Skip to main content
Top
Published in: CNS Drugs 1/2008

01-01-2008 | Leading Article

The Role of Peroxisome Proliferator-Activated Receptor-γ PPARγ) in Alzheimer’s Disease

Therapeutic Implications

Authors: Qingguang Jiang, Michael Heneka, Dr Gary E. Landreth

Published in: CNS Drugs | Issue 1/2008

Login to get access

Abstract

Alzheimer’s disease is a complex neurodegenerative disorder, with aging, genetic and environmental factors contributing to its development and progression. The complexity of Alzheimer’s disease presents substantial challenges for the development of new therapeutic agents. Alzheimer’s disease is typified by pathological depositions of β-amyloid peptides and neurofibrillary tangles within the diseased brain. It has also been demonstrated to be associated with a significant microglia-mediated inflammatory component, dysregulated lipid homeostasis and regional deficits in glucose metabolism within the brain. The peroxisome proliferator-activated receptor-γ (PPARγ) is a prototypical ligand-activated nuclear receptor that coordinates lipid, glucose and energy metabolism, and is found in elevated levels in the brains of individuals with Alzheimer’s disease. A recently appreciated physiological function of this type of receptor is its ability to modulate inflammatory responses. In animal models of Alzheimer’s disease, PPARγ agonist treatment results in the reduction of amyloid plaque burden, reduced inflammation and reversal of disease-related behavioural impairment. In a recent phase II clinical trial, the use of the PPARγ agonist rosiglitazone was associated with improved cognition and memory in patients with mild to moderate Alzheimer’s disease. Thus, PPARγ may act to modulate multiple pathophysiological mechanisms that contribute to Alzheimer’s disease, and represents an attractive therapeutic target for the treatment of the disease.
Literature
2.
go back to reference Kersten S, Desvergne B, Wahli W. Roles of PPARs in healthand disease. Nature 2000; 405(6785): 421–4PubMedCrossRef Kersten S, Desvergne B, Wahli W. Roles of PPARs in healthand disease. Nature 2000; 405(6785): 421–4PubMedCrossRef
3.
go back to reference Sundararajan S, Jiang Q, Heneka M, et al. PPARγ as a therapeutic target in central nervous system diseases. Neurochem Int 2006; 49(2): 136–44PubMedCrossRef Sundararajan S, Jiang Q, Heneka M, et al. PPARγ as a therapeutic target in central nervous system diseases. Neurochem Int 2006; 49(2): 136–44PubMedCrossRef
4.
go back to reference Tanzi RE, Bertram L. Twenty years of the Alzheimer’s disease amyloid hypothesis: a genetic perspective. Cell 2005; 120(4): 545–55PubMedCrossRef Tanzi RE, Bertram L. Twenty years of the Alzheimer’s disease amyloid hypothesis: a genetic perspective. Cell 2005; 120(4): 545–55PubMedCrossRef
5.
go back to reference Price DL, Tanzi RE, Borchelt DR, et al. Alzheimer’s disease: genetic studies and transgenic models. Annu Rev Genet 1998; 32: 461–93PubMedCrossRef Price DL, Tanzi RE, Borchelt DR, et al. Alzheimer’s disease: genetic studies and transgenic models. Annu Rev Genet 1998; 32: 461–93PubMedCrossRef
6.
go back to reference Puglielli L, Tanzi R, Kovacs D. Alzheimer’s disease: the cholesterol connection. Nat Neurosci 2003; 6(4): 345–51PubMedCrossRef Puglielli L, Tanzi R, Kovacs D. Alzheimer’s disease: the cholesterol connection. Nat Neurosci 2003; 6(4): 345–51PubMedCrossRef
7.
8.
go back to reference Strittmatter WJ, Saunders AM, Schmechel D, et al. Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc Natl Acad Sci U S A 1993; 90(5): 1977–81PubMedCrossRef Strittmatter WJ, Saunders AM, Schmechel D, et al. Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc Natl Acad Sci U S A 1993; 90(5): 1977–81PubMedCrossRef
9.
go back to reference Hansen LA, Galasko D, Samuel W, et al. Apolipoprotein-E epsilon-4 is associated with increased neurofibrillary pathology in the Lewy body variant of Alzheimer’s disease. Neurosci Lett 1994; 182(1): 63–5PubMedCrossRef Hansen LA, Galasko D, Samuel W, et al. Apolipoprotein-E epsilon-4 is associated with increased neurofibrillary pathology in the Lewy body variant of Alzheimer’s disease. Neurosci Lett 1994; 182(1): 63–5PubMedCrossRef
10.
go back to reference Roses AD, Saunders AM. APOE is a major susceptibility gene for Alzheimer’s disease. Curr Opin Biotechnol 1994; 5(6): 663–7PubMedCrossRef Roses AD, Saunders AM. APOE is a major susceptibility gene for Alzheimer’s disease. Curr Opin Biotechnol 1994; 5(6): 663–7PubMedCrossRef
11.
go back to reference Roses AD, Saunders AM, Corder H, et al. Influence of the susceptibility genes apolipoprotein E-epsilon 4 and apolipoprotein E-epsilon 2 on the rate of disease expressivity of late-onset Alzheimer’s disease. Arzneimittelforschung 1995; 45(3A): 413–7PubMed Roses AD, Saunders AM, Corder H, et al. Influence of the susceptibility genes apolipoprotein E-epsilon 4 and apolipoprotein E-epsilon 2 on the rate of disease expressivity of late-onset Alzheimer’s disease. Arzneimittelforschung 1995; 45(3A): 413–7PubMed
12.
go back to reference Rogers J, Webster S, Lue LF, et al. Inflammation and Alzheimer’s disease pathogenesis. Neurobiol Aging 1996; 17(5): 681–6PubMedCrossRef Rogers J, Webster S, Lue LF, et al. Inflammation and Alzheimer’s disease pathogenesis. Neurobiol Aging 1996; 17(5): 681–6PubMedCrossRef
13.
go back to reference Aisen PS. Inflammation and Alzheimer’s disease: mechanisms and therapeutic strategies. Gerontology 1997; 43(1-2): 143–9PubMedCrossRef Aisen PS. Inflammation and Alzheimer’s disease: mechanisms and therapeutic strategies. Gerontology 1997; 43(1-2): 143–9PubMedCrossRef
14.
go back to reference Bamberger ME, Landreth GE. Inflammation, apoptosis, and Alzheimer’s disease. Neuroscientist 2002; 8(3): 276–83PubMed Bamberger ME, Landreth GE. Inflammation, apoptosis, and Alzheimer’s disease. Neuroscientist 2002; 8(3): 276–83PubMed
15.
go back to reference Rogers J, Shen Y. A perspective on inflammation in Alzheimer’s disease. Ann N Y Acad Sci 2000; 924: 132–5PubMedCrossRef Rogers J, Shen Y. A perspective on inflammation in Alzheimer’s disease. Ann N Y Acad Sci 2000; 924: 132–5PubMedCrossRef
16.
go back to reference Brown III J, Theisler C, Silberman S, et al. Differential expression of cholesterol hydroxylases in Alzheimer’s disease. J Biol Chem 2004; 279(33): 34674–81PubMedCrossRef Brown III J, Theisler C, Silberman S, et al. Differential expression of cholesterol hydroxylases in Alzheimer’s disease. J Biol Chem 2004; 279(33): 34674–81PubMedCrossRef
17.
go back to reference Bookout AL, Jeong Y, Downes M, et al. Anatomical profiling of nuclear receptor expression reveals a hierarchical transcriptional network. Cell 2006; 126(4): 789–99PubMedCrossRef Bookout AL, Jeong Y, Downes M, et al. Anatomical profiling of nuclear receptor expression reveals a hierarchical transcriptional network. Cell 2006; 126(4): 789–99PubMedCrossRef
18.
go back to reference Victor NA, Wanderi EW, Gamboa J, et al. Altered PPARγ expression and activation after transient focal ischemia in rats. Eur J Neurosci 2006; 24(6): 1653–63PubMedCrossRef Victor NA, Wanderi EW, Gamboa J, et al. Altered PPARγ expression and activation after transient focal ischemia in rats. Eur J Neurosci 2006; 24(6): 1653–63PubMedCrossRef
19.
go back to reference Kitamura Y, Shimohama S, Koike H, et al. Increased expression of cyclooxygenases and peroxisome proliferator-activated receptor-gamma in Alzheimer’s disease brains. Biochem Biophys Res Commun 1999; 254(3): 582–6PubMedCrossRef Kitamura Y, Shimohama S, Koike H, et al. Increased expression of cyclooxygenases and peroxisome proliferator-activated receptor-gamma in Alzheimer’s disease brains. Biochem Biophys Res Commun 1999; 254(3): 582–6PubMedCrossRef
20.
go back to reference de la Monte SM, Wands JR. Molecular indices of oxidative stress and mitochondrial dysfunction occur early and often progress with severity of Alzheimer’s disease. J Alzheimers Dis 2006; 9(2): 167–81PubMed de la Monte SM, Wands JR. Molecular indices of oxidative stress and mitochondrial dysfunction occur early and often progress with severity of Alzheimer’s disease. J Alzheimers Dis 2006; 9(2): 167–81PubMed
21.
go back to reference Yan Q, Zhang J, Liu H, et al. Anti-inflammatory drug therapy alters beta-amyloid processing and deposition in an animal model of Alzheimer’s disease. J Neurosci 2003; 23(20): 7504–9PubMed Yan Q, Zhang J, Liu H, et al. Anti-inflammatory drug therapy alters beta-amyloid processing and deposition in an animal model of Alzheimer’s disease. J Neurosci 2003; 23(20): 7504–9PubMed
22.
go back to reference Heneka M, Sastre M, Dumitrescu-Ozimek, et al. Acute treatment with the PPARγ agonist pioglitazone and ibuprofen reduces glial inflammation and Abetal-42 levels in APPV717I transgenic mice. Brain 2005; 128 (Pt 6): 1442–53PubMedCrossRef Heneka M, Sastre M, Dumitrescu-Ozimek, et al. Acute treatment with the PPARγ agonist pioglitazone and ibuprofen reduces glial inflammation and Abetal-42 levels in APPV717I transgenic mice. Brain 2005; 128 (Pt 6): 1442–53PubMedCrossRef
23.
go back to reference in’t Veld BA, Ruitenberg A, Hofman A, et al. Nonsteroidal antiinflammatory drugs and the risk of Alzheimer’s disease. N Engl J Med 2001; 345(21): 1515–21CrossRef in’t Veld BA, Ruitenberg A, Hofman A, et al. Nonsteroidal antiinflammatory drugs and the risk of Alzheimer’s disease. N Engl J Med 2001; 345(21): 1515–21CrossRef
24.
go back to reference Lim GP, Yang F, Chu T, et al. Ibuprofen suppresses plaque pathology and inflammation in a mouse model for Alzheimer’s disease. J Neurosci 2000; 20(15): 5709–14PubMed Lim GP, Yang F, Chu T, et al. Ibuprofen suppresses plaque pathology and inflammation in a mouse model for Alzheimer’s disease. J Neurosci 2000; 20(15): 5709–14PubMed
25.
go back to reference Lim GP, Yang F, Chu T, et al. Ibuprofen effects on Alzheimer pathology and open field activity in APPsw transgenic mice. Neurobiol Aging 2001; 22(6): 983–91PubMedCrossRef Lim GP, Yang F, Chu T, et al. Ibuprofen effects on Alzheimer pathology and open field activity in APPsw transgenic mice. Neurobiol Aging 2001; 22(6): 983–91PubMedCrossRef
26.
go back to reference Lehmann JM, Lenhard JM, Oliver B, et al. Peroxisome proliferator-activated receptors alpha and gamma are activated by indomethacin and other non-steroidal anti-inflammatory drugs. J Biol Chem 1997; 272: 3406–10PubMedCrossRef Lehmann JM, Lenhard JM, Oliver B, et al. Peroxisome proliferator-activated receptors alpha and gamma are activated by indomethacin and other non-steroidal anti-inflammatory drugs. J Biol Chem 1997; 272: 3406–10PubMedCrossRef
27.
go back to reference Maeshiba Y, Kiyota Y, Yamashita K, et al. Disposition of the new antidiabetic agent pioglitazone in rats, dogs, and monkeys. Arzneimittelforschung 1997; 47(1): 29–35 29.PubMed Maeshiba Y, Kiyota Y, Yamashita K, et al. Disposition of the new antidiabetic agent pioglitazone in rats, dogs, and monkeys. Arzneimittelforschung 1997; 47(1): 29–35 29.PubMed
28.
go back to reference Eriksen J, Sagi S, Smith T, et al. NSAIDs and enantiomers of flurbiprofen target gamma-secretase and lower Abeta 42 in vivo. J Clin Invest 2003; 112(3): 440–9PubMed Eriksen J, Sagi S, Smith T, et al. NSAIDs and enantiomers of flurbiprofen target gamma-secretase and lower Abeta 42 in vivo. J Clin Invest 2003; 112(3): 440–9PubMed
29.
go back to reference Weggen S, Eriksen JL, Das, et al. A subset of NSAIDs lower amyloidogenic Abeta42 independently of cyclooxygenase activity. Nature 2001; 414(6860): 212–6PubMedCrossRef Weggen S, Eriksen JL, Das, et al. A subset of NSAIDs lower amyloidogenic Abeta42 independently of cyclooxygenase activity. Nature 2001; 414(6860): 212–6PubMedCrossRef
30.
go back to reference Weggen S, Eriksen J, Sagi S, et al. Evidence that nonsteroidal anti-inflammatory drugs decrease amyloid beta 42 production by direct modulation of gamma-secretase activity. J Biol Chem 2003; 278(34): 31831–7PubMedCrossRef Weggen S, Eriksen J, Sagi S, et al. Evidence that nonsteroidal anti-inflammatory drugs decrease amyloid beta 42 production by direct modulation of gamma-secretase activity. J Biol Chem 2003; 278(34): 31831–7PubMedCrossRef
31.
go back to reference Morihara T, Teter B, Yang F, et al. Ibuprofen suppresses interleukin-lbeta induction of pro-amyloidogenic alphal-antichymotrypsin to ameliorate beta-amyloid (Abeta) pathology in Alzheimer’s models. Neuropsychopharmacology 2005; 30(6): 1111–20PubMedCrossRef Morihara T, Teter B, Yang F, et al. Ibuprofen suppresses interleukin-lbeta induction of pro-amyloidogenic alphal-antichymotrypsin to ameliorate beta-amyloid (Abeta) pathology in Alzheimer’s models. Neuropsychopharmacology 2005; 30(6): 1111–20PubMedCrossRef
32.
go back to reference Lanz TA, Fici GJ, Merchant KM. Lack of specific amyloid-beta(l–42) suppression by nonsteroidal anti-inflammatory drugs in young, plaque-free Tg2576 mice and in guinea pig neuronal cultures. J Pharmacol Exp Ther 2005; 312(1): 399–406PubMedCrossRef Lanz TA, Fici GJ, Merchant KM. Lack of specific amyloid-beta(l–42) suppression by nonsteroidal anti-inflammatory drugs in young, plaque-free Tg2576 mice and in guinea pig neuronal cultures. J Pharmacol Exp Ther 2005; 312(1): 399–406PubMedCrossRef
33.
go back to reference Tegeder I, Pfeilschifter J, Geisslinger G. Cyclooxygenase-independent actions of cyclooxygenase inhibitors. FASEB J 2001; 15(12): 2057–72PubMedCrossRef Tegeder I, Pfeilschifter J, Geisslinger G. Cyclooxygenase-independent actions of cyclooxygenase inhibitors. FASEB J 2001; 15(12): 2057–72PubMedCrossRef
34.
go back to reference Aisen PS. Anti-inflammatory agents in Alzheimer’s Disease. Curr Neurol Neurosci Rep 2002; 2(5): 405–9PubMedCrossRef Aisen PS. Anti-inflammatory agents in Alzheimer’s Disease. Curr Neurol Neurosci Rep 2002; 2(5): 405–9PubMedCrossRef
35.
go back to reference Pedersen W, McMillan P, Kulstad J, et al. Rosiglitazone attenuates learning and memory deficits in Tg2576 Alzheimer mice. Exp Neurol 2006; 199(2): 265–73PubMedCrossRef Pedersen W, McMillan P, Kulstad J, et al. Rosiglitazone attenuates learning and memory deficits in Tg2576 Alzheimer mice. Exp Neurol 2006; 199(2): 265–73PubMedCrossRef
36.
go back to reference Vekrellis K, Ye Z, Qiu WQ, et al. Neurons regulate extracellular levels of amyloid beta-protein via proteolysis by insulin-degrading enzyme. J Neurosci 2000; 20(5): 1657–65PubMed Vekrellis K, Ye Z, Qiu WQ, et al. Neurons regulate extracellular levels of amyloid beta-protein via proteolysis by insulin-degrading enzyme. J Neurosci 2000; 20(5): 1657–65PubMed
37.
go back to reference Strum JC, Shehee R, Virley D, et al. Rosiglitazone induces mitochondrial biogenesis in mouse brain. J Alzheimers Dis 2007; 11: 45–51PubMed Strum JC, Shehee R, Virley D, et al. Rosiglitazone induces mitochondrial biogenesis in mouse brain. J Alzheimers Dis 2007; 11: 45–51PubMed
38.
go back to reference Watson GS, Cholerton BA, Reger MA, et al. Preserved cognition in patients with early Alzheimer disease and amnestic mild cognitive impairment during treatment with rosiglitazone: a preliminary study. Am J Geriatr Psychiatry 2005; 13(11): 950–8PubMed Watson GS, Cholerton BA, Reger MA, et al. Preserved cognition in patients with early Alzheimer disease and amnestic mild cognitive impairment during treatment with rosiglitazone: a preliminary study. Am J Geriatr Psychiatry 2005; 13(11): 950–8PubMed
39.
go back to reference Geldmacher D, Fritsch T, McClendon M, et al. A pilot study of pioglitazone in Alzheimer disease. International Conference on Alzheimer’s disease and related dementias; 2006 Jul 15–20; Madrid Geldmacher D, Fritsch T, McClendon M, et al. A pilot study of pioglitazone in Alzheimer disease. International Conference on Alzheimer’s disease and related dementias; 2006 Jul 15–20; Madrid
40.
go back to reference Risner ME, Saunders AM, Altman JF, et al. Efficacy of rosiglitazone in a genetically defined population with mild-tomoderate Alzheimer’s disease. Pharmacogenomics J 2006; 6(4): 246–54PubMed Risner ME, Saunders AM, Altman JF, et al. Efficacy of rosiglitazone in a genetically defined population with mild-tomoderate Alzheimer’s disease. Pharmacogenomics J 2006; 6(4): 246–54PubMed
41.
go back to reference Kuusisto J, Koivisto K, Mykkanen L, et al. Association between features of the insulin resistance syndrome and Alzheimer’s disease independently of apolipoprotein E4 phenotype: cross sectional population based study. BMJ 1997; 315(7115): 1045–9PubMedCrossRef Kuusisto J, Koivisto K, Mykkanen L, et al. Association between features of the insulin resistance syndrome and Alzheimer’s disease independently of apolipoprotein E4 phenotype: cross sectional population based study. BMJ 1997; 315(7115): 1045–9PubMedCrossRef
42.
go back to reference Craft S, Asthana S, Schellenberg G, et al. Insulin metabolism in Alzheimer’s disease differs according to apolipoprotein E genotype and gender. Neuroendocrinology 1999; 70(2): 146–52PubMedCrossRef Craft S, Asthana S, Schellenberg G, et al. Insulin metabolism in Alzheimer’s disease differs according to apolipoprotein E genotype and gender. Neuroendocrinology 1999; 70(2): 146–52PubMedCrossRef
43.
go back to reference Craft S, Asthana S, Schellenberg G, et al. Insulin effects on glucose metabolism, memory, and plasma amyloid precursor protein in Alzheimer’s disease differ according to apolipoprotein-E genotype. Ann N Y Acad Sci 2000; 903: 222–8]PubMedCrossRef Craft S, Asthana S, Schellenberg G, et al. Insulin effects on glucose metabolism, memory, and plasma amyloid precursor protein in Alzheimer’s disease differ according to apolipoprotein-E genotype. Ann N Y Acad Sci 2000; 903: 222–8]PubMedCrossRef
45.
go back to reference Pfutzner A, Weber MM, Forst T. Pioglitazone: update on an oral antidiabetic drug with antiatherosclerotic effects. Expert Opin Pharmacother 2007; 8: 1985–98PubMedCrossRef Pfutzner A, Weber MM, Forst T. Pioglitazone: update on an oral antidiabetic drug with antiatherosclerotic effects. Expert Opin Pharmacother 2007; 8: 1985–98PubMedCrossRef
46.
go back to reference Nissen SE, Wolski K. Effect of rosiglitazone on risk of myocardial infarction and death from cardiovcascular causes. N Engl J Med 2007; 356: 2457–71PubMedCrossRef Nissen SE, Wolski K. Effect of rosiglitazone on risk of myocardial infarction and death from cardiovcascular causes. N Engl J Med 2007; 356: 2457–71PubMedCrossRef
47.
go back to reference Lincoff AM, Wolski K, Nicholls SJ, et al. Pioglitazone and risk of cardiovascular events in patients with type 2 diabetes mellitus: a meta-analysis of randomized trials. JAMA 2007; 298: 1180–8PubMedCrossRef Lincoff AM, Wolski K, Nicholls SJ, et al. Pioglitazone and risk of cardiovascular events in patients with type 2 diabetes mellitus: a meta-analysis of randomized trials. JAMA 2007; 298: 1180–8PubMedCrossRef
48.
go back to reference Waugh J, Keating GM, Plosker GL, et al. Pioglitazone: a review of its use in type 2 diabetes mellitus. Drugs 2006; 66(1): 85–109PubMedCrossRef Waugh J, Keating GM, Plosker GL, et al. Pioglitazone: a review of its use in type 2 diabetes mellitus. Drugs 2006; 66(1): 85–109PubMedCrossRef
49.
go back to reference Castrillo A, Tontonoz P. Nuclear receptors in macrophage biology: at the crossroads of lipid metabolism and inflammation. Annu Rev Cell Dev Biol 2004; 20: 455–80PubMedCrossRef Castrillo A, Tontonoz P. Nuclear receptors in macrophage biology: at the crossroads of lipid metabolism and inflammation. Annu Rev Cell Dev Biol 2004; 20: 455–80PubMedCrossRef
50.
go back to reference Chawla A, Boisvert WA, Lee CH, et al. A PPAR gamma-LXR-ABCA1 pathway in macrophages is involved in cholesterol efflux and atherogenesis. Mol Cell 2001; 7(1): 161–71PubMedCrossRef Chawla A, Boisvert WA, Lee CH, et al. A PPAR gamma-LXR-ABCA1 pathway in macrophages is involved in cholesterol efflux and atherogenesis. Mol Cell 2001; 7(1): 161–71PubMedCrossRef
51.
go back to reference Kliewer SA, Lehmann JM, Willson TM. Orphan nuclear receptors: shifting endocrinology into reverse. Science 1999; 284(5415): 757–60PubMedCrossRef Kliewer SA, Lehmann JM, Willson TM. Orphan nuclear receptors: shifting endocrinology into reverse. Science 1999; 284(5415): 757–60PubMedCrossRef
53.
54.
go back to reference Daynes RA, Jones DC. Emerging roles of PPARs in inflammation and immunity. Nat Rev Immunol 2002; 2(10): 748–59PubMedCrossRef Daynes RA, Jones DC. Emerging roles of PPARs in inflammation and immunity. Nat Rev Immunol 2002; 2(10): 748–59PubMedCrossRef
55.
go back to reference Fajas L, Fruchart JC, Auwerx J. Transcriptional control of adipogenesis. Curr Opin Cell Biol 1998; 10(2): 165–73PubMedCrossRef Fajas L, Fruchart JC, Auwerx J. Transcriptional control of adipogenesis. Curr Opin Cell Biol 1998; 10(2): 165–73PubMedCrossRef
56.
57.
go back to reference Aranda A, Pascual A. Nuclear hormone receptors and gene expression. Physiol Rev 2001; 81(3): 1269–304PubMed Aranda A, Pascual A. Nuclear hormone receptors and gene expression. Physiol Rev 2001; 81(3): 1269–304PubMed
58.
go back to reference Glass CK, Rosenfeld MG. The coregulator exchange in transcriptional functions of nuclear receptors. Genes Dev 2000; 14(2): 121–41PubMed Glass CK, Rosenfeld MG. The coregulator exchange in transcriptional functions of nuclear receptors. Genes Dev 2000; 14(2): 121–41PubMed
59.
go back to reference Glass CK, Ogawa S. Combinatorial roles of nuclear receptors in inflammation and immunity. Nat Rev Immunol 2006; 6(1): 44–55PubMedCrossRef Glass CK, Ogawa S. Combinatorial roles of nuclear receptors in inflammation and immunity. Nat Rev Immunol 2006; 6(1): 44–55PubMedCrossRef
60.
go back to reference Ogawa S, Lozach J, Benner C, et al. Molecular determinants of crosstalk between nuclear receptors and toll-like receptors. Cell 2005; 122(5): 707–21PubMedCrossRef Ogawa S, Lozach J, Benner C, et al. Molecular determinants of crosstalk between nuclear receptors and toll-like receptors. Cell 2005; 122(5): 707–21PubMedCrossRef
61.
go back to reference Chung SW, Kang BY, Kim SH, et al. Oxidized low density lipoprotein inhibits interleukin-12 production in lipopolysaccharide-activated mouse macrophages via direct interactions between peroxisome proliferator-activated receptor-gamma and nuclear factor-kappa B. J Biol Chem 2000; 275(42): 32681–7PubMedCrossRef Chung SW, Kang BY, Kim SH, et al. Oxidized low density lipoprotein inhibits interleukin-12 production in lipopolysaccharide-activated mouse macrophages via direct interactions between peroxisome proliferator-activated receptor-gamma and nuclear factor-kappa B. J Biol Chem 2000; 275(42): 32681–7PubMedCrossRef
62.
go back to reference Chen F, Wang M, O’Connor JP, et al. Phosphorylation of PPARgamma via active ERK1/2 leads to its physical association with p65 and inhibition of NF-kappabeta. J Cell Biochem 2003; 90(4): 732–44PubMedCrossRef Chen F, Wang M, O’Connor JP, et al. Phosphorylation of PPARgamma via active ERK1/2 leads to its physical association with p65 and inhibition of NF-kappabeta. J Cell Biochem 2003; 90(4): 732–44PubMedCrossRef
63.
go back to reference Subbaramaiah K, Lin DT, Hart JC, et al. Peroxisome proliferator-activated receptor gamma ligands suppress the transcrip-tional activation of cyclooxygenase-2: evidence for involvement of activator protein-1 and CREB-binding protein/p300. J Biol Chem 2001; 276(15): 12440–8PubMedCrossRef Subbaramaiah K, Lin DT, Hart JC, et al. Peroxisome proliferator-activated receptor gamma ligands suppress the transcrip-tional activation of cyclooxygenase-2: evidence for involvement of activator protein-1 and CREB-binding protein/p300. J Biol Chem 2001; 276(15): 12440–8PubMedCrossRef
64.
go back to reference Li M, Pascual G, Glass CK. Peroxisome proliferator-activated receptor gamma-dependent repression of the inducible nitric oxide synthase gene. Mol Cell Biol 2000; 20(13): 4699–707PubMedCrossRef Li M, Pascual G, Glass CK. Peroxisome proliferator-activated receptor gamma-dependent repression of the inducible nitric oxide synthase gene. Mol Cell Biol 2000; 20(13): 4699–707PubMedCrossRef
65.
go back to reference Pascual G, Fong AL, Ogawa S, et al. A SUMOylation-dependent pathway mediates transrepression of inflammatory response genes by PPAR-gamma. Nature 2005; 437(7059): 759–63PubMedCrossRef Pascual G, Fong AL, Ogawa S, et al. A SUMOylation-dependent pathway mediates transrepression of inflammatory response genes by PPAR-gamma. Nature 2005; 437(7059): 759–63PubMedCrossRef
66.
go back to reference Colangelo V, Schurr J, Ball MJ, et al. Gene expression profiling of 12633 genes in Alzheimer hippocampal CA1: transcription and neurotrophic factor down-regulation and up-regulation of apoptotic and pro-inflammatory signaling. J Neurosci Res 2002; 70(3): 462–73PubMedCrossRef Colangelo V, Schurr J, Ball MJ, et al. Gene expression profiling of 12633 genes in Alzheimer hippocampal CA1: transcription and neurotrophic factor down-regulation and up-regulation of apoptotic and pro-inflammatory signaling. J Neurosci Res 2002; 70(3): 462–73PubMedCrossRef
67.
68.
go back to reference McGeer PL, McGeer EG. Inflammation and the degenerative diseases of aging. Ann N Y Acad Sci 2004; 1035: 104–16PubMedCrossRef McGeer PL, McGeer EG. Inflammation and the degenerative diseases of aging. Ann N Y Acad Sci 2004; 1035: 104–16PubMedCrossRef
69.
go back to reference Minghetti L. Role of inflammation in neurodegenerative diseases. Curr Opin Neurol 2005; 18(3): 315–21PubMedCrossRef Minghetti L. Role of inflammation in neurodegenerative diseases. Curr Opin Neurol 2005; 18(3): 315–21PubMedCrossRef
70.
go back to reference Nimmerjahn A, Kirchhoff F, Helmchen F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 2005; 308(5726): 1314–8PubMedCrossRef Nimmerjahn A, Kirchhoff F, Helmchen F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 2005; 308(5726): 1314–8PubMedCrossRef
71.
go back to reference Sly LM, Krzesicki RF, Brashler JR, et al. Endogenous brain cytokine mRNA and inflammatory responses to lipo-polysaccharide are elevated in the Tg2576 transgenic mouse model of Alzheimer’s disease. Brain Res Bull 2001; 56(6): 581–8PubMedCrossRef Sly LM, Krzesicki RF, Brashler JR, et al. Endogenous brain cytokine mRNA and inflammatory responses to lipo-polysaccharide are elevated in the Tg2576 transgenic mouse model of Alzheimer’s disease. Brain Res Bull 2001; 56(6): 581–8PubMedCrossRef
72.
go back to reference Lue LF, Walker DG, Rogers J. Modeling microglial activation in Alzheimer’s disease with human postmortem microglial cultures. Neurobiol Aging 2001; 22(6): 945–56PubMedCrossRef Lue LF, Walker DG, Rogers J. Modeling microglial activation in Alzheimer’s disease with human postmortem microglial cultures. Neurobiol Aging 2001; 22(6): 945–56PubMedCrossRef
73.
go back to reference German DC, Eisch AJ. Mouse models of Alzheimer’s disease: insight into treatment. Rev Neurosci 2004; 15(5): 353–69PubMedCrossRef German DC, Eisch AJ. Mouse models of Alzheimer’s disease: insight into treatment. Rev Neurosci 2004; 15(5): 353–69PubMedCrossRef
74.
go back to reference Klegeris A, McGeer PL. Non-steroidal anti-inflammatory drugs (NSAIDs) and other anti-inflammatory agents in the treatment of neurodegenerative disease. Curr Alzheimer Res 2005; 2(3): 355–65PubMedCrossRef Klegeris A, McGeer PL. Non-steroidal anti-inflammatory drugs (NSAIDs) and other anti-inflammatory agents in the treatment of neurodegenerative disease. Curr Alzheimer Res 2005; 2(3): 355–65PubMedCrossRef
75.
go back to reference Akiyama H, Barger S, Barnum S, et al. Inflammation and Alzheimer’s disease. Neurobiol Aging 2000; 21(3): 383–421PubMedCrossRef Akiyama H, Barger S, Barnum S, et al. Inflammation and Alzheimer’s disease. Neurobiol Aging 2000; 21(3): 383–421PubMedCrossRef
76.
go back to reference Qiao X, Cummins DJ, Paul SM. Neuroinflammation-induced acceleration of amyloid deposition in the APPV717F transgenic mouse. Eur J Neurosci 2001; 14(3): 474–82PubMedCrossRef Qiao X, Cummins DJ, Paul SM. Neuroinflammation-induced acceleration of amyloid deposition in the APPV717F transgenic mouse. Eur J Neurosci 2001; 14(3): 474–82PubMedCrossRef
77.
go back to reference Sheng JG, Bora SH, Xu G, et al. Lipopolysaccharide-induced-neuroinflammation increases intracellular accumulation of amyloid precursor protein and amyloid beta peptide in APP-swe transgenic mice. Neurobiol Dis 2003; 14(1): 133–45PubMedCrossRef Sheng JG, Bora SH, Xu G, et al. Lipopolysaccharide-induced-neuroinflammation increases intracellular accumulation of amyloid precursor protein and amyloid beta peptide in APP-swe transgenic mice. Neurobiol Dis 2003; 14(1): 133–45PubMedCrossRef
78.
go back to reference Lim GP, Chu T, Yang F, et al. The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. J Neurosci 2001; 21(21): 8370–7PubMed Lim GP, Chu T, Yang F, et al. The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. J Neurosci 2001; 21(21): 8370–7PubMed
79.
go back to reference Harris-White ME, Chu T, Balverde Z, et al. Effects of transforming growth factor-beta (isoforms 1–3) on amyloid-beta deposition, inflammation, and cell targeting in organotypic hippocampal slice cultures. J Neurosci 1998; 18(24): 10366–74PubMed Harris-White ME, Chu T, Balverde Z, et al. Effects of transforming growth factor-beta (isoforms 1–3) on amyloid-beta deposition, inflammation, and cell targeting in organotypic hippocampal slice cultures. J Neurosci 1998; 18(24): 10366–74PubMed
80.
go back to reference Herber DL, Roth LM, Wilson D, et al. Time-dependent reduction in Abeta levels after intracranial LPS administration in APP transgenic mice. Exp Neurol 2004; 190(1): 245–53PubMedCrossRef Herber DL, Roth LM, Wilson D, et al. Time-dependent reduction in Abeta levels after intracranial LPS administration in APP transgenic mice. Exp Neurol 2004; 190(1): 245–53PubMedCrossRef
81.
go back to reference Majumdar A, Cruz D, Asamoah N, et al. Activation of microglia acidifies lysosomes and leads to degradation of Alzheimer amyloid fibrils. Mol Biol Cell 2007; 18(4): 1490–6PubMedCrossRef Majumdar A, Cruz D, Asamoah N, et al. Activation of microglia acidifies lysosomes and leads to degradation of Alzheimer amyloid fibrils. Mol Biol Cell 2007; 18(4): 1490–6PubMedCrossRef
82.
go back to reference Wyss-Coray T. Inflammation in Alzheimer disease: driving force, bystander or beneficial response? Nat Med 2006; 12(9): 1005–15PubMed Wyss-Coray T. Inflammation in Alzheimer disease: driving force, bystander or beneficial response? Nat Med 2006; 12(9): 1005–15PubMed
83.
go back to reference Blasko I, Veerhuis R, Stampfer-Kountchev M, et al. Costimulatory effects of interferon-gamma and interleukin-1beta or tumor necrosis factor alpha on the synthesis of Abeta1-40 and Abeta1-42 by human astrocytes. Neurobiol Dis 2000; 7 (6 Pt B): 682–9PubMedCrossRef Blasko I, Veerhuis R, Stampfer-Kountchev M, et al. Costimulatory effects of interferon-gamma and interleukin-1beta or tumor necrosis factor alpha on the synthesis of Abeta1-40 and Abeta1-42 by human astrocytes. Neurobiol Dis 2000; 7 (6 Pt B): 682–9PubMedCrossRef
84.
go back to reference Blasko I, Apochal A, Boeck G, et al. Ibuprofen decreases cytokine-induced amyloid beta production in neuronal cells. Neurobiol Dis 2001; 8(6): 1094–101PubMedCrossRef Blasko I, Apochal A, Boeck G, et al. Ibuprofen decreases cytokine-induced amyloid beta production in neuronal cells. Neurobiol Dis 2001; 8(6): 1094–101PubMedCrossRef
85.
go back to reference Grilli M, Ribola M, Alberici A, et al. Identification and characterization of a kappa B/Rel binding site in the regulatory region of the amyloid precursor protein gene. J Biol Chem 1995; 270(45): 26774–7PubMedCrossRef Grilli M, Ribola M, Alberici A, et al. Identification and characterization of a kappa B/Rel binding site in the regulatory region of the amyloid precursor protein gene. J Biol Chem 1995; 270(45): 26774–7PubMedCrossRef
86.
go back to reference Grilli M, Goffi F, Memo M, et al. Interleukin-lbeta and glutamate activate the NF-kappaB/Rel binding site from the regulatory region of the amyloid precursor protein gene in primary neuronal cultures. J Biol Chem 1996; 271(25): 15002–7PubMedCrossRef Grilli M, Goffi F, Memo M, et al. Interleukin-lbeta and glutamate activate the NF-kappaB/Rel binding site from the regulatory region of the amyloid precursor protein gene in primary neuronal cultures. J Biol Chem 1996; 271(25): 15002–7PubMedCrossRef
87.
go back to reference Rogers JT, Leiter LM, McPhee J, et al. Translation of the alzheimer amyloid precursor protein mRNA is up-regulated by interleukin-1 through 5′-untranslated region sequences. J Biol Chem 1999; 274(10): 6421–31PubMedCrossRef Rogers JT, Leiter LM, McPhee J, et al. Translation of the alzheimer amyloid precursor protein mRNA is up-regulated by interleukin-1 through 5′-untranslated region sequences. J Biol Chem 1999; 274(10): 6421–31PubMedCrossRef
88.
go back to reference Sastre M, Dewachter I, Landreth GE, et al. Nonsteroidal anti-inflammatory drugs and peroxisome proliferator-activated receptor-gamma agonists modulate immunostimulated processing of amyloid precursor protein through regulation of beta-secretase. J Neurosci 2003; 23(30): 9796–804PubMed Sastre M, Dewachter I, Landreth GE, et al. Nonsteroidal anti-inflammatory drugs and peroxisome proliferator-activated receptor-gamma agonists modulate immunostimulated processing of amyloid precursor protein through regulation of beta-secretase. J Neurosci 2003; 23(30): 9796–804PubMed
89.
go back to reference Sastre M, Dewachter I, Rossner S, et al. Nonsteroidal anti-inflammatory drugs repress beta-secretase gene promoter activity by the activation of PPARgamma. Proc Natl Acad Sci U S A 2006; 103(2): 443–8PubMedCrossRef Sastre M, Dewachter I, Rossner S, et al. Nonsteroidal anti-inflammatory drugs repress beta-secretase gene promoter activity by the activation of PPARgamma. Proc Natl Acad Sci U S A 2006; 103(2): 443–8PubMedCrossRef
90.
go back to reference Dash PK, Moore AN. Enhanced processing of APP induced by IL-1 beta can be reduced by indomethacin and nordihydroguaiaretic acid. Biochem Biophys Res Commun 1995; 208(2): 542–8PubMedCrossRef Dash PK, Moore AN. Enhanced processing of APP induced by IL-1 beta can be reduced by indomethacin and nordihydroguaiaretic acid. Biochem Biophys Res Commun 1995; 208(2): 542–8PubMedCrossRef
91.
go back to reference Koenigsknecht-Talboo J, Landreth GE. Microglial phagocytosis induced by fibrillar beta-amyloid and IgGs are differentially regulated by proinflammatory cytokines. J Neurosci 2005; 25(36): 8240–9PubMedCrossRef Koenigsknecht-Talboo J, Landreth GE. Microglial phagocytosis induced by fibrillar beta-amyloid and IgGs are differentially regulated by proinflammatory cytokines. J Neurosci 2005; 25(36): 8240–9PubMedCrossRef
92.
go back to reference Craft S. Insulin resistance syndrome and Alzheimer’s disease: age- and obesity-related effects on memory, amyloid, and inflammation. Neurobiology of Aging 2005; 26Suppl. 1: 65–9PubMedCrossRef Craft S. Insulin resistance syndrome and Alzheimer’s disease: age- and obesity-related effects on memory, amyloid, and inflammation. Neurobiology of Aging 2005; 26Suppl. 1: 65–9PubMedCrossRef
93.
go back to reference Watson G, Craft S. Modulation of memory by insulin and glucose: neuropsychological observations in Alzheimer’s disease. Eur J Pharmacol 2004; 490(1-3): 97–113PubMedCrossRef Watson G, Craft S. Modulation of memory by insulin and glucose: neuropsychological observations in Alzheimer’s disease. Eur J Pharmacol 2004; 490(1-3): 97–113PubMedCrossRef
94.
go back to reference Watson GS, Craft S. The role of insulin resistance in the pathogenesis of Alzheimer’s disease: implications for treatment. CNS Drugs 2003; 17(1): 27–45PubMedCrossRef Watson GS, Craft S. The role of insulin resistance in the pathogenesis of Alzheimer’s disease: implications for treatment. CNS Drugs 2003; 17(1): 27–45PubMedCrossRef
95.
go back to reference Luchsinger JA, Tang MX, Stern Y, et al. Diabetes mellitus and risk of Alzheimer’s disease and dementia with stroke in a multiethnic cohort. Am J Epidemiol 2001; 154(7): 635–41PubMedCrossRef Luchsinger JA, Tang MX, Stern Y, et al. Diabetes mellitus and risk of Alzheimer’s disease and dementia with stroke in a multiethnic cohort. Am J Epidemiol 2001; 154(7): 635–41PubMedCrossRef
96.
go back to reference Peila R, Rodriguez BL, Launer LJ. Type 2 diabetes, APOE gene, and the risk for dementia and related pathologies: the Honolulu-Asia Aging Study. Diabetes 2002; 51(4): 1256–62PubMedCrossRef Peila R, Rodriguez BL, Launer LJ. Type 2 diabetes, APOE gene, and the risk for dementia and related pathologies: the Honolulu-Asia Aging Study. Diabetes 2002; 51(4): 1256–62PubMedCrossRef
97.
go back to reference Craft S, Dagogo-Jack SE, Wiethop BV, et al. Effects of hyperglycemia on memory and hormone levels in dementia of the Alzheimer type: a longitudinal study. Behav Neurosci 1993; 107(6): 926–40PubMedCrossRef Craft S, Dagogo-Jack SE, Wiethop BV, et al. Effects of hyperglycemia on memory and hormone levels in dementia of the Alzheimer type: a longitudinal study. Behav Neurosci 1993; 107(6): 926–40PubMedCrossRef
98.
go back to reference Reiman EM, Caselli RJ, Chen K, et al. Declining brain activity in cognitively normal apolipoprotein E epsilon 4 heterozygotes: a foundation for using positron emission tomography to efficiently test treatments to prevent Alzheimer’s disease. Proc Natl Acad Sci U S A 2001; 98(6): 3334–9PubMedCrossRef Reiman EM, Caselli RJ, Chen K, et al. Declining brain activity in cognitively normal apolipoprotein E epsilon 4 heterozygotes: a foundation for using positron emission tomography to efficiently test treatments to prevent Alzheimer’s disease. Proc Natl Acad Sci U S A 2001; 98(6): 3334–9PubMedCrossRef
99.
go back to reference Small GW, Ercoli LM, Silverman DH, et al. Cerebral metabolic and cognitive decline in persons at genetic risk for Alzheimer’s disease. Proc Natl Acad Sci U S A 2000; 97(11): 6037–42PubMedCrossRef Small GW, Ercoli LM, Silverman DH, et al. Cerebral metabolic and cognitive decline in persons at genetic risk for Alzheimer’s disease. Proc Natl Acad Sci U S A 2000; 97(11): 6037–42PubMedCrossRef
100.
go back to reference Trivedi MA, Schmitz TW, Ries ML, et al. Reduced hippocampal activation during episodic encoding in middle-aged individuals at genetic risk of Alzheimer’s disease: a cross-sectional study. BMC Med 2006; 4: 1PubMedCrossRef Trivedi MA, Schmitz TW, Ries ML, et al. Reduced hippocampal activation during episodic encoding in middle-aged individuals at genetic risk of Alzheimer’s disease: a cross-sectional study. BMC Med 2006; 4: 1PubMedCrossRef
101.
go back to reference Mosconi L, Tsui WH, De Santi S, et al. Reduced hippocampal metabolism in MCI and AD: automated FDG-PET image analysis. Neurology 2005; 64(11): 1860–7PubMedCrossRef Mosconi L, Tsui WH, De Santi S, et al. Reduced hippocampal metabolism in MCI and AD: automated FDG-PET image analysis. Neurology 2005; 64(11): 1860–7PubMedCrossRef
102.
go back to reference Nestor PJ, Fryer TD, Smielewski P, et al. Limbic hypometabolism in Alzheimer’s disease and mild cognitive impairment. Ann Neurol 2003; 54(3): 343–51PubMedCrossRef Nestor PJ, Fryer TD, Smielewski P, et al. Limbic hypometabolism in Alzheimer’s disease and mild cognitive impairment. Ann Neurol 2003; 54(3): 343–51PubMedCrossRef
103.
go back to reference De Santi S, de Leon MJ, Rusinek H, et al. Hippocampal formation glucose metabolism and volume losses in MCI and AD. Neurobiol Aging 2001; 22(4): 529–39PubMedCrossRef De Santi S, de Leon MJ, Rusinek H, et al. Hippocampal formation glucose metabolism and volume losses in MCI and AD. Neurobiol Aging 2001; 22(4): 529–39PubMedCrossRef
104.
go back to reference Ibanez V, Pietrini P, Alexander GE, et al. Regional glucose metabolic abnormalities are not the result of atrophy in Alzheimer’s disease. Neurology 1998; 50(6): 1585–93PubMedCrossRef Ibanez V, Pietrini P, Alexander GE, et al. Regional glucose metabolic abnormalities are not the result of atrophy in Alzheimer’s disease. Neurology 1998; 50(6): 1585–93PubMedCrossRef
105.
go back to reference Small GW, Mazziotta JC, Collins MT, et al. Apolipoprotein E type 4 allele and cerebral glucose metabolism in relatives at risk for familial Alzheimer disease. JAMA 1995; 273(12): 942–7PubMedCrossRef Small GW, Mazziotta JC, Collins MT, et al. Apolipoprotein E type 4 allele and cerebral glucose metabolism in relatives at risk for familial Alzheimer disease. JAMA 1995; 273(12): 942–7PubMedCrossRef
106.
go back to reference Kulstad J, Green P, Cook D, et al. Differential modulation of plasma beta-amyloid by insulin in patients with Alzheimer disease. Neurology 2006; 66: 1506–10PubMedCrossRef Kulstad J, Green P, Cook D, et al. Differential modulation of plasma beta-amyloid by insulin in patients with Alzheimer disease. Neurology 2006; 66: 1506–10PubMedCrossRef
107.
go back to reference Gasparini L, Gouras GK, Wang R, et al. Stimulation of beta-amyloid precursor protein trafficking by insulin reduces intraneuronal beta-amyloid and requires mitogen-activated protein kinase signaling. J Neurosci 2001; 21(8): 2561–70PubMed Gasparini L, Gouras GK, Wang R, et al. Stimulation of beta-amyloid precursor protein trafficking by insulin reduces intraneuronal beta-amyloid and requires mitogen-activated protein kinase signaling. J Neurosci 2001; 21(8): 2561–70PubMed
108.
go back to reference Qiu WQ, Walsh DM, Ye Z, et al. Insulin-degrading enzyme regulates extracellular levels of amyloid beta-protein by degradation. J Biol Chem 1998; 273(49): 32730–8PubMedCrossRef Qiu WQ, Walsh DM, Ye Z, et al. Insulin-degrading enzyme regulates extracellular levels of amyloid beta-protein by degradation. J Biol Chem 1998; 273(49): 32730–8PubMedCrossRef
109.
go back to reference Sjoholm A, Nystrom T. Endothelial inflammation in insulin resistance. Lancet 2005; 365(9459): 610–2PubMed Sjoholm A, Nystrom T. Endothelial inflammation in insulin resistance. Lancet 2005; 365(9459): 610–2PubMed
110.
go back to reference Hsueh WA, Lyon CJ, Quinones MJ. Insulin resistance and the endothelium. Am J Med 2004; 117(2): 109–17PubMedCrossRef Hsueh WA, Lyon CJ, Quinones MJ. Insulin resistance and the endothelium. Am J Med 2004; 117(2): 109–17PubMedCrossRef
111.
go back to reference Bookheimer SY, Strojwas MH, Cohen MS, et al. Patterns of brain activation in people at risk for Alzheimer’s disease. N Engl J Med 2000; 343(7): 450–6PubMedCrossRef Bookheimer SY, Strojwas MH, Cohen MS, et al. Patterns of brain activation in people at risk for Alzheimer’s disease. N Engl J Med 2000; 343(7): 450–6PubMedCrossRef
112.
go back to reference Feinstein D, Spagnolo A, Akar C, et al. Receptor-independent actions of PPAR thiazolidinedione agonists: is mitochondrial function the key? Biochem Pharmacol 2005; 70(2): 177–88PubMedCrossRef Feinstein D, Spagnolo A, Akar C, et al. Receptor-independent actions of PPAR thiazolidinedione agonists: is mitochondrial function the key? Biochem Pharmacol 2005; 70(2): 177–88PubMedCrossRef
113.
go back to reference d’Abramo C, Massone S, Zingg JM, et al. Role of peroxisome proliferator-activated receptor gamma in amyloid precursor protein processing and amyloid beta-mediated cell death. Biochem J 2005; 391 (Pt 3): 693–8PubMedCrossRef d’Abramo C, Massone S, Zingg JM, et al. Role of peroxisome proliferator-activated receptor gamma in amyloid precursor protein processing and amyloid beta-mediated cell death. Biochem J 2005; 391 (Pt 3): 693–8PubMedCrossRef
114.
go back to reference Camacho IE, Serneels L, Spittaels K, et al. Peroxisome proliferator-activated receptor gamma induces a clearance mechanism for the amyloid-beta peptide. J Neurosci 2004; 24(48): 10908–17PubMedCrossRef Camacho IE, Serneels L, Spittaels K, et al. Peroxisome proliferator-activated receptor gamma induces a clearance mechanism for the amyloid-beta peptide. J Neurosci 2004; 24(48): 10908–17PubMedCrossRef
115.
go back to reference Llaverias G, Rebollo A, Pou J, et al. Effects of rosiglitazone and atorvastatin on the expression of genes that control cholesterol homeostasis in differentiating monocytes. Biochem Pharmacol 2006; 71(5): 605–14PubMedCrossRef Llaverias G, Rebollo A, Pou J, et al. Effects of rosiglitazone and atorvastatin on the expression of genes that control cholesterol homeostasis in differentiating monocytes. Biochem Pharmacol 2006; 71(5): 605–14PubMedCrossRef
116.
go back to reference Calkin AC, Forbes JM, Smith CM, et al. Rosiglitazone attenuates atherosclerosis in a model of insulin insufficiency independent of its metabolic effects. Arterioscler Thromb Vasc Biol 2005; 25(9): 1903–9PubMedCrossRef Calkin AC, Forbes JM, Smith CM, et al. Rosiglitazone attenuates atherosclerosis in a model of insulin insufficiency independent of its metabolic effects. Arterioscler Thromb Vasc Biol 2005; 25(9): 1903–9PubMedCrossRef
117.
go back to reference Yue L, Rasouli N, Ranganathan G, et al. Divergent effects of peroxisome proliferator-activated receptor gamma agonists and tumor necrosis factor alpha on adipocyte ApoE expression. J Biol Chem 2004; 279(46): 47626–32PubMedCrossRef Yue L, Rasouli N, Ranganathan G, et al. Divergent effects of peroxisome proliferator-activated receptor gamma agonists and tumor necrosis factor alpha on adipocyte ApoE expression. J Biol Chem 2004; 279(46): 47626–32PubMedCrossRef
118.
go back to reference Seo JB, Moon HM, Kim WS, et al. Activated liver X receptors stimulate adipocyte differentiation through induction of peroxisome proliferator-activated receptor gamma expression. Mol Cell Biol 2004; 24(8): 3430–44PubMedCrossRef Seo JB, Moon HM, Kim WS, et al. Activated liver X receptors stimulate adipocyte differentiation through induction of peroxisome proliferator-activated receptor gamma expression. Mol Cell Biol 2004; 24(8): 3430–44PubMedCrossRef
119.
go back to reference Piraino G, Cook JA, O’Connor M, et al. Synergistic effect of peroxisome proliferator activated receptor-gamma and liver X receptor-alpha in the regulation of inflammation in macrophages. Shock 2006; 26(2): 146–53PubMedCrossRef Piraino G, Cook JA, O’Connor M, et al. Synergistic effect of peroxisome proliferator activated receptor-gamma and liver X receptor-alpha in the regulation of inflammation in macrophages. Shock 2006; 26(2): 146–53PubMedCrossRef
120.
go back to reference Katzov H, Chalmers K, Palmgren J, et al. Genetic variants of ABCA1 modify Alzheimer disease risk and quantitative traits related to beta-amyloid metabolism. Hum Mutat 2004; 23(4): 358–67PubMedCrossRef Katzov H, Chalmers K, Palmgren J, et al. Genetic variants of ABCA1 modify Alzheimer disease risk and quantitative traits related to beta-amyloid metabolism. Hum Mutat 2004; 23(4): 358–67PubMedCrossRef
121.
go back to reference Li Y, Tacey K, Doil L, et al. Association of ABCA1 with lateonset Alzheimer’s disease is not observed in a case-control study. Neurosci Lett 2004; 366(3): 268–71PubMedCrossRef Li Y, Tacey K, Doil L, et al. Association of ABCA1 with lateonset Alzheimer’s disease is not observed in a case-control study. Neurosci Lett 2004; 366(3): 268–71PubMedCrossRef
122.
go back to reference Adighibe O, Arepalli S, Duckworth J, et al. Genetic variability at the LXR gene (NR1H2) may contribute to the risk of Alzheimer’s disease. Neurobiol Aging 2006; 27(10): 1431–4PubMedCrossRef Adighibe O, Arepalli S, Duckworth J, et al. Genetic variability at the LXR gene (NR1H2) may contribute to the risk of Alzheimer’s disease. Neurobiol Aging 2006; 27(10): 1431–4PubMedCrossRef
123.
go back to reference Wolozin B. Cyp46 (24S-cholesterol hydroxylase): a genetic risk factor for Alzheimer disease. Arch Neurol 2003; 60(1): 16–8PubMedCrossRef Wolozin B. Cyp46 (24S-cholesterol hydroxylase): a genetic risk factor for Alzheimer disease. Arch Neurol 2003; 60(1): 16–8PubMedCrossRef
124.
go back to reference Grainger DJ, Reckless J, McKilligin E. Apolipoprotein E modulates clearance of apoptotic bodies in vitro and in vivo, resulting in a systemic proinflammatory state in apolipoprotein E-deficient mice. J Immunol 2004; 173(10): 6366–75PubMed Grainger DJ, Reckless J, McKilligin E. Apolipoprotein E modulates clearance of apoptotic bodies in vitro and in vivo, resulting in a systemic proinflammatory state in apolipoprotein E-deficient mice. J Immunol 2004; 173(10): 6366–75PubMed
125.
go back to reference Ali K, Middleton M, Pure E, et al. Apolipoprotein E suppresses the type I inflammatory response in vivo. Circ Res 2005; 97(9): 922–7PubMedCrossRef Ali K, Middleton M, Pure E, et al. Apolipoprotein E suppresses the type I inflammatory response in vivo. Circ Res 2005; 97(9): 922–7PubMedCrossRef
126.
go back to reference Wuttge DM, Sirsjo A, Eriksson P, et al. Gene expression in atherosclerotic lesion of ApoE deficient mice. Mol Med 2001; 7(6): 383–92PubMed Wuttge DM, Sirsjo A, Eriksson P, et al. Gene expression in atherosclerotic lesion of ApoE deficient mice. Mol Med 2001; 7(6): 383–92PubMed
127.
go back to reference Berbee JF, Havekes LM, Rensen PC. Apolipoproteins modulate the inflammatory response to lipopolysaccharide. J Endotoxin Res 2005; 11(2): 97–103PubMed Berbee JF, Havekes LM, Rensen PC. Apolipoproteins modulate the inflammatory response to lipopolysaccharide. J Endotoxin Res 2005; 11(2): 97–103PubMed
128.
go back to reference Phillips JW, Barringhaus KG, Sanders JM, et al. Rosiglitazone reduces the accelerated neointima formation after arterial injury in a mouse injury model of type 2 diabetes. Circulation 2003; 108(16): 1994–9PubMedCrossRef Phillips JW, Barringhaus KG, Sanders JM, et al. Rosiglitazone reduces the accelerated neointima formation after arterial injury in a mouse injury model of type 2 diabetes. Circulation 2003; 108(16): 1994–9PubMedCrossRef
129.
go back to reference Chen Z, Ishibashi S, Perrey S, et al. Troglitazone inhibits atherosclerosis in apolipoprotein E-knockout mice: pleiotropic effects on CD36 expression and HDL. Arterioscler Thromb Vasc Biol 2001; 21(3): 372–7PubMedCrossRef Chen Z, Ishibashi S, Perrey S, et al. Troglitazone inhibits atherosclerosis in apolipoprotein E-knockout mice: pleiotropic effects on CD36 expression and HDL. Arterioscler Thromb Vasc Biol 2001; 21(3): 372–7PubMedCrossRef
130.
go back to reference Tordjman K, Bernal-Mizrachi C, Zemany L, et al. PPARalpha deficiency reduces insulin resistance and atherosclerosis in apoE-null mice. J Clin Invest 2001; 107(8): 1025–34PubMedCrossRef Tordjman K, Bernal-Mizrachi C, Zemany L, et al. PPARalpha deficiency reduces insulin resistance and atherosclerosis in apoE-null mice. J Clin Invest 2001; 107(8): 1025–34PubMedCrossRef
131.
go back to reference Feingold KR, Hardardottir I, Memon R, et al. Effect of endotoxin on cholesterol biosynthesis and distribution in serum lipoproteins in Syrian hamsters. J Lipid Res 1993; 34(12): 2147–58PubMed Feingold KR, Hardardottir I, Memon R, et al. Effect of endotoxin on cholesterol biosynthesis and distribution in serum lipoproteins in Syrian hamsters. J Lipid Res 1993; 34(12): 2147–58PubMed
132.
go back to reference Wang Y, Moser AH, Shigenaga JK, et al. Downregulation of liver X receptor-alpha in mouse kidney and HK-2 proximal tubular cells by LPS and cytokines. J Lipid Res 2005; 46(11): 2377–87PubMedCrossRef Wang Y, Moser AH, Shigenaga JK, et al. Downregulation of liver X receptor-alpha in mouse kidney and HK-2 proximal tubular cells by LPS and cytokines. J Lipid Res 2005; 46(11): 2377–87PubMedCrossRef
133.
go back to reference Ripolles Piquer B, Nazih H, Neunlist M, et al. Effect of LPS on basal and induced apo E secretion by 25-OH chol and 9cRA in differentiated CaCo-2. J Cell Biochem 2004; 91(4): 786–95PubMedCrossRef Ripolles Piquer B, Nazih H, Neunlist M, et al. Effect of LPS on basal and induced apo E secretion by 25-OH chol and 9cRA in differentiated CaCo-2. J Cell Biochem 2004; 91(4): 786–95PubMedCrossRef
134.
go back to reference Joseph SB, Castrillo A, Laffitte BA, et al. Reciprocal regulation of inflammation and lipid metabolism by liver X receptors. Nat Med 2003; 9(2): 213–9PubMedCrossRef Joseph SB, Castrillo A, Laffitte BA, et al. Reciprocal regulation of inflammation and lipid metabolism by liver X receptors. Nat Med 2003; 9(2): 213–9PubMedCrossRef
135.
go back to reference Joseph SB, McKilligin E, Pei L, et al. Synthetic LXR ligand inhibits the development of atherosclerosis in mice. Proc Natl Acad Sci U S A 2002; 99(11): 7604–9PubMedCrossRef Joseph SB, McKilligin E, Pei L, et al. Synthetic LXR ligand inhibits the development of atherosclerosis in mice. Proc Natl Acad Sci U S A 2002; 99(11): 7604–9PubMedCrossRef
136.
go back to reference Zelcer N, Tontonoz P. Liver X receptors as integrators of metabolic and inflammatory signaling. J Clin Invest 2006; 116(3): 607–14PubMedCrossRef Zelcer N, Tontonoz P. Liver X receptors as integrators of metabolic and inflammatory signaling. J Clin Invest 2006; 116(3): 607–14PubMedCrossRef
137.
go back to reference Wellington CL. Cholesterol at the crossroads: Alzheimer’s disease and lipid metabolism. Clin Genet 2004; 66(1): 1–16PubMedCrossRef Wellington CL. Cholesterol at the crossroads: Alzheimer’s disease and lipid metabolism. Clin Genet 2004; 66(1): 1–16PubMedCrossRef
138.
go back to reference Bjorkhem I, Meaney S. Brain cholesterol: long secret life behind a barrier. Arterioscler Thromb Vasc Biol 2004; 24(5): 806–15PubMedCrossRef Bjorkhem I, Meaney S. Brain cholesterol: long secret life behind a barrier. Arterioscler Thromb Vasc Biol 2004; 24(5): 806–15PubMedCrossRef
139.
go back to reference Craft S, Asthana S, Cook DG, et al. Insulin dose-response effects on memory and plasma amyloid precursor protein in Alzheimer’s disease: interactions with apolipoprotein E genotype. Psychoneuroendocrinology 2003; 28(6): 809–22PubMedCrossRef Craft S, Asthana S, Cook DG, et al. Insulin dose-response effects on memory and plasma amyloid precursor protein in Alzheimer’s disease: interactions with apolipoprotein E genotype. Psychoneuroendocrinology 2003; 28(6): 809–22PubMedCrossRef
140.
go back to reference Rasgon N, Jarvik L. Insulin resistance, affective disorders, and Alzheimer’s disease: review and hypothesis. J Gerontol A Biol Sci Med Sci 2004; 59(2): 178–83, discussion 184-92PubMedCrossRef Rasgon N, Jarvik L. Insulin resistance, affective disorders, and Alzheimer’s disease: review and hypothesis. J Gerontol A Biol Sci Med Sci 2004; 59(2): 178–83, discussion 184-92PubMedCrossRef
141.
go back to reference Pedersen WA, Flynn ER. Insulin resistance contributes to aberrant stress responses in the Tg2576 mouse model of Alzheimer’s disease. Neurobiol Dis 2004; 17(3): 500–6PubMedCrossRef Pedersen WA, Flynn ER. Insulin resistance contributes to aberrant stress responses in the Tg2576 mouse model of Alzheimer’s disease. Neurobiol Dis 2004; 17(3): 500–6PubMedCrossRef
142.
go back to reference Luchsinger JA, Mayeux R. Cardiovascular risk factors and Alzheimer’s disease. Curr Atheroscler Rep 2004; 6(4): 261–6PubMedCrossRef Luchsinger JA, Mayeux R. Cardiovascular risk factors and Alzheimer’s disease. Curr Atheroscler Rep 2004; 6(4): 261–6PubMedCrossRef
143.
go back to reference de la Monte SM, Wands JR. Review of insulin and insulin-like growth factor expression, signaling, and malfunction in the central nervous system: relevance to Alzheimer’s disease. J Alzheimers Dis 2005; 7(1): 45–61PubMed de la Monte SM, Wands JR. Review of insulin and insulin-like growth factor expression, signaling, and malfunction in the central nervous system: relevance to Alzheimer’s disease. J Alzheimers Dis 2005; 7(1): 45–61PubMed
144.
go back to reference Ristow M. Neurodegenerative disorders associated with diabetes mellitus. J Mol Med 2004; 82(8): 510–29PubMedCrossRef Ristow M. Neurodegenerative disorders associated with diabetes mellitus. J Mol Med 2004; 82(8): 510–29PubMedCrossRef
145.
go back to reference Nicolls MR. The clinical and biological relationship between type II diabetes mellitus and Alzheimer’s disease. Curr Alzheimer Res 2004; 1(1): 47–54PubMedCrossRef Nicolls MR. The clinical and biological relationship between type II diabetes mellitus and Alzheimer’s disease. Curr Alzheimer Res 2004; 1(1): 47–54PubMedCrossRef
146.
go back to reference Fishel MA, Watson GS, Montine TJ, et al. Hyperinsulinemia provokes synchronous increases in central inflammation and beta-amyloid in normal adults. Arch Neurol 2005; 62(10): 1539–44PubMedCrossRef Fishel MA, Watson GS, Montine TJ, et al. Hyperinsulinemia provokes synchronous increases in central inflammation and beta-amyloid in normal adults. Arch Neurol 2005; 62(10): 1539–44PubMedCrossRef
147.
go back to reference Rasgon NL, Kenna HA. Insulin resistance in depressive disorders and Alzheimer’s disease: revisiting the missing link hypothesis. Neurobiol Aging 2005; 26Suppl. 1: 103–7PubMedCrossRef Rasgon NL, Kenna HA. Insulin resistance in depressive disorders and Alzheimer’s disease: revisiting the missing link hypothesis. Neurobiol Aging 2005; 26Suppl. 1: 103–7PubMedCrossRef
148.
go back to reference Biessels GJ, Kappelle LJ. Increased risk of Alzheimer’s disease in Type II diabetes: insulin resistance of the brain or insulin-induced amyloid pathology? Biochem Soc Trans 2005; 33 (Pt 5): 1041–4PubMedCrossRef Biessels GJ, Kappelle LJ. Increased risk of Alzheimer’s disease in Type II diabetes: insulin resistance of the brain or insulin-induced amyloid pathology? Biochem Soc Trans 2005; 33 (Pt 5): 1041–4PubMedCrossRef
149.
go back to reference Watson G, Cholerton B, Reger M, et al. Preserved cognition in patients with early Alzheimer disease and amnestic mild cognitive impairment during treatment with rosiglitazone: a preliminary study. Am J Geriatr Psychiatry 2005; 13(11): 950–8PubMed Watson G, Cholerton B, Reger M, et al. Preserved cognition in patients with early Alzheimer disease and amnestic mild cognitive impairment during treatment with rosiglitazone: a preliminary study. Am J Geriatr Psychiatry 2005; 13(11): 950–8PubMed
150.
go back to reference Messier C, Teutenberg K. The role of insulin, insulin growth factor, and insulin-degrading enzyme in brain aging and Alzheimer’s disease. Neural Plast 2005; 12(4): 311–28PubMedCrossRef Messier C, Teutenberg K. The role of insulin, insulin growth factor, and insulin-degrading enzyme in brain aging and Alzheimer’s disease. Neural Plast 2005; 12(4): 311–28PubMedCrossRef
151.
go back to reference Watson GS, Craft S. Insulin resistance, inflammation, and cognition in Alzheimer’s Disease: lessons for multiple sclerosis. J Neurol Sci 2006; 245(1-2): 21–33PubMedCrossRef Watson GS, Craft S. Insulin resistance, inflammation, and cognition in Alzheimer’s Disease: lessons for multiple sclerosis. J Neurol Sci 2006; 245(1-2): 21–33PubMedCrossRef
152.
go back to reference Martins IJ, Hone E, Foster JK, et al. Apolipoprotein E, cholesterol metabolism, diabetes, and the convergence of risk factors for Alzheimer’s disease and cardiovascular disease. Mol Psychiatry 2006; 11(8): 721–36PubMedCrossRef Martins IJ, Hone E, Foster JK, et al. Apolipoprotein E, cholesterol metabolism, diabetes, and the convergence of risk factors for Alzheimer’s disease and cardiovascular disease. Mol Psychiatry 2006; 11(8): 721–36PubMedCrossRef
153.
go back to reference Hsueh W. Genetic discoveries as the basis of personalized therapy: rosiglitazone treatment of Alzheimer’s disease. Pharmacogenomics J 2006; 6(4): 222–4PubMedCrossRef Hsueh W. Genetic discoveries as the basis of personalized therapy: rosiglitazone treatment of Alzheimer’s disease. Pharmacogenomics J 2006; 6(4): 222–4PubMedCrossRef
154.
go back to reference Alarcon de la Lastra C, Sanchez-Fidalgo S, Villegas I, et al. New pharmacological perspectives and therapeutic potential of PPAR-gamma agonists. Curr Pharm Des 2004; 10(28): 3505–24PubMedCrossRef Alarcon de la Lastra C, Sanchez-Fidalgo S, Villegas I, et al. New pharmacological perspectives and therapeutic potential of PPAR-gamma agonists. Curr Pharm Des 2004; 10(28): 3505–24PubMedCrossRef
155.
go back to reference Ho L, Qin W, Pompl PN, et al. Diet-induced insulin resistance promotes amyloidosis in a transgenic mouse model of Alzheimer’s disease. Faseb J 2004; 18(7): 902–4PubMed Ho L, Qin W, Pompl PN, et al. Diet-induced insulin resistance promotes amyloidosis in a transgenic mouse model of Alzheimer’s disease. Faseb J 2004; 18(7): 902–4PubMed
156.
go back to reference Kudo T, Imaizumi K, Tanimukai H, et al. Are cerebrovascular factors involved in Alzheimer’s disease? Neurobiol Aging 2000; 21(2): 215–24PubMedCrossRef Kudo T, Imaizumi K, Tanimukai H, et al. Are cerebrovascular factors involved in Alzheimer’s disease? Neurobiol Aging 2000; 21(2): 215–24PubMedCrossRef
157.
158.
go back to reference Shoelson SE, Lee J, Goldfine AB. Inflammation and insulin resistance. J Clin Invest 2006; 116(7): 1793–801PubMedCrossRef Shoelson SE, Lee J, Goldfine AB. Inflammation and insulin resistance. J Clin Invest 2006; 116(7): 1793–801PubMedCrossRef
159.
go back to reference Dandona P, Aljada A, Bandyopadhyay A. Inflammation: the link between insulin resistance, obesity and diabetes. Trends Immunol 2004; 25(1): 4–7PubMedCrossRef Dandona P, Aljada A, Bandyopadhyay A. Inflammation: the link between insulin resistance, obesity and diabetes. Trends Immunol 2004; 25(1): 4–7PubMedCrossRef
160.
go back to reference Haffner SM. Insulin resistance, inflammation, and the prediabetic state. Am J Cardiol 2003; 92(4A): 18–26JCrossRef Haffner SM. Insulin resistance, inflammation, and the prediabetic state. Am J Cardiol 2003; 92(4A): 18–26JCrossRef
161.
go back to reference Dandona P, Aljada A. A rational approach to pathogenesis and treatment of type 2 diabetes mellitus, insulin resistance, inflammation, and atherosclerosis. Am J Cardiol 2002; 90(5A): 27–33GCrossRef Dandona P, Aljada A. A rational approach to pathogenesis and treatment of type 2 diabetes mellitus, insulin resistance, inflammation, and atherosclerosis. Am J Cardiol 2002; 90(5A): 27–33GCrossRef
162.
go back to reference Cai D, Yuan M, Frantz DF, et al. Local and systemic insulin resistance resulting from hepatic activation of IKK-beta and NF-kappaB. Nat Med 2005; 11(2): 183–90PubMedCrossRef Cai D, Yuan M, Frantz DF, et al. Local and systemic insulin resistance resulting from hepatic activation of IKK-beta and NF-kappaB. Nat Med 2005; 11(2): 183–90PubMedCrossRef
163.
go back to reference Arkan MC, Hevener AL, Greten FR, et al. IKK-beta links inflammation to obesity-induced insulin resistance. Nat Med 2005; 11(2): 191–8PubMedCrossRef Arkan MC, Hevener AL, Greten FR, et al. IKK-beta links inflammation to obesity-induced insulin resistance. Nat Med 2005; 11(2): 191–8PubMedCrossRef
164.
go back to reference Farris W, Leissring MA, Hemming ML, et al. Alternative splicing of human insulin-degrading enzyme yields a novel isoform with a decreased ability to degrade insulin and amyloid beta-protein. Biochemistry 2005; 44(17): 6513–25PubMedCrossRef Farris W, Leissring MA, Hemming ML, et al. Alternative splicing of human insulin-degrading enzyme yields a novel isoform with a decreased ability to degrade insulin and amyloid beta-protein. Biochemistry 2005; 44(17): 6513–25PubMedCrossRef
165.
go back to reference Farris W, Mansourian S, Leissring MA, et al. Partial loss-of-function mutations in insulin-degrading enzyme that induce diabetes also impair degradation of amyloid beta-protein. Am J Pathol 2004; 164(4): 1425–34PubMedCrossRef Farris W, Mansourian S, Leissring MA, et al. Partial loss-of-function mutations in insulin-degrading enzyme that induce diabetes also impair degradation of amyloid beta-protein. Am J Pathol 2004; 164(4): 1425–34PubMedCrossRef
166.
go back to reference Farris W, Mansourian S, Chang Y, et al. Insulin-degrading enzyme regulates the levels of insulin, amyloid beta-protein, and the beta-amyloid precursor protein intracellular domain in vivo. Proc Natl Acad Sci U S A 2003; 100(7): 4162–7PubMedCrossRef Farris W, Mansourian S, Chang Y, et al. Insulin-degrading enzyme regulates the levels of insulin, amyloid beta-protein, and the beta-amyloid precursor protein intracellular domain in vivo. Proc Natl Acad Sci U S A 2003; 100(7): 4162–7PubMedCrossRef
Metadata
Title
The Role of Peroxisome Proliferator-Activated Receptor-γ PPARγ) in Alzheimer’s Disease
Therapeutic Implications
Authors
Qingguang Jiang
Michael Heneka
Dr Gary E. Landreth
Publication date
01-01-2008
Publisher
Springer International Publishing
Published in
CNS Drugs / Issue 1/2008
Print ISSN: 1172-7047
Electronic ISSN: 1179-1934
DOI
https://doi.org/10.2165/00023210-200822010-00001

Other articles of this Issue 1/2008

CNS Drugs 1/2008 Go to the issue

Commentary

Quetiapine

Review Article

Quetiapine