Skip to main content
Top
Published in: CNS Drugs 7/2009

01-07-2009 | Review Article

Cognitive Effects of Second-Generation Antipsychotics

Current Insights into Neurochemical Mechanisms

Authors: Fabio Fumagalli, Angelisa Frasca, Giorgio Racagni, Marco Andrea Riva

Published in: CNS Drugs | Issue 7/2009

Login to get access

Abstract

Historically, pharmacotherapy for schizophrenia was mainly focused on finding drugs to treat psychotic symptoms only, without addressing other crucial domains of the disorder such as cognitive impairments. As a result, these domains have remained undertreated. In this review, we discuss recent preclinical research efforts, including investigation of synaptic mechanisms as well as intracellular signalling pathways and mechanisms involved in neuroplasticity and cell resilience, that may represent new mechanisms participating in the pathogenesis of schizophrenia, particularly at the level of the prefrontal cortex and hippocampus, and that might lead to the development of drugs that can counteract, at least partially, the cognitive impairments typical of schizophrenia.
Literature
1.
go back to reference Green MF, Kern RS, Braff DL, et al. Neurocognitive deficits and functional outcome in schizophrenia: are we measuring the ‘right stuff’? Schizophr Bull 2000; 26(1): 119–36PubMedCrossRef Green MF, Kern RS, Braff DL, et al. Neurocognitive deficits and functional outcome in schizophrenia: are we measuring the ‘right stuff’? Schizophr Bull 2000; 26(1): 119–36PubMedCrossRef
2.
go back to reference Bressan RA, Costa DC, Jones HM, et al. Typical antipsychotic drugs: D(2) receptor occupancy and depressive symptoms in schizophrenia. Schizophr Res 2002 Jul 1; 56(1–2): 31–6PubMedCrossRef Bressan RA, Costa DC, Jones HM, et al. Typical antipsychotic drugs: D(2) receptor occupancy and depressive symptoms in schizophrenia. Schizophr Res 2002 Jul 1; 56(1–2): 31–6PubMedCrossRef
3.
go back to reference de Haan L, van Bruggen M, Lavalaye J, et al. Subjective experience and D2 receptor occupancy in patients with recent-onset schizophrenia treated with low-dose olanzapine or haloperidol: a randomized, double-blind study. Am J Psychiatry 2003 Feb; 160(2): 303–9PubMedCrossRef de Haan L, van Bruggen M, Lavalaye J, et al. Subjective experience and D2 receptor occupancy in patients with recent-onset schizophrenia treated with low-dose olanzapine or haloperidol: a randomized, double-blind study. Am J Psychiatry 2003 Feb; 160(2): 303–9PubMedCrossRef
4.
go back to reference Saeedi H, Remington G, Christensen BK. Impact of haloperidol, a dopamine D2 antagonist, on cognition and mood. Schizophr Res 2006 Jul; 85(1–3): 222–31PubMedCrossRef Saeedi H, Remington G, Christensen BK. Impact of haloperidol, a dopamine D2 antagonist, on cognition and mood. Schizophr Res 2006 Jul; 85(1–3): 222–31PubMedCrossRef
5.
go back to reference Gao K, Kemp DE, Ganocy SJ, et al. Antipsychotic-induced extrapyramidal side effects in bipolar disorder and schizophrenia: a systematic review. J Clin Psychopharmacol 2008 Apr; 28(2): 203–9PubMedCrossRef Gao K, Kemp DE, Ganocy SJ, et al. Antipsychotic-induced extrapyramidal side effects in bipolar disorder and schizophrenia: a systematic review. J Clin Psychopharmacol 2008 Apr; 28(2): 203–9PubMedCrossRef
6.
go back to reference Kapur S, Seeman P. Antipsychotic agents differ in how fast they come off the dopamine D2 receptors: implications for atypical antipsychotic action. J Psychiatry Neurosci 2000 Mar; 25(2): 161–6PubMed Kapur S, Seeman P. Antipsychotic agents differ in how fast they come off the dopamine D2 receptors: implications for atypical antipsychotic action. J Psychiatry Neurosci 2000 Mar; 25(2): 161–6PubMed
7.
go back to reference Riedel M, Muller N, Spellmann I, et al. Efficacy of olanzapine versus quetiapine on cognitive dysfunctions in patients with an acute episode of schizophrenia. Eur Arch Psychiatry Clin Neurosci 2007 Oct; 257(7): 402–12PubMedCrossRef Riedel M, Muller N, Spellmann I, et al. Efficacy of olanzapine versus quetiapine on cognitive dysfunctions in patients with an acute episode of schizophrenia. Eur Arch Psychiatry Clin Neurosci 2007 Oct; 257(7): 402–12PubMedCrossRef
8.
go back to reference Abdul-Monim Z, Reynolds GP, Neill JC. The effect of atypical and classical antipsychotics on sub-chronic PCP-induced cognitive deficits in a reversal-learning paradigm. Behav Brain Res 2006 May 15; 169(2): 263–73PubMedCrossRef Abdul-Monim Z, Reynolds GP, Neill JC. The effect of atypical and classical antipsychotics on sub-chronic PCP-induced cognitive deficits in a reversal-learning paradigm. Behav Brain Res 2006 May 15; 169(2): 263–73PubMedCrossRef
9.
go back to reference He J, Yang Y, Yu Y, et al. The effects of chronic administration of quetiapine on the methamphetamine-induced recognition memory impairment and dopaminergic terminal deficit in rats. Behav Brain Res 2006 Sep 15; 172(1): 39–45PubMedCrossRef He J, Yang Y, Yu Y, et al. The effects of chronic administration of quetiapine on the methamphetamine-induced recognition memory impairment and dopaminergic terminal deficit in rats. Behav Brain Res 2006 Sep 15; 172(1): 39–45PubMedCrossRef
10.
go back to reference Bardgett ME, Griffith MS, Foltz RF, et al. The effects of clozapine on delayed spatial alternation deficits in rats with hippocampal damage. Neurobiol Learn Mem 2006 Jan; 85(1): 86–94PubMedCrossRef Bardgett ME, Griffith MS, Foltz RF, et al. The effects of clozapine on delayed spatial alternation deficits in rats with hippocampal damage. Neurobiol Learn Mem 2006 Jan; 85(1): 86–94PubMedCrossRef
11.
go back to reference Addy NA, Pocivavsek A, Levin ED. Reversal of clozapine effects on working memory in rats with fimbria-fornix lesions. Neuropsychopharmacology 2005 Jun; 30(6): 1121–7PubMedCrossRef Addy NA, Pocivavsek A, Levin ED. Reversal of clozapine effects on working memory in rats with fimbria-fornix lesions. Neuropsychopharmacology 2005 Jun; 30(6): 1121–7PubMedCrossRef
12.
go back to reference Terry Jr AV, Mahadik SP. Time-dependent cognitive deficits associated with first and second generation antipsychotics: cholinergic dysregulation as a potential mechanism. J Pharmacol Exp Ther 2007 Mar; 320(3): 961–8PubMedCrossRef Terry Jr AV, Mahadik SP. Time-dependent cognitive deficits associated with first and second generation antipsychotics: cholinergic dysregulation as a potential mechanism. J Pharmacol Exp Ther 2007 Mar; 320(3): 961–8PubMedCrossRef
13.
go back to reference Tamminga CA. The neurobiology of cognition in schizophrenia. J Clin Psychiatry 2006 Sep; 67(9): e11PubMedCrossRef Tamminga CA. The neurobiology of cognition in schizophrenia. J Clin Psychiatry 2006 Sep; 67(9): e11PubMedCrossRef
14.
go back to reference Woodward ND, Jayathilake K, Meltzer HY. COMT val108/158met genotype, cognitive function, and cognitive improvement with clozapine in schizophrenia. Schizophr Res 2007 Feb; 90(1–3): 86–96PubMedCrossRef Woodward ND, Jayathilake K, Meltzer HY. COMT val108/158met genotype, cognitive function, and cognitive improvement with clozapine in schizophrenia. Schizophr Res 2007 Feb; 90(1–3): 86–96PubMedCrossRef
15.
go back to reference Devoto P, Flore G, Vacca G, et al. Co-release of noradrenaline and dopamine from noradrenergic neurons in the cerebral cortex induced by clozapine, the prototype atypical antipsychotic. Psychopharmacology (Berl) 2003 Apr; 167(1): 79–84 Devoto P, Flore G, Vacca G, et al. Co-release of noradrenaline and dopamine from noradrenergic neurons in the cerebral cortex induced by clozapine, the prototype atypical antipsychotic. Psychopharmacology (Berl) 2003 Apr; 167(1): 79–84
16.
go back to reference Moghaddam B, Bunney BS. Acute effects of typical and atypical antipsychotic drugs on the release of dopamine from prefrontal cortex, nucleus accumbens, and striatum of the rat: an in vivo microdialysis study. J Neurochem 1990 May; 54(5): 1755–60PubMedCrossRef Moghaddam B, Bunney BS. Acute effects of typical and atypical antipsychotic drugs on the release of dopamine from prefrontal cortex, nucleus accumbens, and striatum of the rat: an in vivo microdialysis study. J Neurochem 1990 May; 54(5): 1755–60PubMedCrossRef
17.
go back to reference Diaz-Mataix L, Scorza MC, Bortolozzi A, et al. Involvement of 5-HT1A receptors in prefrontal cortex in the modulation of dopaminergic activity: role in atypical antipsychotic action. J Neurosci 2005 Nov 23; 25(47): 10831–43PubMedCrossRef Diaz-Mataix L, Scorza MC, Bortolozzi A, et al. Involvement of 5-HT1A receptors in prefrontal cortex in the modulation of dopaminergic activity: role in atypical antipsychotic action. J Neurosci 2005 Nov 23; 25(47): 10831–43PubMedCrossRef
18.
go back to reference Kuroki T, Meltzer HY, Ichikawa J. Effects of antipsychotic drugs on extracellular dopamine levels in rat medial prefrontal cortex and nucleus accumbens. J Pharmacol Exp Ther 1999 Feb; 288(2): 774–81PubMed Kuroki T, Meltzer HY, Ichikawa J. Effects of antipsychotic drugs on extracellular dopamine levels in rat medial prefrontal cortex and nucleus accumbens. J Pharmacol Exp Ther 1999 Feb; 288(2): 774–81PubMed
19.
go back to reference Yamamoto BK, Cooperman MA. Differential effects of chronic antipsychotic drug treatment on extracellular glutamate and dopamine concentrations. J Neurosci 1994 Jul; 14(7): 4159–66PubMed Yamamoto BK, Cooperman MA. Differential effects of chronic antipsychotic drug treatment on extracellular glutamate and dopamine concentrations. J Neurosci 1994 Jul; 14(7): 4159–66PubMed
20.
go back to reference Lidow MS, Goldman-Rakic PS, Gallager DW, et al. Distribution of dopaminergic receptors in the primate cerebral cortex: quantitative autoradiographic analysis using [3H]raclopride, [3H]spiperone and [3H]SCH 23390. Neuroscience 1991; 40(3): 657–71PubMedCrossRef Lidow MS, Goldman-Rakic PS, Gallager DW, et al. Distribution of dopaminergic receptors in the primate cerebral cortex: quantitative autoradiographic analysis using [3H]raclopride, [3H]spiperone and [3H]SCH 23390. Neuroscience 1991; 40(3): 657–71PubMedCrossRef
21.
go back to reference Hurd YL, Suzuki M, Sedvall GC. D1 and D2 dopamine receptor mRNA expression in whole hemisphere sections of the human brain. J Chem Neuroanat 2001 Jul; 22(1–2): 127–37PubMedCrossRef Hurd YL, Suzuki M, Sedvall GC. D1 and D2 dopamine receptor mRNA expression in whole hemisphere sections of the human brain. J Chem Neuroanat 2001 Jul; 22(1–2): 127–37PubMedCrossRef
22.
go back to reference Brozoski TJ, Brown RM, Rosvold HE, et al. Cognitive deficit caused by regional depletion of dopamine in prefrontal cortex of rhesus monkey. Science 1979 Aug31;205(4409): 929–32PubMedCrossRef Brozoski TJ, Brown RM, Rosvold HE, et al. Cognitive deficit caused by regional depletion of dopamine in prefrontal cortex of rhesus monkey. Science 1979 Aug31;205(4409): 929–32PubMedCrossRef
23.
go back to reference Arnsten AF, Cai JX, Murphy BL, et al. Dopamine D1 receptor mechanisms in the cognitive performance of young adult and aged monkeys. Psychopharmacology (Berl) 1994 Oct; 116(2): 143–51CrossRef Arnsten AF, Cai JX, Murphy BL, et al. Dopamine D1 receptor mechanisms in the cognitive performance of young adult and aged monkeys. Psychopharmacology (Berl) 1994 Oct; 116(2): 143–51CrossRef
24.
go back to reference Williams GV, Goldman-Rakic PS. Modulation of memory fields by dopamine D1 receptors in prefrontal cortex. Nature 1995 Aug 17; 376(6541): 572–5PubMedCrossRef Williams GV, Goldman-Rakic PS. Modulation of memory fields by dopamine D1 receptors in prefrontal cortex. Nature 1995 Aug 17; 376(6541): 572–5PubMedCrossRef
25.
go back to reference Granon S, Passetti F, Thomas KL, et al. Enhanced and impaired attentional performance after infusion of D1 dopaminergic receptor agents into rat prefrontal cortex. J Neurosci 2000 Feb 1; 20(3): 1208–15PubMed Granon S, Passetti F, Thomas KL, et al. Enhanced and impaired attentional performance after infusion of D1 dopaminergic receptor agents into rat prefrontal cortex. J Neurosci 2000 Feb 1; 20(3): 1208–15PubMed
26.
go back to reference Castner SA, Williams GV. Tuning the engine of cognition: a focus on NMDA/D1 receptor interactions in prefrontal cortex. Brain Cogn 2007 Mar; 63(2): 94–122PubMedCrossRef Castner SA, Williams GV. Tuning the engine of cognition: a focus on NMDA/D1 receptor interactions in prefrontal cortex. Brain Cogn 2007 Mar; 63(2): 94–122PubMedCrossRef
27.
go back to reference Shoemaker JM, Saint Marie RL, Bongiovanni MJ, et al. Prefrontal D1 and ventral hippocampal N-methyl-D-aspartate regulation of startle gating in rats. Neuroscience 2005; 135(2): 385–94PubMedCrossRef Shoemaker JM, Saint Marie RL, Bongiovanni MJ, et al. Prefrontal D1 and ventral hippocampal N-methyl-D-aspartate regulation of startle gating in rats. Neuroscience 2005; 135(2): 385–94PubMedCrossRef
28.
go back to reference Yang CR, Chen L. Targeting prefrontal cortical dopamine D1 and N-methyl-D-aspartate receptor interactions in schizophrenia treatment. Neuroscientist 2005; 11: 452–70PubMedCrossRef Yang CR, Chen L. Targeting prefrontal cortical dopamine D1 and N-methyl-D-aspartate receptor interactions in schizophrenia treatment. Neuroscientist 2005; 11: 452–70PubMedCrossRef
29.
go back to reference Missale C, Fiorentini C, Busi C, et al. The NMDA/D1 receptor complex as a new target in drug development. Curr Top Med Chem 2006; 6(8): 801–8PubMedCrossRef Missale C, Fiorentini C, Busi C, et al. The NMDA/D1 receptor complex as a new target in drug development. Curr Top Med Chem 2006; 6(8): 801–8PubMedCrossRef
30.
go back to reference Wang X, Zhong P, Gu Z, et al. Regulation of NMDA receptors by dopamine D4 signaling in prefrontal cortex. J Neurosci 2003 Oct 29; 23(30): 9852–61PubMed Wang X, Zhong P, Gu Z, et al. Regulation of NMDA receptors by dopamine D4 signaling in prefrontal cortex. J Neurosci 2003 Oct 29; 23(30): 9852–61PubMed
31.
go back to reference Jentsch JD, Taylor JR, Redmond Jr DE, et al. Dopamine D4 receptor antagonist reversal of subchronic phencyclidine-induced object retrieval/detour deficits in monkeys. Psychopharmacology (Berl) 1999 Feb; 142(1): 78–84CrossRef Jentsch JD, Taylor JR, Redmond Jr DE, et al. Dopamine D4 receptor antagonist reversal of subchronic phencyclidine-induced object retrieval/detour deficits in monkeys. Psychopharmacology (Berl) 1999 Feb; 142(1): 78–84CrossRef
32.
go back to reference Meltzer HY, Matsubara S, Lee JC. The ratios of serotonin2 and dopamine2 affinities differentiate atypical and typical antipsychotic drugs. Psychopharmacol Bull 1989; 25(3): 390–2PubMed Meltzer HY, Matsubara S, Lee JC. The ratios of serotonin2 and dopamine2 affinities differentiate atypical and typical antipsychotic drugs. Psychopharmacol Bull 1989; 25(3): 390–2PubMed
33.
go back to reference Stockmeier CA, DiCarlo JJ, Zhang Y, et al. Characterization of typical and atypical antipsychotic drugs based on in vivo occupancy of serotonin2 and dopamine2 receptors. J Pharmacol Exp Ther 1993 Sep; 266(3): 1374–84PubMed Stockmeier CA, DiCarlo JJ, Zhang Y, et al. Characterization of typical and atypical antipsychotic drugs based on in vivo occupancy of serotonin2 and dopamine2 receptors. J Pharmacol Exp Ther 1993 Sep; 266(3): 1374–84PubMed
34.
go back to reference Rollema H, Lu Y, Schmidt AW, et al. 5-HT(1A) receptor activation contributes to ziprasidone-induced dopamine release in the rat prefrontal cortex. Biol Psychiatry 2000 Aug 1; 48(3): 229–37PubMedCrossRef Rollema H, Lu Y, Schmidt AW, et al. 5-HT(1A) receptor activation contributes to ziprasidone-induced dopamine release in the rat prefrontal cortex. Biol Psychiatry 2000 Aug 1; 48(3): 229–37PubMedCrossRef
35.
go back to reference Millan MJ. Improving the treatment of schizophrenia: focus on serotonin (5-HT)(1A) receptors. J Pharmacol Exp Ther 2000 Dec; 295(3): 853–61PubMed Millan MJ. Improving the treatment of schizophrenia: focus on serotonin (5-HT)(1A) receptors. J Pharmacol Exp Ther 2000 Dec; 295(3): 853–61PubMed
36.
go back to reference Ichikawa J, Ishii H, Bonaccorso S, et al. 5-HT(2A) and D(2) receptor blockade increases cortical DA release via 5-HT(1A) receptor activation: a possible mechanism of atypical antipsychotic-induced cortical dopamine release. J Neurochem 2001 Mar; 76(5): 1521–31PubMedCrossRef Ichikawa J, Ishii H, Bonaccorso S, et al. 5-HT(2A) and D(2) receptor blockade increases cortical DA release via 5-HT(1A) receptor activation: a possible mechanism of atypical antipsychotic-induced cortical dopamine release. J Neurochem 2001 Mar; 76(5): 1521–31PubMedCrossRef
37.
go back to reference Rollema H, Lu Y, Schmidt AW, et al. Clozapine increases dopamine release in prefrontal cortex by 5-HT1A receptor activation. Eur J Pharmacol 1997 Nov 5; 338(2): R3–5PubMedCrossRef Rollema H, Lu Y, Schmidt AW, et al. Clozapine increases dopamine release in prefrontal cortex by 5-HT1A receptor activation. Eur J Pharmacol 1997 Nov 5; 338(2): R3–5PubMedCrossRef
38.
go back to reference Newman-Tancredi A, Gavaudan S, Conte C, et al. Agonist and antagonist actions of antipsychotic agents at 5-HT1A receptors: a [35S]GTPgammaS binding study. Eur J Pharmacol 1998 Aug 21; 355(2–3): 245–56PubMedCrossRef Newman-Tancredi A, Gavaudan S, Conte C, et al. Agonist and antagonist actions of antipsychotic agents at 5-HT1A receptors: a [35S]GTPgammaS binding study. Eur J Pharmacol 1998 Aug 21; 355(2–3): 245–56PubMedCrossRef
39.
go back to reference Meltzer HY, McGurk SR. The effects of clozapine, risperidone, and olanzapine on cognitive function in schizophrenia. Schizophr Bull 1999; 25(2): 233–55PubMedCrossRef Meltzer HY, McGurk SR. The effects of clozapine, risperidone, and olanzapine on cognitive function in schizophrenia. Schizophr Bull 1999; 25(2): 233–55PubMedCrossRef
40.
go back to reference Gallhofer B, Lis S, Meyer-Lindenberg A, et al. Cognitive dysfunction in schizophrenia: a new set of tools for the assessment of cognition and drug effects. Acta Psychiatr Scand Suppl 1999; 395: 118–28CrossRef Gallhofer B, Lis S, Meyer-Lindenberg A, et al. Cognitive dysfunction in schizophrenia: a new set of tools for the assessment of cognition and drug effects. Acta Psychiatr Scand Suppl 1999; 395: 118–28CrossRef
41.
go back to reference Friedman JI, Temporini H, Davis KL. Pharmacologic strategies for augmenting cognitive performance in schizophrenia. Biol Psychiatry 1999 Jan 1; 45(1): 1–16PubMedCrossRef Friedman JI, Temporini H, Davis KL. Pharmacologic strategies for augmenting cognitive performance in schizophrenia. Biol Psychiatry 1999 Jan 1; 45(1): 1–16PubMedCrossRef
42.
go back to reference Tyson PJ, Laws KR, Flowers KA, et al. Cognitive function and social abilities in patients with schizophrenia: relationship with atypical antipsychotics. Psychiatry Clin Neurosci 2006 Aug; 60(4): 473–9PubMedCrossRef Tyson PJ, Laws KR, Flowers KA, et al. Cognitive function and social abilities in patients with schizophrenia: relationship with atypical antipsychotics. Psychiatry Clin Neurosci 2006 Aug; 60(4): 473–9PubMedCrossRef
43.
go back to reference Tyson PJ, Roberts KH, Mortimer AM. Are the cognitive effects of atypical antipsychotics influenced by their affinity to 5HT-2A receptors? Int J Neurosci 2004 Jun; 114(6): 593–611PubMedCrossRef Tyson PJ, Roberts KH, Mortimer AM. Are the cognitive effects of atypical antipsychotics influenced by their affinity to 5HT-2A receptors? Int J Neurosci 2004 Jun; 114(6): 593–611PubMedCrossRef
44.
go back to reference Sumiyoshi T, Bubenikova-Valesova V, Horacek J, et al. Serotonin1 A receptors in the pathophysiology of schizophrenia: development of novel cognition-enhancing therapeutics. Adv Ther 2008; 25: 1037–56PubMedCrossRef Sumiyoshi T, Bubenikova-Valesova V, Horacek J, et al. Serotonin1 A receptors in the pathophysiology of schizophrenia: development of novel cognition-enhancing therapeutics. Adv Ther 2008; 25: 1037–56PubMedCrossRef
45.
go back to reference Hirst WD, Stean TO, Rogers DC, et al. SB-399885 is a potent, selective 5-HT6 receptor antagonist with cognitive enhancing properties in aged rat water maze and novel object recognition models. Eur J Pharmacol 2006 Dec 28; 553(1–3): 109–19PubMedCrossRef Hirst WD, Stean TO, Rogers DC, et al. SB-399885 is a potent, selective 5-HT6 receptor antagonist with cognitive enhancing properties in aged rat water maze and novel object recognition models. Eur J Pharmacol 2006 Dec 28; 553(1–3): 109–19PubMedCrossRef
46.
go back to reference Roth BL, Hanizavareh SM, Blum AE. Serotonin receptors represent highly favorable molecular targets for cognitive enhancement in schizophrenia and other disorders. Psychopharmacology (Berl) 2004 Jun; 174(1): 17–24CrossRef Roth BL, Hanizavareh SM, Blum AE. Serotonin receptors represent highly favorable molecular targets for cognitive enhancement in schizophrenia and other disorders. Psychopharmacology (Berl) 2004 Jun; 174(1): 17–24CrossRef
47.
go back to reference Shapiro DA, Renock S, Arrington E, et al. Aripiprazole, a novel atypical antipsychotic drug with a unique and robust pharmacology. Neuropsychopharmacology 2003; 28: 1400–11PubMedCrossRef Shapiro DA, Renock S, Arrington E, et al. Aripiprazole, a novel atypical antipsychotic drug with a unique and robust pharmacology. Neuropsychopharmacology 2003; 28: 1400–11PubMedCrossRef
48.
go back to reference Arnsten AF. Adrenergic targets for the treatment of cognitive deficits in schizophrenia. Psychopharmacology (Berl) 2004 Jun; 174(1): 25–31CrossRef Arnsten AF. Adrenergic targets for the treatment of cognitive deficits in schizophrenia. Psychopharmacology (Berl) 2004 Jun; 174(1): 25–31CrossRef
49.
go back to reference Franowicz JS, Kessler LE, Borja CM, et al. Mutation of the alpha2A-adrenoceptor impairs working memory performance and annuls cognitive enhancement by guanfacine. J Neurosci 2002 Oct 1; 22(19): 8771–7PubMed Franowicz JS, Kessler LE, Borja CM, et al. Mutation of the alpha2A-adrenoceptor impairs working memory performance and annuls cognitive enhancement by guanfacine. J Neurosci 2002 Oct 1; 22(19): 8771–7PubMed
50.
go back to reference Devoto P, Flore G, Longu G, et al. Origin of extracellular dopamine from dopamine and noradrenaline neurons in the medial prefrontal and occipital cortex. Synapse 2003 Dec 1; 50(3): 200–5PubMedCrossRef Devoto P, Flore G, Longu G, et al. Origin of extracellular dopamine from dopamine and noradrenaline neurons in the medial prefrontal and occipital cortex. Synapse 2003 Dec 1; 50(3): 200–5PubMedCrossRef
51.
go back to reference Fields RB, Van Kammen DP, Peters JL, et al. Clonidine improves memory function in schizophrenia independently from change in psychosis: preliminary findings. Schizophr Res 1988; 1: 417–23PubMedCrossRef Fields RB, Van Kammen DP, Peters JL, et al. Clonidine improves memory function in schizophrenia independently from change in psychosis: preliminary findings. Schizophr Res 1988; 1: 417–23PubMedCrossRef
52.
go back to reference Friedman JI, Adler DN, Temporini HD, et al. Guanfacine treatment of cognitive impairment in schizophrenia. Neuropsychopharmacology 2001; 25: 402–9PubMedCrossRef Friedman JI, Adler DN, Temporini HD, et al. Guanfacine treatment of cognitive impairment in schizophrenia. Neuropsychopharmacology 2001; 25: 402–9PubMedCrossRef
53.
go back to reference Ramos BP, Arnsten AF. Adrenergic pharmacology and cognition: focus on the prefrontal cortex. Pharmacol Ther 2007 Mar; 113(3): 523–36PubMedCrossRef Ramos BP, Arnsten AF. Adrenergic pharmacology and cognition: focus on the prefrontal cortex. Pharmacol Ther 2007 Mar; 113(3): 523–36PubMedCrossRef
54.
go back to reference Davis KL, Kahn RS, Ko G, et al. Dopamine in schizophrenia: a review and reconceptualization. Am J Psychiatry 1991 Nov; 148(11): 1474–86PubMed Davis KL, Kahn RS, Ko G, et al. Dopamine in schizophrenia: a review and reconceptualization. Am J Psychiatry 1991 Nov; 148(11): 1474–86PubMed
55.
go back to reference Crook JM, Tomaskovic-Crook E, Copolov DL, et al. Decreased muscarinic receptor binding in subjects with schizophrenia: a study of the human hippocampal formation. Biol Psychiatry 2000 Sep 1; 48(5): 381–8PubMedCrossRef Crook JM, Tomaskovic-Crook E, Copolov DL, et al. Decreased muscarinic receptor binding in subjects with schizophrenia: a study of the human hippocampal formation. Biol Psychiatry 2000 Sep 1; 48(5): 381–8PubMedCrossRef
56.
57.
go back to reference Raedler TJ, Bymaster FP, Tandon R, et al. Towards a muscarinic hypothesis of schizophrenia. Mol Psychiatry 2007 Mar; 12(3): 232–46PubMed Raedler TJ, Bymaster FP, Tandon R, et al. Towards a muscarinic hypothesis of schizophrenia. Mol Psychiatry 2007 Mar; 12(3): 232–46PubMed
58.
go back to reference Breese CR, Lee MJ, Adams CE, et al. Abnormal regulation of high affinity nicotinic receptors in subjects with schizophrenia. Neuropsychopharmacology 2000 Oct; 23(4): 351–64PubMedCrossRef Breese CR, Lee MJ, Adams CE, et al. Abnormal regulation of high affinity nicotinic receptors in subjects with schizophrenia. Neuropsychopharmacology 2000 Oct; 23(4): 351–64PubMedCrossRef
59.
go back to reference Freedman R, Adams CE, Leonard S. The alpha7-nicotinic acetylcholine receptor and the pathology of hippocampal interneurons in schizophrenia. J Chem Neuroanat 2000 Dec; 20(3–4): 299–306PubMedCrossRef Freedman R, Adams CE, Leonard S. The alpha7-nicotinic acetylcholine receptor and the pathology of hippocampal interneurons in schizophrenia. J Chem Neuroanat 2000 Dec; 20(3–4): 299–306PubMedCrossRef
60.
go back to reference Minzenberg MJ, Poole JH, Benton C, et al. Association of anticholinergic load with impairment of complex attention and memory in schizophrenia. Am J Psychiatry 2004 Jan; 161(1): 116–24PubMedCrossRef Minzenberg MJ, Poole JH, Benton C, et al. Association of anticholinergic load with impairment of complex attention and memory in schizophrenia. Am J Psychiatry 2004 Jan; 161(1): 116–24PubMedCrossRef
61.
go back to reference Ferreri F, Agbokou C, Gauthier S. Cognitive dysfunctions in schizophrenia: potential benefits of cholinesterase inhibitor adjunctive therapy. J Psychiatry Neurosci 2006; 31: 369–76PubMed Ferreri F, Agbokou C, Gauthier S. Cognitive dysfunctions in schizophrenia: potential benefits of cholinesterase inhibitor adjunctive therapy. J Psychiatry Neurosci 2006; 31: 369–76PubMed
62.
go back to reference Friedman JI, Adler DN, Howanitz E, et al. A double blind placebo controlled trial of donepezil adjunctive treatment to risperidone for the cognitive impairment of schizophrenia. Biol Psychiatry 2002 Mar 1; 51(5): 349–57PubMedCrossRef Friedman JI, Adler DN, Howanitz E, et al. A double blind placebo controlled trial of donepezil adjunctive treatment to risperidone for the cognitive impairment of schizophrenia. Biol Psychiatry 2002 Mar 1; 51(5): 349–57PubMedCrossRef
63.
go back to reference Shirazi-Southall S, Rodriguez DE, Nomikos GG. Effects of typical and atypical antipsychotics and receptor selective compounds on acetylcholine efflux in the hippocampus of the rat. Neuropsychopharmacology 2002 May; 26(5): 583–94PubMedCrossRef Shirazi-Southall S, Rodriguez DE, Nomikos GG. Effects of typical and atypical antipsychotics and receptor selective compounds on acetylcholine efflux in the hippocampus of the rat. Neuropsychopharmacology 2002 May; 26(5): 583–94PubMedCrossRef
64.
go back to reference Ichikawa J, Chung YC, Li Z, et al. Cholinergic modulation of basal and amphetamine-induced dopamine release in rat medial prefrontal cortex and nucleus accumbens. Brain Res 2002 Dec 20; 958(1): 176–84PubMedCrossRef Ichikawa J, Chung YC, Li Z, et al. Cholinergic modulation of basal and amphetamine-induced dopamine release in rat medial prefrontal cortex and nucleus accumbens. Brain Res 2002 Dec 20; 958(1): 176–84PubMedCrossRef
65.
go back to reference Bymaster FP, Calligaro DO, Falcone JF, et al. Radioreceptor binding profile of the atypical antipsychotic olanzapine. Neuropsychopharmacology 1996 Feb; 14(2): 87–96PubMedCrossRef Bymaster FP, Calligaro DO, Falcone JF, et al. Radioreceptor binding profile of the atypical antipsychotic olanzapine. Neuropsychopharmacology 1996 Feb; 14(2): 87–96PubMedCrossRef
66.
go back to reference Koyama T, Nakajima Y, Fujii T, et al. Enhancement of cortical and hippocampal cholinergic neurotransmission through 5-HT1A receptor-mediated pathways by BAY x 3702 in freely moving rats. Neurosci Lett 1999 Apr 9; 265(1): 33–6PubMedCrossRef Koyama T, Nakajima Y, Fujii T, et al. Enhancement of cortical and hippocampal cholinergic neurotransmission through 5-HT1A receptor-mediated pathways by BAY x 3702 in freely moving rats. Neurosci Lett 1999 Apr 9; 265(1): 33–6PubMedCrossRef
67.
go back to reference Kurokawa M, Shiozaki S, Nonaka H, et al. In vivo regulation of acetylcholine release via adenosine A1 receptor in rat cerebral cortex. Neurosci Lett 1996 May 17; 209(3): 181–4PubMedCrossRef Kurokawa M, Shiozaki S, Nonaka H, et al. In vivo regulation of acetylcholine release via adenosine A1 receptor in rat cerebral cortex. Neurosci Lett 1996 May 17; 209(3): 181–4PubMedCrossRef
68.
go back to reference Tellez S, Colpaert F, Marien M. Acetylcholine release in the rat prefrontal cortex in vivo: modulation by alpha 2-adrenoceptor agonists and antagonists. J Neurochem 1997 Feb; 68(2): 778–85PubMedCrossRef Tellez S, Colpaert F, Marien M. Acetylcholine release in the rat prefrontal cortex in vivo: modulation by alpha 2-adrenoceptor agonists and antagonists. J Neurochem 1997 Feb; 68(2): 778–85PubMedCrossRef
69.
go back to reference McDonald MP, Willard LB, Wenk GL, et al. Coadministration of galanin antagonist M40 with a muscarinic M1 agonist improves delayed nonmatching to position choice accuracy in rats with cholinergic lesions. J Neurosci 1998 Jul 1; 18(13): 5078–85PubMed McDonald MP, Willard LB, Wenk GL, et al. Coadministration of galanin antagonist M40 with a muscarinic M1 agonist improves delayed nonmatching to position choice accuracy in rats with cholinergic lesions. J Neurosci 1998 Jul 1; 18(13): 5078–85PubMed
70.
go back to reference Hodges H, Peters S, Gray JA, et al. Counteractive effects of a partial (sabcomeline) and a full (RS86) muscarinic receptor agonist on deficits in radial maze performance induced by S-AMPA lesions of the basal forebrain and medial septal area. Behav Brain Res 1999 Feb 15; 99(1): 81–92PubMedCrossRef Hodges H, Peters S, Gray JA, et al. Counteractive effects of a partial (sabcomeline) and a full (RS86) muscarinic receptor agonist on deficits in radial maze performance induced by S-AMPA lesions of the basal forebrain and medial septal area. Behav Brain Res 1999 Feb 15; 99(1): 81–92PubMedCrossRef
71.
go back to reference Spohn HE, Strauss ME. Relation of neuroleptic and anticholinergic medication to cognitive functions in schizophrenia. J Abnorm Psychol 1989 Nov; 98(4): 367–80PubMedCrossRef Spohn HE, Strauss ME. Relation of neuroleptic and anticholinergic medication to cognitive functions in schizophrenia. J Abnorm Psychol 1989 Nov; 98(4): 367–80PubMedCrossRef
72.
go back to reference Bymaster FP, Heath I, Hendrix JC, et al. Comparative behavioral and neurochemical activities of cholinergic antagonists in rats. J Pharmacol Exp Ther 1993 Oct; 267(1): 16–24PubMed Bymaster FP, Heath I, Hendrix JC, et al. Comparative behavioral and neurochemical activities of cholinergic antagonists in rats. J Pharmacol Exp Ther 1993 Oct; 267(1): 16–24PubMed
73.
go back to reference Adams CE, Stevens KE. Evidence for a role of nicotinic acetylcholine receptors in schizophrenia. Front Biosci 2007; 12: 4755–72PubMedCrossRef Adams CE, Stevens KE. Evidence for a role of nicotinic acetylcholine receptors in schizophrenia. Front Biosci 2007; 12: 4755–72PubMedCrossRef
74.
go back to reference Bitner RS, Bunnelle WH, Anderson DJ, et al. Broadspectrum efficacy across cognitive domains by alpha7 nicotinic acetylcholine receptor agonism correlates with activation of ERK1/2 and CREB phosphorylation pathways. J Neurosci 2007; 27: 10578–87PubMedCrossRef Bitner RS, Bunnelle WH, Anderson DJ, et al. Broadspectrum efficacy across cognitive domains by alpha7 nicotinic acetylcholine receptor agonism correlates with activation of ERK1/2 and CREB phosphorylation pathways. J Neurosci 2007; 27: 10578–87PubMedCrossRef
75.
go back to reference Buchanan RW, Freedman R, Javitt DC, et al. Recent advances in the development of novel pharmacological agents for the treatment of cognitive impairments in schizophrenia. Schizophr Bull 2007 Sep; 33(5): 1120–30PubMedCrossRef Buchanan RW, Freedman R, Javitt DC, et al. Recent advances in the development of novel pharmacological agents for the treatment of cognitive impairments in schizophrenia. Schizophr Bull 2007 Sep; 33(5): 1120–30PubMedCrossRef
76.
go back to reference Javitt DC, Zukin SR. Recent advances in the phencyclidine model of schizophrenia. Am J Psychiatry 1991 Oct; 148(10): 1301–8PubMed Javitt DC, Zukin SR. Recent advances in the phencyclidine model of schizophrenia. Am J Psychiatry 1991 Oct; 148(10): 1301–8PubMed
77.
go back to reference Fitzgerald LW, Deutch AY, Gasic G, et al. Regulation of cortical and subcortical glutamate receptor subunit expression by antipsychotic drugs. J Neurosci 1995 Mar; 15 (3 Pt 2): 2453–61PubMed Fitzgerald LW, Deutch AY, Gasic G, et al. Regulation of cortical and subcortical glutamate receptor subunit expression by antipsychotic drugs. J Neurosci 1995 Mar; 15 (3 Pt 2): 2453–61PubMed
78.
go back to reference Heresco-Levy U. Glutamatergic neurotransmission modulation and the mechanisms of antipsychotic atypicality. Prog Neuropsychopharmacol Biol Psychiatry 2003 Oct; 27(7): 1113–23PubMedCrossRef Heresco-Levy U. Glutamatergic neurotransmission modulation and the mechanisms of antipsychotic atypicality. Prog Neuropsychopharmacol Biol Psychiatry 2003 Oct; 27(7): 1113–23PubMedCrossRef
79.
go back to reference Corbett R, Camacho F, Woods AT, et al. Antipsychotic agents antagonize non-competitive N-methyl-D-aspartate antagonist-induced behaviors. Psychopharmacology (Berl) 1995 Jul; 120(1): 67–74CrossRef Corbett R, Camacho F, Woods AT, et al. Antipsychotic agents antagonize non-competitive N-methyl-D-aspartate antagonist-induced behaviors. Psychopharmacology (Berl) 1995 Jul; 120(1): 67–74CrossRef
80.
go back to reference Gaisler-Salomon I, Weiner I. Systemic administration of MK-801 produces an abnormally persistent latent inhibition which is reversed by clozapine but not haloperidol. Psychopharmacology (Berl) 2003 Apr; 166(4): 333–42 Gaisler-Salomon I, Weiner I. Systemic administration of MK-801 produces an abnormally persistent latent inhibition which is reversed by clozapine but not haloperidol. Psychopharmacology (Berl) 2003 Apr; 166(4): 333–42
81.
go back to reference Abekawa T, Ito K, Koyama T. Different effects of a single and repeated administration of clozapine on phencyclidine-induced hyperlocomotion and glutamate releases in the rat medial prefrontal cortex at short- and long-term withdrawal from this antipsychotic. Naunyn Schmiedebergs Arch Pharmacol 2007 Jun; 375(4): 261–71PubMedCrossRef Abekawa T, Ito K, Koyama T. Different effects of a single and repeated administration of clozapine on phencyclidine-induced hyperlocomotion and glutamate releases in the rat medial prefrontal cortex at short- and long-term withdrawal from this antipsychotic. Naunyn Schmiedebergs Arch Pharmacol 2007 Jun; 375(4): 261–71PubMedCrossRef
82.
go back to reference Daly DA, Moghaddam B. Actions of clozapine and haloperidol on the extracellular levels of excitatory amino acids in the prefrontal cortex and striatum of conscious rats. Neurosci Lett 1993 Apr 2; 152(1–2): 61–4PubMedCrossRef Daly DA, Moghaddam B. Actions of clozapine and haloperidol on the extracellular levels of excitatory amino acids in the prefrontal cortex and striatum of conscious rats. Neurosci Lett 1993 Apr 2; 152(1–2): 61–4PubMedCrossRef
83.
go back to reference Ninan I, Wang RY. Modulation of the ability of clozapine to facilitate NMDA- and electrically evoked responses in pyramidal cells of the rat medial prefrontal cortex by dopamine: pharmacological evidence. Eur J Neurosci 2003 Mar; 17(6): 1306–12PubMedCrossRef Ninan I, Wang RY. Modulation of the ability of clozapine to facilitate NMDA- and electrically evoked responses in pyramidal cells of the rat medial prefrontal cortex by dopamine: pharmacological evidence. Eur J Neurosci 2003 Mar; 17(6): 1306–12PubMedCrossRef
84.
go back to reference Lieberman JA, Bymaster FP, Meltzer HY, et al. Antipsychotic drugs: comparison in animal models of efficacy, neurotransmitter regulation, and neuroprotection. Pharmacol Rev 2008; 60: 358–403PubMedCrossRef Lieberman JA, Bymaster FP, Meltzer HY, et al. Antipsychotic drugs: comparison in animal models of efficacy, neurotransmitter regulation, and neuroprotection. Pharmacol Rev 2008; 60: 358–403PubMedCrossRef
85.
go back to reference Kyosseva SV. Differential expression of mitogen-activated protein kinases and immediate early genes fos and jun in thalamus in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2004 Sep; 28(6): 997–1006PubMedCrossRef Kyosseva SV. Differential expression of mitogen-activated protein kinases and immediate early genes fos and jun in thalamus in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2004 Sep; 28(6): 997–1006PubMedCrossRef
86.
go back to reference Kyosseva SV. The role of the extracellular signal-regulated kinase pathway in cerebellar abnormalities in schizophrenia. Cerebellum 2004; 3(2): 94–9PubMedCrossRef Kyosseva SV. The role of the extracellular signal-regulated kinase pathway in cerebellar abnormalities in schizophrenia. Cerebellum 2004; 3(2): 94–9PubMedCrossRef
87.
go back to reference Emamian ES, Hall D, Birnbaum MJ, et al. Convergent evidence for impaired AKT1-GSK3beta signaling in schizophrenia. Nat Genet 2004 Feb; 36(2): 131–7PubMedCrossRef Emamian ES, Hall D, Birnbaum MJ, et al. Convergent evidence for impaired AKT1-GSK3beta signaling in schizophrenia. Nat Genet 2004 Feb; 36(2): 131–7PubMedCrossRef
88.
go back to reference Beasley C, Cotter D, Khan N, et al. Glycogen synthase kinase-3beta immunoreactivity is reduced in the prefrontal cortex in schizophrenia. Neurosci Lett 2001 Apr 20; 302(2–3): 117–20PubMedCrossRef Beasley C, Cotter D, Khan N, et al. Glycogen synthase kinase-3beta immunoreactivity is reduced in the prefrontal cortex in schizophrenia. Neurosci Lett 2001 Apr 20; 302(2–3): 117–20PubMedCrossRef
89.
go back to reference Kozlovsky N, Belmaker RH, Agam G. Low GSK-3beta immunoreactivity in postmortem frontal cortex of schizophrenic patients. Am J Psychiatry 2000 May; 157(5): 831–3PubMedCrossRef Kozlovsky N, Belmaker RH, Agam G. Low GSK-3beta immunoreactivity in postmortem frontal cortex of schizophrenic patients. Am J Psychiatry 2000 May; 157(5): 831–3PubMedCrossRef
90.
go back to reference Cotter D, Kerwin R, Al-Sarraji S, et al. Abnormalities of Wnt signalling in schizophrenia: evidence for neurodevelopmental abnormality. Neuroreport 1998 May 11; 9(7): 1379–83PubMedCrossRef Cotter D, Kerwin R, Al-Sarraji S, et al. Abnormalities of Wnt signalling in schizophrenia: evidence for neurodevelopmental abnormality. Neuroreport 1998 May 11; 9(7): 1379–83PubMedCrossRef
91.
go back to reference Alimohamad H, Rajakumar N, Seah YH, et al. Antipsychotics alter the protein expression levels of beta-catenin and GSK-3 in the rat medial prefrontal cortex and striatum. Biol Psychiatry 2005 Mar 1; 57(5): 533–42PubMedCrossRef Alimohamad H, Rajakumar N, Seah YH, et al. Antipsychotics alter the protein expression levels of beta-catenin and GSK-3 in the rat medial prefrontal cortex and striatum. Biol Psychiatry 2005 Mar 1; 57(5): 533–42PubMedCrossRef
92.
go back to reference Alimohamad H, Sutton L, Mouyal J, et al. The effects of antipsychotics on beta-catenin, glycogen synthase kinase-3 and dishevelled in the ventral midbrain of rats. J Neurochem 2005 Oct; 95(2): 513–25PubMedCrossRef Alimohamad H, Sutton L, Mouyal J, et al. The effects of antipsychotics on beta-catenin, glycogen synthase kinase-3 and dishevelled in the ventral midbrain of rats. J Neurochem 2005 Oct; 95(2): 513–25PubMedCrossRef
93.
go back to reference Fumagalli F, Frasca A, Sparta M, et al. Long-term exposure to the atypical antipsychotic olanzapine differently up-regulates extracellular signal-regulated kinases 1 and 2 phosphorylation in subcellular compartments of rat prefrontal cortex. Mol Pharmacol 2006 Apr; 69(4): 1366–72PubMedCrossRef Fumagalli F, Frasca A, Sparta M, et al. Long-term exposure to the atypical antipsychotic olanzapine differently up-regulates extracellular signal-regulated kinases 1 and 2 phosphorylation in subcellular compartments of rat prefrontal cortex. Mol Pharmacol 2006 Apr; 69(4): 1366–72PubMedCrossRef
94.
go back to reference Ahmed MR, Gurevich VV, Dalby KN, et al. Haloperidol and clozapine differentially affect the expression of arrestins, receptor kinases, and extracellular signal-regulated kinase activation. J Pharmacol Exp Ther 2008 Apr; 325(1): 276–83PubMedCrossRef Ahmed MR, Gurevich VV, Dalby KN, et al. Haloperidol and clozapine differentially affect the expression of arrestins, receptor kinases, and extracellular signal-regulated kinase activation. J Pharmacol Exp Ther 2008 Apr; 325(1): 276–83PubMedCrossRef
95.
go back to reference Sweatt JD. Mitogen-activated protein kinases in synaptic plasticity and memory. Curr Opin Neurobiol 2004 Jun; 14(3): 311–17PubMedCrossRef Sweatt JD. Mitogen-activated protein kinases in synaptic plasticity and memory. Curr Opin Neurobiol 2004 Jun; 14(3): 311–17PubMedCrossRef
96.
go back to reference Dwivedi Y, Rizavi HS, Pandey GN. Differential effects of haloperidol and clozapine on [(3)H]cAMP binding, protein kinase A (PKA) activity, and mRNA and protein expression of selective regulatory and catalytic subunit isoforms of PKA in rat brain. J Pharmacol Exp Ther 2002 Apr; 301(1): 197–209PubMedCrossRef Dwivedi Y, Rizavi HS, Pandey GN. Differential effects of haloperidol and clozapine on [(3)H]cAMP binding, protein kinase A (PKA) activity, and mRNA and protein expression of selective regulatory and catalytic subunit isoforms of PKA in rat brain. J Pharmacol Exp Ther 2002 Apr; 301(1): 197–209PubMedCrossRef
97.
go back to reference Ramos BP, Birnbaum SG, Lindenmayer I, et al. Dysregulation of protein kinase A signaling in the aged prefrontal cortex: new strategy for treating age-related cognitive decline. Neuron 2003 Nov 13; 40(4): 835–45PubMedCrossRef Ramos BP, Birnbaum SG, Lindenmayer I, et al. Dysregulation of protein kinase A signaling in the aged prefrontal cortex: new strategy for treating age-related cognitive decline. Neuron 2003 Nov 13; 40(4): 835–45PubMedCrossRef
98.
go back to reference Barad M, Bourtchouladze R, Winder DG, et al. Rolipram, a type IV-specific phosphodiesterase inhibitor, facilitates the establishment of long-lasting long-term potentiation and improves memory. Proc Natl Acad Sci U S A 1998 Dec 8; 95(25): 15020–5PubMedCrossRef Barad M, Bourtchouladze R, Winder DG, et al. Rolipram, a type IV-specific phosphodiesterase inhibitor, facilitates the establishment of long-lasting long-term potentiation and improves memory. Proc Natl Acad Sci U S A 1998 Dec 8; 95(25): 15020–5PubMedCrossRef
99.
go back to reference Beaulieu JM. Not only lithium: regulation of glycogen synthase kinase-3 by antipsychotics and serotonergic drugs. Int J Neuropsychopharmacol 2007 Feb; 10(1): 3–6PubMedCrossRef Beaulieu JM. Not only lithium: regulation of glycogen synthase kinase-3 by antipsychotics and serotonergic drugs. Int J Neuropsychopharmacol 2007 Feb; 10(1): 3–6PubMedCrossRef
100.
go back to reference Lipska BK, Khaing ZZ, Weickert CS, et al. BDNF mRNA expression in rat hippocampus and prefrontal cortex: effects of neonatal ventral hippocampal damage and antipsychotic drugs. Eur J Neurosci 2001 Jul; 14(1): 135–44PubMedCrossRef Lipska BK, Khaing ZZ, Weickert CS, et al. BDNF mRNA expression in rat hippocampus and prefrontal cortex: effects of neonatal ventral hippocampal damage and antipsychotic drugs. Eur J Neurosci 2001 Jul; 14(1): 135–44PubMedCrossRef
101.
go back to reference Molteni R, Lipska BK, Weinberger DR, et al. Developmental and stress-related changes of neurotrophic factor gene expression in an animal model of schizophrenia. Mol Psychiatry 2001 May; 6(3): 285–92PubMedCrossRef Molteni R, Lipska BK, Weinberger DR, et al. Developmental and stress-related changes of neurotrophic factor gene expression in an animal model of schizophrenia. Mol Psychiatry 2001 May; 6(3): 285–92PubMedCrossRef
102.
go back to reference Fumagalli F, Bedogni F, Perez J, et al. Corticostriatal brain-derived neurotrophic factor dysregulation in adult rats following prenatal stress. Eur J Neurosci 2004 Sep; 20(5): 1348–54PubMedCrossRef Fumagalli F, Bedogni F, Perez J, et al. Corticostriatal brain-derived neurotrophic factor dysregulation in adult rats following prenatal stress. Eur J Neurosci 2004 Sep; 20(5): 1348–54PubMedCrossRef
103.
go back to reference Fiore M, Korf J, Antonelli A, et al. Long-lasting effects of prenatal MAM treatment on water maze performance in rats: associations with altered brain development and neurotrophin levels. Neurotoxicol Teratol 2002 Mar–Apr; 24(2): 179–91PubMedCrossRef Fiore M, Korf J, Antonelli A, et al. Long-lasting effects of prenatal MAM treatment on water maze performance in rats: associations with altered brain development and neurotrophin levels. Neurotoxicol Teratol 2002 Mar–Apr; 24(2): 179–91PubMedCrossRef
104.
go back to reference Angelucci F, Mathe AA, Aloe L. Brain-derived neurotrophic factor and tyrosine kinase receptor TrkB in rat brain are significantly altered after haloperidol and risperidone administration. J Neurosci Res 2000 Jun 15; 60(6): 783–94PubMedCrossRef Angelucci F, Mathe AA, Aloe L. Brain-derived neurotrophic factor and tyrosine kinase receptor TrkB in rat brain are significantly altered after haloperidol and risperidone administration. J Neurosci Res 2000 Jun 15; 60(6): 783–94PubMedCrossRef
105.
go back to reference Chlan-Fourney J, Ashe P, Nylen K, et al. Differential regulation of hippocampal BDNF mRNA by typical and atypical antipsychotic administration. Brain Res 2002 Nov 1; 954(1): 11–20PubMedCrossRef Chlan-Fourney J, Ashe P, Nylen K, et al. Differential regulation of hippocampal BDNF mRNA by typical and atypical antipsychotic administration. Brain Res 2002 Nov 1; 954(1): 11–20PubMedCrossRef
106.
go back to reference Bai O, Chlan-Fourney J, Bowen R, et al. Expression of brain-derived neurotrophic factor mRNA in rat hippocampus after treatment with antipsychotic drugs. J Neurosci Res 2003 Jan 1; 71(1): 127–31PubMedCrossRef Bai O, Chlan-Fourney J, Bowen R, et al. Expression of brain-derived neurotrophic factor mRNA in rat hippocampus after treatment with antipsychotic drugs. J Neurosci Res 2003 Jan 1; 71(1): 127–31PubMedCrossRef
107.
go back to reference Parikh V, Khan MM, Mahadik SP. Olanzapine counteracts reduction of brain-derived neurotrophic factor and TrkB receptors in rat hippocampus produced by haloperidol. Neurosci Lett 2004 Feb 12; 356(2): 135–9PubMedCrossRef Parikh V, Khan MM, Mahadik SP. Olanzapine counteracts reduction of brain-derived neurotrophic factor and TrkB receptors in rat hippocampus produced by haloperidol. Neurosci Lett 2004 Feb 12; 356(2): 135–9PubMedCrossRef
108.
go back to reference Luo C, Xu H, Li XM. Quetiapine reverses the suppression of hippocampal neurogenesis caused by repeated restraint stress. Brain Res 2005 Nov 23; 1063(1): 32–9PubMedCrossRef Luo C, Xu H, Li XM. Quetiapine reverses the suppression of hippocampal neurogenesis caused by repeated restraint stress. Brain Res 2005 Nov 23; 1063(1): 32–9PubMedCrossRef
109.
go back to reference Xu H, Qing H, Lu W, et al. Quetiapine attenuates the immobilization stress-induced decrease of brain-derived neurotrophic factor expression in rat hippocampus. Neurosci Lett 2002 Mar 15; 321(1–2): 65–8PubMedCrossRef Xu H, Qing H, Lu W, et al. Quetiapine attenuates the immobilization stress-induced decrease of brain-derived neurotrophic factor expression in rat hippocampus. Neurosci Lett 2002 Mar 15; 321(1–2): 65–8PubMedCrossRef
110.
go back to reference Thacker SK, Perna MK, Ward JJ, et al. The effects of adulthood olanzapine treatment on cognitive performance and neurotrophic factor content in male and female rats neonatally treated with quinpirole. Eur J Neurosci 2006 Oct; 24(7): 2075–83PubMedCrossRef Thacker SK, Perna MK, Ward JJ, et al. The effects of adulthood olanzapine treatment on cognitive performance and neurotrophic factor content in male and female rats neonatally treated with quinpirole. Eur J Neurosci 2006 Oct; 24(7): 2075–83PubMedCrossRef
111.
go back to reference Shoval G, Weizman A. The possible role of neurotrophins in the pathogenesis and therapy of schizophrenia. Eur Neuropsychopharmacol 2005 May; 15(3): 319–29PubMedCrossRef Shoval G, Weizman A. The possible role of neurotrophins in the pathogenesis and therapy of schizophrenia. Eur Neuropsychopharmacol 2005 May; 15(3): 319–29PubMedCrossRef
112.
113.
go back to reference Abrous DN, Koehl M, Le Moal M. Adult neurogenesis: from precursors to network and physiology. Physiol Rev 2005 Apr; 85(2): 523–69PubMedCrossRef Abrous DN, Koehl M, Le Moal M. Adult neurogenesis: from precursors to network and physiology. Physiol Rev 2005 Apr; 85(2): 523–69PubMedCrossRef
114.
go back to reference Ming GL, Song H. Adult neurogenesis in the mammalian central nervous system. Annu Rev Neurosci 2005; 28: 223–50PubMedCrossRef Ming GL, Song H. Adult neurogenesis in the mammalian central nervous system. Annu Rev Neurosci 2005; 28: 223–50PubMedCrossRef
115.
go back to reference Aimone JB, Wiles J, Gage FH. Potential role for adult neurogenesis in the encoding of time in new memories. Nat Neurosci 2006 Jun; 9(6): 723–7PubMedCrossRef Aimone JB, Wiles J, Gage FH. Potential role for adult neurogenesis in the encoding of time in new memories. Nat Neurosci 2006 Jun; 9(6): 723–7PubMedCrossRef
116.
117.
go back to reference Bruel-Jungerman E, Rampon C, Laroche S. Adult hippocampal neurogenesis, synaptic plasticity and memory: facts and hypotheses. Rev Neurosci 2007; 18(2): 93–114PubMed Bruel-Jungerman E, Rampon C, Laroche S. Adult hippocampal neurogenesis, synaptic plasticity and memory: facts and hypotheses. Rev Neurosci 2007; 18(2): 93–114PubMed
118.
go back to reference Gould E, Tanapat P, Hastings NB, et al. Neurogenesis in adulthood: a possible role in learning. Trends Cogn Sci 1999 May; 3(5): 186–92PubMedCrossRef Gould E, Tanapat P, Hastings NB, et al. Neurogenesis in adulthood: a possible role in learning. Trends Cogn Sci 1999 May; 3(5): 186–92PubMedCrossRef
119.
go back to reference Wang HD, Dunnavant FD, Jarman T, et al. Effects of antipsychotic drugs on neurogenesis in the forebrain of the adult rat. Neuropsychopharmacology 2004 Jul; 29(7): 1230–8PubMedCrossRef Wang HD, Dunnavant FD, Jarman T, et al. Effects of antipsychotic drugs on neurogenesis in the forebrain of the adult rat. Neuropsychopharmacology 2004 Jul; 29(7): 1230–8PubMedCrossRef
121.
go back to reference Malberg JE, Duman RS. Cell proliferation in adult hippocampus is decreased by inescapable stress: reversal by fluoxetine treatment. Neuropsychopharmacology 2003 Sep; 28(9): 1562–71PubMedCrossRef Malberg JE, Duman RS. Cell proliferation in adult hippocampus is decreased by inescapable stress: reversal by fluoxetine treatment. Neuropsychopharmacology 2003 Sep; 28(9): 1562–71PubMedCrossRef
122.
go back to reference Weiner I, Schiller D, Gaisler-Salomon I, et al. A comparison of drug effects in latent inhibition and the forced swim test differentiates between the typical antipsychotic haloperidol, the atypical antipsychotics clozapine and olanzapine, and the antidepressants imipramine and paroxetine. Behav Pharmacol 2003 May; 14(3): 215–22PubMedCrossRef Weiner I, Schiller D, Gaisler-Salomon I, et al. A comparison of drug effects in latent inhibition and the forced swim test differentiates between the typical antipsychotic haloperidol, the atypical antipsychotics clozapine and olanzapine, and the antidepressants imipramine and paroxetine. Behav Pharmacol 2003 May; 14(3): 215–22PubMedCrossRef
123.
go back to reference Fountoulakis KN, Vieta E. Treatment of bipolar disorder: a systematic review of available data and clinical perspectives. Int J Neuropsychopharmacol 2008; 11(7): 999–1029PubMedCrossRef Fountoulakis KN, Vieta E. Treatment of bipolar disorder: a systematic review of available data and clinical perspectives. Int J Neuropsychopharmacol 2008; 11(7): 999–1029PubMedCrossRef
124.
go back to reference Kodama M, Fujioka T, Duman RS. Chronic olanzapine or fluoxetine administration increases cell proliferation in hippocampus and prefrontal cortex of adult rat. Biol Psychiatry 2004 Oct 15; 56(8): 570–80PubMedCrossRef Kodama M, Fujioka T, Duman RS. Chronic olanzapine or fluoxetine administration increases cell proliferation in hippocampus and prefrontal cortex of adult rat. Biol Psychiatry 2004 Oct 15; 56(8): 570–80PubMedCrossRef
125.
go back to reference Halim ND, Weickert CS, McClintock BW, et al. Effects of chronic haloperidol and clozapine treatment on neurogenesis in the adult rat hippocampus. Neuropsychopharmacology 2004 Jun; 29(6): 1063–9PubMedCrossRef Halim ND, Weickert CS, McClintock BW, et al. Effects of chronic haloperidol and clozapine treatment on neurogenesis in the adult rat hippocampus. Neuropsychopharmacology 2004 Jun; 29(6): 1063–9PubMedCrossRef
126.
go back to reference Fan Y, Liu Z, Weinstein PR, et al. Environmental enrichment enhances neurogenesis and improves functional outcome after cranial irradiation. Eur J Neurosci 2007 Jan; 25(1): 38–46PubMedCrossRef Fan Y, Liu Z, Weinstein PR, et al. Environmental enrichment enhances neurogenesis and improves functional outcome after cranial irradiation. Eur J Neurosci 2007 Jan; 25(1): 38–46PubMedCrossRef
127.
go back to reference Newton SS, Duman RS. Neurogenic actions of atypical antipsychotic drugs and therapeutic implications. CNS Drugs 2007; 21(9): 715–25PubMedCrossRef Newton SS, Duman RS. Neurogenic actions of atypical antipsychotic drugs and therapeutic implications. CNS Drugs 2007; 21(9): 715–25PubMedCrossRef
128.
go back to reference Bilder RM, Goldman RS, Volavka J, et al. Neurocognitive effects of clozapine, olanzapine, risperidone, and haloperidol in patients with chronic schizophrenia or schizoaffective disorder. Am J Psychiatry 2002 Jun; 159(6): 1018–28PubMedCrossRef Bilder RM, Goldman RS, Volavka J, et al. Neurocognitive effects of clozapine, olanzapine, risperidone, and haloperidol in patients with chronic schizophrenia or schizoaffective disorder. Am J Psychiatry 2002 Jun; 159(6): 1018–28PubMedCrossRef
129.
go back to reference Purdon SE. Measuring neuropsychological change in schizophrenia with novel antipsychotic medications. J Psychiatry Neurosci 2000 Mar; 25(2): 108–16PubMed Purdon SE. Measuring neuropsychological change in schizophrenia with novel antipsychotic medications. J Psychiatry Neurosci 2000 Mar; 25(2): 108–16PubMed
130.
go back to reference Keefe RS, Bilder RM, Davis SM, et al. Neurocognitive effects of antipsychotic medications in patients with chronic schizophrenia in the CATIE Trial. Arch Gen Psychiatry 2007 Jun; 64(6): 633–47PubMedCrossRef Keefe RS, Bilder RM, Davis SM, et al. Neurocognitive effects of antipsychotic medications in patients with chronic schizophrenia in the CATIE Trial. Arch Gen Psychiatry 2007 Jun; 64(6): 633–47PubMedCrossRef
131.
go back to reference Goldberg TE, Goldman RS, Burdick KE, et al. Cognitive improvement after treatment with second-generation antipsychotic medications in first-episode schizophrenia: is it a practice effect? Arch Gen Psychiatry 2007 Oct; 64(10): 1115–22PubMedCrossRef Goldberg TE, Goldman RS, Burdick KE, et al. Cognitive improvement after treatment with second-generation antipsychotic medications in first-episode schizophrenia: is it a practice effect? Arch Gen Psychiatry 2007 Oct; 64(10): 1115–22PubMedCrossRef
132.
go back to reference Heres S, Davis J, Maino K, et al. Why olanzapine beats risperidone, risperidone beats quetiapine, and quetiapine beats olanzapine: an exploratory analysis of head-to-head comparison studies of second-generation antipsychotics. Am J Psychiatry 2006 Feb; 163(2): 185–94PubMedCrossRef Heres S, Davis J, Maino K, et al. Why olanzapine beats risperidone, risperidone beats quetiapine, and quetiapine beats olanzapine: an exploratory analysis of head-to-head comparison studies of second-generation antipsychotics. Am J Psychiatry 2006 Feb; 163(2): 185–94PubMedCrossRef
133.
go back to reference Sweet RA, Pollock BG, Mulsant BH, et al. Pharmacologic profile of perphenazine’s metabolites. J Clin Psychopharmacol 2000 Apr; 20(2): 181–7PubMedCrossRef Sweet RA, Pollock BG, Mulsant BH, et al. Pharmacologic profile of perphenazine’s metabolites. J Clin Psychopharmacol 2000 Apr; 20(2): 181–7PubMedCrossRef
134.
go back to reference Green MF. Stimulating the development of drug treatments to improve cognition in schizophrenia. Annu Rev Clin Psychol 2007; 3: 159–80PubMedCrossRef Green MF. Stimulating the development of drug treatments to improve cognition in schizophrenia. Annu Rev Clin Psychol 2007; 3: 159–80PubMedCrossRef
135.
go back to reference Olincy A, Harris JG, Johnson LL, et al. Proof-of-concept trial of an alpha7 nicotinic agonist in schizophrenia. Arch Gen Psychiatry 2006; 63: 630–8PubMedCrossRef Olincy A, Harris JG, Johnson LL, et al. Proof-of-concept trial of an alpha7 nicotinic agonist in schizophrenia. Arch Gen Psychiatry 2006; 63: 630–8PubMedCrossRef
136.
go back to reference Freedman R, Olincy A, Buchanan RW, et al. Initial phase 2 trial of a nicotinic agonist in schizophrenia. Am J Psychiatry 2008; 165(8): 1040–4PubMedCrossRef Freedman R, Olincy A, Buchanan RW, et al. Initial phase 2 trial of a nicotinic agonist in schizophrenia. Am J Psychiatry 2008; 165(8): 1040–4PubMedCrossRef
Metadata
Title
Cognitive Effects of Second-Generation Antipsychotics
Current Insights into Neurochemical Mechanisms
Authors
Fabio Fumagalli
Angelisa Frasca
Giorgio Racagni
Marco Andrea Riva
Publication date
01-07-2009
Publisher
Springer International Publishing
Published in
CNS Drugs / Issue 7/2009
Print ISSN: 1172-7047
Electronic ISSN: 1179-1934
DOI
https://doi.org/10.2165/00023210-200923070-00005

Other articles of this Issue 7/2009

CNS Drugs 7/2009 Go to the issue

Leading Article

Lacosamide