2009

Login to get access

Abstract

The mechanism of action of several antiepileptic drugs (AEDs) rests on their ability to modulate the activity of voltage-gated sodium currents that are responsible for fast action potential generation. Recent data indicate that lacosamide (a compound with analgesic and anticonvulsant effects in animal models) shares a similar mechanism. When compared with other AEDs, lacosamide has the unique ability to interact with sodium channel slow inactivation without affecting fast inactivation. This article reviews these findings and discusses their relevance within the context of neuronal activity seen during epileptiform discharges generated by limbic neuronal networks in the presence of chemical convulsants. These seizure-like events are characterized by sustained discharges of sodium-dependent action potentials supported by robust depolarizations, thus providing synchronization within neuronal networks. Generally, AEDs such as phenytoin, carbamazepine and lamotrigine block sodium channels when activated. In contrast, lacosamide facilitates slow inactivation of sodium channels both in terms of kinetics and voltage dependency. This effect may be relatively selective for repeatedly depolarized neurons, such as those participating in seizure activity in which the persistence of sodium currents is more pronounced and promotes neuronal excitation.
The clinical effectiveness of lacosamide has been demonstrated in randomized, double-blind, parallel-group, placebo-controlled, adjunctive-therapy trials in patients with refractory partial seizures. Further studies should determine whether the effects of lacosamide in animal models and in clinical settings are fully explained by its selective action on sodium current slow inactivation or whether other effects (e.g. interactions with the collapsinresponse mediator protein-2) play a contributory role.
Literature
1.
go back to reference Avoli M, D’Antuono M, Louvel J, et al. Network and pharmacological mechanisms leading to epileptiform synchronization in the limbic system. Prog Neurobiol 2002; 68: 167–207PubMedCrossRef Avoli M, D’Antuono M, Louvel J, et al. Network and pharmacological mechanisms leading to epileptiform synchronization in the limbic system. Prog Neurobiol 2002; 68: 167–207PubMedCrossRef
2.
go back to reference Inaba Y, Biagini G, Avoli M. The H current blocker ZD7288 decreases epileptiform hyperexcitability in the rat neocortex by depressing synaptic transmission. Neuropharmacology 2006; 51: 681–91PubMedCrossRef Inaba Y, Biagini G, Avoli M. The H current blocker ZD7288 decreases epileptiform hyperexcitability in the rat neocortex by depressing synaptic transmission. Neuropharmacology 2006; 51: 681–91PubMedCrossRef
3.
go back to reference Panuccio G, Curia G, Colosimo A, et al. Epileptiform synchronization in the cingulate cortex. Epilepsia 2009; 50: 521–36PubMedCrossRef Panuccio G, Curia G, Colosimo A, et al. Epileptiform synchronization in the cingulate cortex. Epilepsia 2009; 50: 521–36PubMedCrossRef
4.
go back to reference Lopantsev V, Avoli M. Participation of GABAA-mediated inhibition in ictal-like discharges in the rat entorhinal cortex. J Neurophysiol 1998; 79: 352–60PubMed Lopantsev V, Avoli M. Participation of GABAA-mediated inhibition in ictal-like discharges in the rat entorhinal cortex. J Neurophysiol 1998; 79: 352–60PubMed
5.
go back to reference Detlev B. Cell and gene therapies for refractory epilepsy. Curr Neuropharmacol 2007; 5: 115–25CrossRef Detlev B. Cell and gene therapies for refractory epilepsy. Curr Neuropharmacol 2007; 5: 115–25CrossRef
6.
7.
go back to reference Meldrum BS, Rogawski MA. Molecular targets for antiepileptic drug development. Neurotherapeutics 2007; 4: 18–61PubMedCrossRef Meldrum BS, Rogawski MA. Molecular targets for antiepileptic drug development. Neurotherapeutics 2007; 4: 18–61PubMedCrossRef
8.
go back to reference Perucca E, French J, Bialer M. Development of new anti-epileptic drugs: challenges, incentives, and recent advances. Lancet Neurol 2007; 6: 793–804PubMedCrossRef Perucca E, French J, Bialer M. Development of new anti-epileptic drugs: challenges, incentives, and recent advances. Lancet Neurol 2007; 6: 793–804PubMedCrossRef
9.
go back to reference Bialer M, Johannessen SI, Levy RH, et al. Progress report on new antiepileptic drugs: a summary of the Ninth Eilat Conference (EILAT IX). Epilepsy Res 2009; 83: 1–43PubMedCrossRef Bialer M, Johannessen SI, Levy RH, et al. Progress report on new antiepileptic drugs: a summary of the Ninth Eilat Conference (EILAT IX). Epilepsy Res 2009; 83: 1–43PubMedCrossRef
10.
go back to reference Spencer SS. When should temporal-lobe epilepsy be treated surgically? Lancet Neurol 2002; 1: 375–82PubMedCrossRef Spencer SS. When should temporal-lobe epilepsy be treated surgically? Lancet Neurol 2002; 1: 375–82PubMedCrossRef
11.
go back to reference Schuele SU, Lüders HO. Intractable epilepsy: management and therapeutic alternatives. Lancet Neurol 2008; 7: 514–24PubMedCrossRef Schuele SU, Lüders HO. Intractable epilepsy: management and therapeutic alternatives. Lancet Neurol 2008; 7: 514–24PubMedCrossRef
12.
go back to reference Zaccara G, Franciotta D, Perucca E. Idiosyncratic adverse reactions to antiepileptic drugs. Epilepsia 2007; 48: 1223–44PubMedCrossRef Zaccara G, Franciotta D, Perucca E. Idiosyncratic adverse reactions to antiepileptic drugs. Epilepsia 2007; 48: 1223–44PubMedCrossRef
13.
go back to reference White HS, Johnson M, Wolf HH, et al. The early identification of anticonvulsant activity: role of the maximal electroshock and subcutaneous pentylenetetrazol seizure models. Ital J Neurol Sci 1995; 16: 73–7PubMedCrossRef White HS, Johnson M, Wolf HH, et al. The early identification of anticonvulsant activity: role of the maximal electroshock and subcutaneous pentylenetetrazol seizure models. Ital J Neurol Sci 1995; 16: 73–7PubMedCrossRef
14.
go back to reference Schmidt D, Rogawski MA. New strategies for the identification of drugs to prevent the development or progression of epilepsy. Epilepsy Res 2002; 50: 71–8PubMedCrossRef Schmidt D, Rogawski MA. New strategies for the identification of drugs to prevent the development or progression of epilepsy. Epilepsy Res 2002; 50: 71–8PubMedCrossRef
15.
go back to reference Bayer K, Ahmadi S, Zeilhofer HU. Gabapentin may inhibit synaptic transmission in the mouse spinal cord dorsal horn through a preferential block of P/Q-type Ca2+ channels. Neuropharmacology 2004; 46: 743–9PubMedCrossRef Bayer K, Ahmadi S, Zeilhofer HU. Gabapentin may inhibit synaptic transmission in the mouse spinal cord dorsal horn through a preferential block of P/Q-type Ca2+ channels. Neuropharmacology 2004; 46: 743–9PubMedCrossRef
16.
go back to reference Fink K, Dooley DJ, Meder WP, et al. Inhibition of neuronal Ca2+ influx by gabapentin and pregabalin in the human neocortex. Neuropharmacology 2002; 42: 229–36PubMedCrossRef Fink K, Dooley DJ, Meder WP, et al. Inhibition of neuronal Ca2+ influx by gabapentin and pregabalin in the human neocortex. Neuropharmacology 2002; 42: 229–36PubMedCrossRef
17.
go back to reference Gillard M, Chatelain P, Fuks B. Binding characteristics of levetiracetam to synaptic vesicle protein 2A (SV2A) in human brain and in CHO cells expressing the human recombinant protein. Eur J Pharmacol 2006; 536: 102–8PubMedCrossRef Gillard M, Chatelain P, Fuks B. Binding characteristics of levetiracetam to synaptic vesicle protein 2A (SV2A) in human brain and in CHO cells expressing the human recombinant protein. Eur J Pharmacol 2006; 536: 102–8PubMedCrossRef
18.
go back to reference Meisler MH, Kearney JA. Sodium channel mutations in epilepsy and other neurological disorders. J Clin Invest 2005; 115:2010–7PubMedCrossRef Meisler MH, Kearney JA. Sodium channel mutations in epilepsy and other neurological disorders. J Clin Invest 2005; 115:2010–7PubMedCrossRef
19.
go back to reference Berkovic SF, Mulley JC, Scheffer IE, et al. Human epilepsies: interaction of genetic and acquired factors. Trends Neurosci 2006; 29: 391–7PubMedCrossRef Berkovic SF, Mulley JC, Scheffer IE, et al. Human epilepsies: interaction of genetic and acquired factors. Trends Neurosci 2006; 29: 391–7PubMedCrossRef
21.
go back to reference Agrawal N, Alonso A, Ragsdale DS. Increased persistent sodium currents in rat entorhinal cortex layer V neurons in a post-status epilepticus model of temporal lobe epilepsy. Epilepsia 2003; 44: 1601–4PubMedCrossRef Agrawal N, Alonso A, Ragsdale DS. Increased persistent sodium currents in rat entorhinal cortex layer V neurons in a post-status epilepticus model of temporal lobe epilepsy. Epilepsia 2003; 44: 1601–4PubMedCrossRef
22.
go back to reference Vreugdenhil M, Hoogland G, van Veelen CW, et al. Persistent sodium current in subicular neurons isolated from patients with temporal lobe epilepsy. Eur J Neurosci 2004; 19: 2769–78PubMedCrossRef Vreugdenhil M, Hoogland G, van Veelen CW, et al. Persistent sodium current in subicular neurons isolated from patients with temporal lobe epilepsy. Eur J Neurosci 2004; 19: 2769–78PubMedCrossRef
23.
go back to reference Ragsdale DS, Avoli M. Sodium channels as molecular targets for antiepileptic drugs. Brain Res Rev 1998; 26: 16–28PubMedCrossRef Ragsdale DS, Avoli M. Sodium channels as molecular targets for antiepileptic drugs. Brain Res Rev 1998; 26: 16–28PubMedCrossRef
24.
25.
go back to reference Rogawski MA, Löscher W. The neurobiology of antiepileptic drugs for the treatment of nonepileptic conditions. Nat Med 2004; 10: 685–92PubMedCrossRef Rogawski MA, Löscher W. The neurobiology of antiepileptic drugs for the treatment of nonepileptic conditions. Nat Med 2004; 10: 685–92PubMedCrossRef
26.
go back to reference Spina E, Perugi GG. Antiepileptic drugs: indications other than epilepsy. Epileptic Disord 2004; 6: 57–75PubMed Spina E, Perugi GG. Antiepileptic drugs: indications other than epilepsy. Epileptic Disord 2004; 6: 57–75PubMed
27.
go back to reference Lang DG, Wang CM, Barrett RC. Lamotrigine, phenytoin and carbamazepine interactions on the sodium current present in N4TG1 mouse neuroblastoma cells. J Pharmacol Exp Ther 1993; 266: 829–34PubMed Lang DG, Wang CM, Barrett RC. Lamotrigine, phenytoin and carbamazepine interactions on the sodium current present in N4TG1 mouse neuroblastoma cells. J Pharmacol Exp Ther 1993; 266: 829–34PubMed
28.
go back to reference Zona C, Avoli M. Lamotrigine reduces voltage-gated sodium currents in rat central neurons in culture. Epilepsia 1997; 38: 522–5PubMedCrossRef Zona C, Avoli M. Lamotrigine reduces voltage-gated sodium currents in rat central neurons in culture. Epilepsia 1997; 38: 522–5PubMedCrossRef
29.
go back to reference Errington AC, Coyne L, Stohr T, et al. Seeking a mechanism of action for the novel anticonvulsant lacosamide. Neuropharmacology 2006; 50: 1016–29PubMedCrossRef Errington AC, Coyne L, Stohr T, et al. Seeking a mechanism of action for the novel anticonvulsant lacosamide. Neuropharmacology 2006; 50: 1016–29PubMedCrossRef
30.
go back to reference Willow M, Gonoi T, Catterall WA, et al. Voltage-clamp analysis of the inhibitory actions of diphenylhydantoin and carbamazepine on voltage-sensitive sodium channels in neuroblastoma cells. Mol Pharmacol 1985; 27: 549–58PubMed Willow M, Gonoi T, Catterall WA, et al. Voltage-clamp analysis of the inhibitory actions of diphenylhydantoin and carbamazepine on voltage-sensitive sodium channels in neuroblastoma cells. Mol Pharmacol 1985; 27: 549–58PubMed
31.
go back to reference Xie X, Lancaster B, Peakman T, et al. Interactions of the antiepileptic drug lamotrigine with recombinant rat brain type IIA Na channels and native Na channels in rat hippocampal neurons. Pflugers Arch 1995; 430: 437–46PubMedCrossRef Xie X, Lancaster B, Peakman T, et al. Interactions of the antiepileptic drug lamotrigine with recombinant rat brain type IIA Na channels and native Na channels in rat hippocampal neurons. Pflugers Arch 1995; 430: 437–46PubMedCrossRef
32.
go back to reference Vreugdenhil M, Wadman WJ. Modulation of sodium currents in rat CA1 neurons by carbamazepine and valproate after kindling epileptogenesis. Epilepsia 1999; 40: 1512–22PubMedCrossRef Vreugdenhil M, Wadman WJ. Modulation of sodium currents in rat CA1 neurons by carbamazepine and valproate after kindling epileptogenesis. Epilepsia 1999; 40: 1512–22PubMedCrossRef
33.
go back to reference Errington AC, Stohr T, Heers C, et al. The investigational anticonvulsant lacosamide selectively enhances slow inactivation of voltage-gated sodium channels. Mol Pharmacol 2008; 73: 157–69PubMedCrossRef Errington AC, Stohr T, Heers C, et al. The investigational anticonvulsant lacosamide selectively enhances slow inactivation of voltage-gated sodium channels. Mol Pharmacol 2008; 73: 157–69PubMedCrossRef
34.
go back to reference Fozzard HA, Hank DA. Structure and function of voltage-dependent sodium channels: comparison of brain II and cardiac isoforms. Physiol Rev 1996; 76: 887–926PubMed Fozzard HA, Hank DA. Structure and function of voltage-dependent sodium channels: comparison of brain II and cardiac isoforms. Physiol Rev 1996; 76: 887–926PubMed
35.
go back to reference Vassilev PM, Scheuer T, Catterall WA. Identification of an intracellular peptide segment involved in sodium channel inactivation. Science 1988; 241: 1658–61PubMedCrossRef Vassilev PM, Scheuer T, Catterall WA. Identification of an intracellular peptide segment involved in sodium channel inactivation. Science 1988; 241: 1658–61PubMedCrossRef
36.
go back to reference Stühmer W, Conti F, Suzuki H, et al. Structural parts involved in activation and inactivation of the sodium channel. Nature 1989; 339: 597–603PubMedCrossRef Stühmer W, Conti F, Suzuki H, et al. Structural parts involved in activation and inactivation of the sodium channel. Nature 1989; 339: 597–603PubMedCrossRef
37.
go back to reference Lees G, Stohr T, Errington AC. Stereoselective effects of the novel anticonvulsant lacosamide against 4-AP induced epileptiform activity in rat visual cortex in vitro. Neuropharmacology 2006; 50: 98–110PubMedCrossRef Lees G, Stohr T, Errington AC. Stereoselective effects of the novel anticonvulsant lacosamide against 4-AP induced epileptiform activity in rat visual cortex in vitro. Neuropharmacology 2006; 50: 98–110PubMedCrossRef
38.
go back to reference Beyreuther BK, Freitag J, Heers C, et al. Lacosamide: a review of preclinical properties. CNS Drug Rev 2007; 13: 21–42PubMedCrossRef Beyreuther BK, Freitag J, Heers C, et al. Lacosamide: a review of preclinical properties. CNS Drug Rev 2007; 13: 21–42PubMedCrossRef
40.
go back to reference Choi D, Stables JP, Kohn H. Synthesis and anticonvulsant activities of N-benzyl-2-acetamidopropionamide derivatives. J Med Chem 1996; 39: 1907–16PubMedCrossRef Choi D, Stables JP, Kohn H. Synthesis and anticonvulsant activities of N-benzyl-2-acetamidopropionamide derivatives. J Med Chem 1996; 39: 1907–16PubMedCrossRef
41.
go back to reference Choi D, Stables JP, Kohn H. The anticonvulsant activities of functionalized N-benzyl-2-acetamidoacetamides: the importance of the 2-acetamido substituent. Bioorg Med Chem 1996; 4: 2105–14PubMedCrossRef Choi D, Stables JP, Kohn H. The anticonvulsant activities of functionalized N-benzyl-2-acetamidoacetamides: the importance of the 2-acetamido substituent. Bioorg Med Chem 1996; 4: 2105–14PubMedCrossRef
42.
go back to reference Stöhr T, Kupferberg HJ, Stables JP, et al. Lacosamide, a novel anti-convulsant drug, shows efficacy with a wide safety margin in rodents models for epilepsy. Epilepsy Res 2007; 74: 147–54PubMedCrossRef Stöhr T, Kupferberg HJ, Stables JP, et al. Lacosamide, a novel anti-convulsant drug, shows efficacy with a wide safety margin in rodents models for epilepsy. Epilepsy Res 2007; 74: 147–54PubMedCrossRef
43.
go back to reference Duncan GE, Kohn H. The novel antiepileptic drug lacosamide blocks behavioral and brain metabolic manifestations of seizure activity in the 6 Hz psychomotor seizure model. Epilepsy Res 2005; 67: 81–7PubMedCrossRef Duncan GE, Kohn H. The novel antiepileptic drug lacosamide blocks behavioral and brain metabolic manifestations of seizure activity in the 6 Hz psychomotor seizure model. Epilepsy Res 2005; 67: 81–7PubMedCrossRef
44.
go back to reference Brandt C, Heile A, Potschka H, et al. Effects of the novel antiepileptic drug lacosamide on the development of amygdala kindling in rats. Epilepsia 2006; 47: 1803–9PubMedCrossRef Brandt C, Heile A, Potschka H, et al. Effects of the novel antiepileptic drug lacosamide on the development of amygdala kindling in rats. Epilepsia 2006; 47: 1803–9PubMedCrossRef
45.
go back to reference White S, Perucca E, Privitera M. Investigational drugs. In: Engel Jr J, Pedley TA, Aicardi J, et al., editors. Epilepsy, a comprehensive textbook. Philadelphia (PA): Lippincott, Williams & Wilkins, 2007: 1721–40 White S, Perucca E, Privitera M. Investigational drugs. In: Engel Jr J, Pedley TA, Aicardi J, et al., editors. Epilepsy, a comprehensive textbook. Philadelphia (PA): Lippincott, Williams & Wilkins, 2007: 1721–40
46.
go back to reference Hao JX, Stöhr T, Selve N, et al. Lacosamide, a new antiepileptic, alleviates neuropathic pain-like behaviors in rat models of spinal cord or trigeminal nerve injury. Eur J Pharmacol 2006; 553: 135–40PubMedCrossRef Hao JX, Stöhr T, Selve N, et al. Lacosamide, a new antiepileptic, alleviates neuropathic pain-like behaviors in rat models of spinal cord or trigeminal nerve injury. Eur J Pharmacol 2006; 553: 135–40PubMedCrossRef
47.
go back to reference Beyreuther BK, Callizot N, Brot MD, et al. Antinociceptive efficacy of lacosamide in rat models for tumor- and chemotherapy-induced cancer pain. Eur J Pharmacol 2007; 565: 98–104PubMedCrossRef Beyreuther BK, Callizot N, Brot MD, et al. Antinociceptive efficacy of lacosamide in rat models for tumor- and chemotherapy-induced cancer pain. Eur J Pharmacol 2007; 565: 98–104PubMedCrossRef
48.
go back to reference Beyreuther BK, Geis C, Stöhr T, et al. Antihyperalgesic efficacy of lacosamide in a rat model for muscle pain induced by TNF. Neuropharmacology 2007; 52: 1312–7PubMedCrossRef Beyreuther BK, Geis C, Stöhr T, et al. Antihyperalgesic efficacy of lacosamide in a rat model for muscle pain induced by TNF. Neuropharmacology 2007; 52: 1312–7PubMedCrossRef
49.
go back to reference Beyreuther B, Callizot N, Stöhr T. Antinociceptive efficacy of lacosamide in the monosodium iodoacetate rat model for osteoarthritis pain [abstract]. Arthritis Res Ther 2007; 9: R14PubMedCrossRef Beyreuther B, Callizot N, Stöhr T. Antinociceptive efficacy of lacosamide in the monosodium iodoacetate rat model for osteoarthritis pain [abstract]. Arthritis Res Ther 2007; 9: R14PubMedCrossRef
50.
go back to reference Beyreuther B, Callizot N, Stöhr T. Antinociceptive efficacy of lacosamide in a rat model for painful diabetic neuropathy. Eur J Pharmacol 2006; 539: 64–70PubMedCrossRef Beyreuther B, Callizot N, Stöhr T. Antinociceptive efficacy of lacosamide in a rat model for painful diabetic neuropathy. Eur J Pharmacol 2006; 539: 64–70PubMedCrossRef
51.
go back to reference Sheets PL, Heers C, Stoher T, et al. Differential block of sensory neuronal voltage-gated sodium channels by lacosamide, lidocaine and carbamazepine. J Pharm Exp Ther 2008; 26: 89–99CrossRef Sheets PL, Heers C, Stoher T, et al. Differential block of sensory neuronal voltage-gated sodium channels by lacosamide, lidocaine and carbamazepine. J Pharm Exp Ther 2008; 26: 89–99CrossRef
52.
go back to reference Kropeit D, Schiltmeyer B, Cawello W, et al. Bioequivalence of short-time infusions compared to oral administration of SPM 927. Epilepsia 2004; 45Suppl. 7: 123–4 Kropeit D, Schiltmeyer B, Cawello W, et al. Bioequivalence of short-time infusions compared to oral administration of SPM 927. Epilepsia 2004; 45Suppl. 7: 123–4
53.
go back to reference Biton V, Rosenfeld WE, Whitesides J, et al. Intravenous lacosamide as replacement for oral lacosamide in patients with partial-onset seizures. Epilepsia 2008; 49: 418–24PubMedCrossRef Biton V, Rosenfeld WE, Whitesides J, et al. Intravenous lacosamide as replacement for oral lacosamide in patients with partial-onset seizures. Epilepsia 2008; 49: 418–24PubMedCrossRef
54.
go back to reference Cawello W, Kropeit D, Schiltmeyer B, et al. Food does not affect the pharmacokinetics of SPM 927 [abstract]. Epilepsia 2004; 45Suppl. 7: 307 Cawello W, Kropeit D, Schiltmeyer B, et al. Food does not affect the pharmacokinetics of SPM 927 [abstract]. Epilepsia 2004; 45Suppl. 7: 307
55.
go back to reference Schiltmeyer B, Cawello W, Kropeit D, et al. Pharmacokinetics of the new antiepileptic drug SPM 927 in human subjects with different age and gender [abstract]. Epilepsia 2004; 45Suppl. 7: 313 Schiltmeyer B, Cawello W, Kropeit D, et al. Pharmacokinetics of the new antiepileptic drug SPM 927 in human subjects with different age and gender [abstract]. Epilepsia 2004; 45Suppl. 7: 313
56.
go back to reference UCB Pharma. Vimpat (Lacosamide): summary of product characteristics. Brussels: UCB Pharma, 2008 Sep UCB Pharma. Vimpat (Lacosamide): summary of product characteristics. Brussels: UCB Pharma, 2008 Sep
57.
go back to reference Sachdeo R. Lacosamide. In: Shorvon SD, Perucca E, Engel Jr J, editors. The treatment of epilepsy. 3rd ed. Oxford: J Wiley and Sons, 2009: 527–34CrossRef Sachdeo R. Lacosamide. In: Shorvon SD, Perucca E, Engel Jr J, editors. The treatment of epilepsy. 3rd ed. Oxford: J Wiley and Sons, 2009: 527–34CrossRef
58.
go back to reference Ben-Menachem E, Biton V, Jatuzis D, et al. Efficacy and safety of oral lacosamide as adjunctive therapy in adults with partial-onset seizures. Epilepsia 2007; 48: 1308–17PubMedCrossRef Ben-Menachem E, Biton V, Jatuzis D, et al. Efficacy and safety of oral lacosamide as adjunctive therapy in adults with partial-onset seizures. Epilepsia 2007; 48: 1308–17PubMedCrossRef
59.
go back to reference Bialer M, Johannessen SI, Kupferberg HJ, et al. Progress report on new antiepileptic drugs: a summary of the Eighth Eilat Conference (EILAT VIII). Epilepsy Res 2007; 73: 1–52PubMedCrossRef Bialer M, Johannessen SI, Kupferberg HJ, et al. Progress report on new antiepileptic drugs: a summary of the Eighth Eilat Conference (EILAT VIII). Epilepsy Res 2007; 73: 1–52PubMedCrossRef
60.
go back to reference Halász P, Kälviäinen R, Mazurkiewicz-Beldziñska M, et al. Adjunctive lacosamide for partial-onset seizures: efficacy and safety results from a randomized controlled trial. Epilepsia 2009; 50: 443–53PubMedCrossRef Halász P, Kälviäinen R, Mazurkiewicz-Beldziñska M, et al. Adjunctive lacosamide for partial-onset seizures: efficacy and safety results from a randomized controlled trial. Epilepsia 2009; 50: 443–53PubMedCrossRef
61.
go back to reference Chung SM, Sperling M, Biton V, et al. Lacosamide: efficacy and safety as oral adjunctive therapy in adults with partial-onset seizures [abstract]. Epilepsia 2007; 48Suppl. 7: 57 Chung SM, Sperling M, Biton V, et al. Lacosamide: efficacy and safety as oral adjunctive therapy in adults with partial-onset seizures [abstract]. Epilepsia 2007; 48Suppl. 7: 57
62.
go back to reference Rosenfeld W, Fountain NB, Kaubrys G, et al. Lacosamide: an interim evaluation of long-term safety and efficacy as oral adjunctive therapy in subjects with partial-onset seizures. Epilepsia 2007; 48Suppl. 6: 318–9 Rosenfeld W, Fountain NB, Kaubrys G, et al. Lacosamide: an interim evaluation of long-term safety and efficacy as oral adjunctive therapy in subjects with partial-onset seizures. Epilepsia 2007; 48Suppl. 6: 318–9
63.
go back to reference Biton V, Fountain N, Rosenow F, et al. Safety and tolerability of lacosamide: a summary of adverse events in epilepsy clinical trials [abstract]. Ann Neurol 2008; 64Suppl. 12: S21 Biton V, Fountain N, Rosenow F, et al. Safety and tolerability of lacosamide: a summary of adverse events in epilepsy clinical trials [abstract]. Ann Neurol 2008; 64Suppl. 12: S21
64.
go back to reference Cawello W, Horstmann R, Doty P, et al. No influence of lacosamide on the ECG time intervals QTC and PR. 58th Annual American Epilepsy Society Meeting, Scientific Exhibit; 2004 Dec 3–7; New Orleans (LA) Cawello W, Horstmann R, Doty P, et al. No influence of lacosamide on the ECG time intervals QTC and PR. 58th Annual American Epilepsy Society Meeting, Scientific Exhibit; 2004 Dec 3–7; New Orleans (LA)
66.
go back to reference Wymer JP, Simpson J, Sen D, et al. Lacosamide SP742 Study Group. Efficacy and safety of lacosamide in diabetic neuropathic pain: an 18-week double-blind placebocontrolled trial of fixed-dose regimens. Clin J Pain 2009; 25: 376–85PubMedCrossRef Wymer JP, Simpson J, Sen D, et al. Lacosamide SP742 Study Group. Efficacy and safety of lacosamide in diabetic neuropathic pain: an 18-week double-blind placebocontrolled trial of fixed-dose regimens. Clin J Pain 2009; 25: 376–85PubMedCrossRef
67.
go back to reference Shaibani A, Fares S, Selam JL, et al. Lacosamide in painful diabetic neuropathy: an 18-week double-blind placebo-controlled trial. Pain. Epub 2009 Apr 29 Shaibani A, Fares S, Selam JL, et al. Lacosamide in painful diabetic neuropathy: an 18-week double-blind placebo-controlled trial. Pain. Epub 2009 Apr 29
68.
go back to reference Freitag J, Beyreuther B, Heers C, et al. Lacosamide modulates collapsin response mediated protein 2 (CRMP-2) [abstract]. Epilepsia 2007; 48Suppl. 6: 320 Freitag J, Beyreuther B, Heers C, et al. Lacosamide modulates collapsin response mediated protein 2 (CRMP-2) [abstract]. Epilepsia 2007; 48Suppl. 6: 320
Metadata
Title
Lacosamide
A New Approach to Target Voltage-Gated Sodium Currents in Epileptic Disorders
Authors
Giulia Curia
Giuseppe Biagini
Emilio Perucca
Dr Massimo Avoli
Publication date
01-07-2009
Publisher
Springer International Publishing
Published in
CNS Drugs / Issue 7/2009
Print ISSN: 1172-7047
Electronic ISSN: 1179-1934
DOI
https://doi.org/10.2165/00023210-200923070-00002

Other articles of this Issue 7/2009

CNS Drugs 7/2009 Go to the issue