Skip to main content
Top
Published in: Sports Medicine 4/2006

01-04-2006 | Review Article

Oxidative Stress

Relationship with Exercise and Training

Authors: Julien Finaud, Gérard Lac, Edith Filaire

Published in: Sports Medicine | Issue 4/2006

Login to get access

Abstract

Free radicals are reactive compounds that are naturally produced in the human body. They can exert positive effects (e.g. on the immune system) or negative effects (e.g. lipids, proteins or DNA oxidation). To limit these harmful effects, an organism requires complex protection — the antioxidant system. This system consists of antioxidant enzymes (catalase, glutathione peroxidase, superoxide dismutase) and non-enzymatic antioxidants (e.g. vitamin E [tocopherol], vitamin A [retinol], vitamin C [ascorbic acid], glutathione and uric acid). An imbalance between free radical production and antioxidant defence leads to an oxidative stress state, which may be involved in aging processes and even in some pathology (e.g. cancer and Parkinson’s disease). Physical exercise also increases oxidative stress and causes disruptions of the homeostasis. Training can have positive or negative effects on oxidative stress depending on training load, training specificity and the basal level of training. Moreover, oxidative stress seems to be involved in muscular fatigue and may lead to overtraining.
Literature
1.
go back to reference Cooper CE, Vollaard NBJ, Choueiri T, et al. Exercise, free radicals and oxidative stress. Biochem Soc Trans 2002; 30 (2): 280–285PubMedCrossRef Cooper CE, Vollaard NBJ, Choueiri T, et al. Exercise, free radicals and oxidative stress. Biochem Soc Trans 2002; 30 (2): 280–285PubMedCrossRef
2.
go back to reference Lachance PA, Nakat Z, Jeong WS. Antioxidants: an integrative approach. Nutrition 2001; 17: 835–838PubMedCrossRef Lachance PA, Nakat Z, Jeong WS. Antioxidants: an integrative approach. Nutrition 2001; 17: 835–838PubMedCrossRef
3.
go back to reference Golden TR, Hinerfeld DA, Melov S. Oxidative stress and aging: beyond correlation. Aging Cell 2002; 1: 117–123PubMedCrossRef Golden TR, Hinerfeld DA, Melov S. Oxidative stress and aging: beyond correlation. Aging Cell 2002; 1: 117–123PubMedCrossRef
4.
5.
go back to reference Sen CK. Antioxidant and redox regulation of cellular signaling: introduction. Med Sci Sports Exerc 2001; 33 (3): 368–370PubMedCrossRef Sen CK. Antioxidant and redox regulation of cellular signaling: introduction. Med Sci Sports Exerc 2001; 33 (3): 368–370PubMedCrossRef
6.
go back to reference Guilland JC, Penaranda T, Gallet C, et al. Vitamin status of young athletes including the effects of supplementation. Med Sci Sports Exerc 1989; 21 (4): 441–449PubMed Guilland JC, Penaranda T, Gallet C, et al. Vitamin status of young athletes including the effects of supplementation. Med Sci Sports Exerc 1989; 21 (4): 441–449PubMed
7.
go back to reference Laursen PB. Free radicals and antioxidant vitamins: optimizing the health of the athlete. Strength Cond J 2001; 23 (2): 17–25 Laursen PB. Free radicals and antioxidant vitamins: optimizing the health of the athlete. Strength Cond J 2001; 23 (2): 17–25
9.
go back to reference Petibois C, Cazorla G, Poortmans JR, et al. Biochemical aspects of overtraining in endurance sports. Sports Med 2002; 32 (13): 867–878PubMedCrossRef Petibois C, Cazorla G, Poortmans JR, et al. Biochemical aspects of overtraining in endurance sports. Sports Med 2002; 32 (13): 867–878PubMedCrossRef
10.
11.
go back to reference Cheeseman KH, Slater TF. An introduction to free radical biochemistry. Br Med Bull 1993; 49 (3): 481–493PubMed Cheeseman KH, Slater TF. An introduction to free radical biochemistry. Br Med Bull 1993; 49 (3): 481–493PubMed
12.
go back to reference Rimbach G, Hohler D, Fischer A, et al. Methods to assess free radicals and oxidative stress in biological systems. Arch Tierernahr 1999; 52 (3): 203–222PubMedCrossRef Rimbach G, Hohler D, Fischer A, et al. Methods to assess free radicals and oxidative stress in biological systems. Arch Tierernahr 1999; 52 (3): 203–222PubMedCrossRef
13.
go back to reference Prior RL, Cao G. In vivo total antioxidant capacity: comparison of different analytical methods. Free Radic Biol Med 1999; 27 (11–12): 1173–1181PubMedCrossRef Prior RL, Cao G. In vivo total antioxidant capacity: comparison of different analytical methods. Free Radic Biol Med 1999; 27 (11–12): 1173–1181PubMedCrossRef
14.
go back to reference Giles GI, Jacob C. Reactive sulfur species: an emerging concept in oxidative stress. Biol Chem 2002; 383: 375–388PubMedCrossRef Giles GI, Jacob C. Reactive sulfur species: an emerging concept in oxidative stress. Biol Chem 2002; 383: 375–388PubMedCrossRef
15.
go back to reference Hampton MB, Kettle AJ, Winterbourn CC. Inside the neutrophil phagosome: oxidants, myeloperoxidase, and bacterial killing. Blood 1998; 92: 3007–3017PubMed Hampton MB, Kettle AJ, Winterbourn CC. Inside the neutrophil phagosome: oxidants, myeloperoxidase, and bacterial killing. Blood 1998; 92: 3007–3017PubMed
16.
go back to reference Leewenburgh C, Hansen PA, Holloszy JO, et al. Hydroxyl radical generation during exercise increases mitochondrial protein oxidation and levels of urinary dityrosine. Free Radic Biol Med 1999; 27 (1–2): 186–192CrossRef Leewenburgh C, Hansen PA, Holloszy JO, et al. Hydroxyl radical generation during exercise increases mitochondrial protein oxidation and levels of urinary dityrosine. Free Radic Biol Med 1999; 27 (1–2): 186–192CrossRef
17.
go back to reference Fehrenbach E, Northoff H. Free radicals, exercise, apoptosis, and heat shock proteins. Exerc Immunol Rev 2001; 7: 66–89PubMed Fehrenbach E, Northoff H. Free radicals, exercise, apoptosis, and heat shock proteins. Exerc Immunol Rev 2001; 7: 66–89PubMed
18.
go back to reference Aruoma OI. Free radicals, antioxidants and international nutrition. Asia Pac J Clin Nutr 1999; 8 (1): 53–63CrossRef Aruoma OI. Free radicals, antioxidants and international nutrition. Asia Pac J Clin Nutr 1999; 8 (1): 53–63CrossRef
19.
go back to reference Di Meo S, Venditti P. Mitochondria in exercise-induced oxidative stress. Biol Signals Recept 2001; 10: 125–140PubMedCrossRef Di Meo S, Venditti P. Mitochondria in exercise-induced oxidative stress. Biol Signals Recept 2001; 10: 125–140PubMedCrossRef
20.
go back to reference Sjodin B, Hellsten Westing Y, et al. Biochemical mechanism for oxygen free radical formation during exercise. Sports Med 1990; 10: 236–254PubMedCrossRef Sjodin B, Hellsten Westing Y, et al. Biochemical mechanism for oxygen free radical formation during exercise. Sports Med 1990; 10: 236–254PubMedCrossRef
21.
go back to reference Jenkins RR, Goldfarb A. Introduction: oxidant stress, aging and exercise. Med Sci Sport Exerc 1993; 25 (2): 210–212 Jenkins RR, Goldfarb A. Introduction: oxidant stress, aging and exercise. Med Sci Sport Exerc 1993; 25 (2): 210–212
22.
23.
go back to reference Lenaz G. Role of mitochondria in oxidative stress and ageing. Biochim Biophys Acta 1998; 1366 (1–2): 53–67PubMed Lenaz G. Role of mitochondria in oxidative stress and ageing. Biochim Biophys Acta 1998; 1366 (1–2): 53–67PubMed
24.
go back to reference Nohl H, Jordan W. The mitochondrial site of superoxide formation. Biochem Biophys Res Commun 1986; 138 (2): 533–539PubMedCrossRef Nohl H, Jordan W. The mitochondrial site of superoxide formation. Biochem Biophys Res Commun 1986; 138 (2): 533–539PubMedCrossRef
25.
go back to reference Lenaz G, D’Aurelio M, Merlo Pich M, et al. Mitochondrial bioenergetics in aging. Biochim Biophys Acta 2000; 1459: 397–404PubMedCrossRef Lenaz G, D’Aurelio M, Merlo Pich M, et al. Mitochondrial bioenergetics in aging. Biochim Biophys Acta 2000; 1459: 397–404PubMedCrossRef
26.
go back to reference Nohl H, Kozlov AV, Gille L, et al. Cell respiration and formation of reactive oxygen species: facts and artifacts. Biochem Soc Trans 2003; 31 (6): 1308–1311PubMedCrossRef Nohl H, Kozlov AV, Gille L, et al. Cell respiration and formation of reactive oxygen species: facts and artifacts. Biochem Soc Trans 2003; 31 (6): 1308–1311PubMedCrossRef
27.
go back to reference Servais S, Couturier K, Koubi H, et al. Effect of voluntary exercise on H2O2 release by subsarcolemmal and intermy-ofibrillar mitochondria. Free Radic Biol Med 2003; 35 (1): 25–32CrossRef Servais S, Couturier K, Koubi H, et al. Effect of voluntary exercise on H2O2 release by subsarcolemmal and intermy-ofibrillar mitochondria. Free Radic Biol Med 2003; 35 (1): 25–32CrossRef
28.
go back to reference Turrens JF, Boveris A. Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria. Biochem J 1980; 191: 421–427PubMed Turrens JF, Boveris A. Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria. Biochem J 1980; 191: 421–427PubMed
29.
go back to reference Genova ML, Pich MM, Bernacchia A, et al. The mitochondrial production of reactive oxygen species in relation to aging and pathologies. Ann N Y Acad Sci 2004; 1011: 86–100PubMedCrossRef Genova ML, Pich MM, Bernacchia A, et al. The mitochondrial production of reactive oxygen species in relation to aging and pathologies. Ann N Y Acad Sci 2004; 1011: 86–100PubMedCrossRef
30.
go back to reference Thompson-Gorman SL, Zweier JL. Evaluation of the role of xanthine oxidase in myocardial reperfusion injury. J Biol Chem 1990; 265 (12): 6656–6663PubMed Thompson-Gorman SL, Zweier JL. Evaluation of the role of xanthine oxidase in myocardial reperfusion injury. J Biol Chem 1990; 265 (12): 6656–6663PubMed
31.
go back to reference Jackson MJ, O’Farrell S. Free radicals and muscle damage. Br Med Bull 1993; 49 (3): 630–641PubMed Jackson MJ, O’Farrell S. Free radicals and muscle damage. Br Med Bull 1993; 49 (3): 630–641PubMed
32.
go back to reference Frederiks WM, Bosch KS. The role of xanthine oxidase in ischemia/reperfusion damage of rat liver. Histol Histopathol 1995; 10: 111–116PubMed Frederiks WM, Bosch KS. The role of xanthine oxidase in ischemia/reperfusion damage of rat liver. Histol Histopathol 1995; 10: 111–116PubMed
33.
go back to reference Goldfarb AH. Nutritional antioxidants as therapeutic and preventive modalities in exercise-induced muscle damage. Can J Appl Physiol 1999; 24 (3): 249–266PubMedCrossRef Goldfarb AH. Nutritional antioxidants as therapeutic and preventive modalities in exercise-induced muscle damage. Can J Appl Physiol 1999; 24 (3): 249–266PubMedCrossRef
34.
go back to reference Heunks LMA, Vina J, Van Herwaarden AV, et al. Xanthine oxidase is involved in exercise-induced oxidative stress in chronic obstrutive pulmonary disease. Am J Physiol 1999; 277: R1697–R1704PubMed Heunks LMA, Vina J, Van Herwaarden AV, et al. Xanthine oxidase is involved in exercise-induced oxidative stress in chronic obstrutive pulmonary disease. Am J Physiol 1999; 277: R1697–R1704PubMed
35.
go back to reference Gunther MR, Sampath V, Caughey WS. Potential roles of myoglobin autoxidation in myocardial ischemia-reperfusion injury. Free Radic Biol Med 1999; 26 (11–12): 1388–1395PubMedCrossRef Gunther MR, Sampath V, Caughey WS. Potential roles of myoglobin autoxidation in myocardial ischemia-reperfusion injury. Free Radic Biol Med 1999; 26 (11–12): 1388–1395PubMedCrossRef
36.
go back to reference Ames BN, Catchcart R, Schwiers E, et al. Uric acid provides an antioxidant defense in humans against oxidant and radical-caused aging and cancer: a hypothesis. Proc Natl Acad Sci U S A 1981; 78 (11): 6858–6862PubMedCrossRef Ames BN, Catchcart R, Schwiers E, et al. Uric acid provides an antioxidant defense in humans against oxidant and radical-caused aging and cancer: a hypothesis. Proc Natl Acad Sci U S A 1981; 78 (11): 6858–6862PubMedCrossRef
37.
go back to reference Misra HP, Fridovich I. The generation of superoxide radical during the autoxidation of hemoglobin. J Biol Chem 1972; 21: 6960–6962 Misra HP, Fridovich I. The generation of superoxide radical during the autoxidation of hemoglobin. J Biol Chem 1972; 21: 6960–6962
38.
go back to reference Wallace JW, Houtchens RA, Maxwell JC, et al. Mechanism of autoxidation for hemoglobins and myoglobins: promotion of superoxide production by protons and anions. J Biol Chem 1982; 257 (9): 4966–4977PubMed Wallace JW, Houtchens RA, Maxwell JC, et al. Mechanism of autoxidation for hemoglobins and myoglobins: promotion of superoxide production by protons and anions. J Biol Chem 1982; 257 (9): 4966–4977PubMed
39.
go back to reference Gohil K, Viguie C, Stanley W, et al. Blood glutathion oxidation during human exercise. J Appl Physiol 1988; 64 (1): 115–119PubMed Gohil K, Viguie C, Stanley W, et al. Blood glutathion oxidation during human exercise. J Appl Physiol 1988; 64 (1): 115–119PubMed
40.
go back to reference Brantley RE, Smerdon SJ, Wilkinson AJ, et al. The mechanism of autoxidation of myoglobin. J Biol Chem 1993; 268 (10): 6995–7010PubMed Brantley RE, Smerdon SJ, Wilkinson AJ, et al. The mechanism of autoxidation of myoglobin. J Biol Chem 1993; 268 (10): 6995–7010PubMed
41.
go back to reference Harel S, Kanner J. The generation of ferryl or hydroxyl radicals during interaction of haemproteins with hydrogen peroxide. Free Radic Res Commun 1988; 5 (1): 21–33PubMedCrossRef Harel S, Kanner J. The generation of ferryl or hydroxyl radicals during interaction of haemproteins with hydrogen peroxide. Free Radic Res Commun 1988; 5 (1): 21–33PubMedCrossRef
42.
go back to reference Giulivi C, Cadenas E. Heme protein radicals: formation, fate, and biological consequences. Free Radic Biol Med 1998; 24 (2): 269–279PubMedCrossRef Giulivi C, Cadenas E. Heme protein radicals: formation, fate, and biological consequences. Free Radic Biol Med 1998; 24 (2): 269–279PubMedCrossRef
43.
go back to reference Kelman DJ, DeGray JA, Mason RP. Reaction of myoglobin with hydrogen peroxide forms a peroxyl radical which oxidizes substrates. J Biol Chem 1994; 269 (10): 7458–7463PubMed Kelman DJ, DeGray JA, Mason RP. Reaction of myoglobin with hydrogen peroxide forms a peroxyl radical which oxidizes substrates. J Biol Chem 1994; 269 (10): 7458–7463PubMed
44.
go back to reference Clarkson PM, Thompson HS. Antioxidants: what role do they play in physical activity and health? Am J Clin Nutr 2000; 72 (S): 637–646 Clarkson PM, Thompson HS. Antioxidants: what role do they play in physical activity and health? Am J Clin Nutr 2000; 72 (S): 637–646
45.
go back to reference Malm C. Exercise-induced muscle damage and inflammation: fact or fiction. Acta Physiol Scand 2001; 171: 233–239PubMedCrossRef Malm C. Exercise-induced muscle damage and inflammation: fact or fiction. Acta Physiol Scand 2001; 171: 233–239PubMedCrossRef
46.
go back to reference Sen CK, Packer L. Antioxidant and redox regulation of gene transcription. FASEB J 1996; 10: 709–720PubMed Sen CK, Packer L. Antioxidant and redox regulation of gene transcription. FASEB J 1996; 10: 709–720PubMed
47.
go back to reference Reid MB. Plasticity in skeletal, cardiac, and smooth muscle. Invited review: redox modulation of skeletal muscle contraction: what we know and what we don’t. J Appl Physiol 2001; 90: 724–731PubMedCrossRef Reid MB. Plasticity in skeletal, cardiac, and smooth muscle. Invited review: redox modulation of skeletal muscle contraction: what we know and what we don’t. J Appl Physiol 2001; 90: 724–731PubMedCrossRef
48.
go back to reference Linnane AW, Zhang C, Yarovaya N, et al. Human aging and global function of coenzyme Q10. Ann N Y Acad Sci 2002; 959: 396–411PubMedCrossRef Linnane AW, Zhang C, Yarovaya N, et al. Human aging and global function of coenzyme Q10. Ann N Y Acad Sci 2002; 959: 396–411PubMedCrossRef
49.
go back to reference Andrade FH, Reid MB, Allen DG, et al. Effect of hydrogen peroxide and dithiothreitol on contractile function of single skeletal muscle fibres from the mouse. J Physiol 1998; 509 (2): 565–575PubMedCrossRef Andrade FH, Reid MB, Allen DG, et al. Effect of hydrogen peroxide and dithiothreitol on contractile function of single skeletal muscle fibres from the mouse. J Physiol 1998; 509 (2): 565–575PubMedCrossRef
50.
go back to reference Coombes JS, Powers SK, Rowell B, et al. Effects of vitamin E and α-lipoic acid on skeletal muscle contractile properties. J Appl Physiol 2001; 90: 1424–1430PubMed Coombes JS, Powers SK, Rowell B, et al. Effects of vitamin E and α-lipoic acid on skeletal muscle contractile properties. J Appl Physiol 2001; 90: 1424–1430PubMed
51.
go back to reference Alessio HM. Exercise-induced oxidative stress. Med Sci Sports Exerc 1993; 25 (2): 218–224PubMed Alessio HM. Exercise-induced oxidative stress. Med Sci Sports Exerc 1993; 25 (2): 218–224PubMed
53.
go back to reference Vasankari TJ, Kujala UM, Vasankari TM, et al. Effects of acute prolonged exercise on serum and LDL oxidation and antioxidants defenses. Free Radic Biol Med 1997; 22 (3): 509–513PubMedCrossRef Vasankari TJ, Kujala UM, Vasankari TM, et al. Effects of acute prolonged exercise on serum and LDL oxidation and antioxidants defenses. Free Radic Biol Med 1997; 22 (3): 509–513PubMedCrossRef
54.
go back to reference Young IS, McEneny J. Lipoprotein oxidation and atherosclerosis. Biochem Soc Trans 2001; 29 (2): 358–362PubMedCrossRef Young IS, McEneny J. Lipoprotein oxidation and atherosclerosis. Biochem Soc Trans 2001; 29 (2): 358–362PubMedCrossRef
55.
go back to reference Morel DW, Hessler JR, Chisolm GM. Low density lipoprotein cytotoxicity induced by free radical peroxidation of lipid. J Lipid Res 1983; 24: 1070–1076PubMed Morel DW, Hessler JR, Chisolm GM. Low density lipoprotein cytotoxicity induced by free radical peroxidation of lipid. J Lipid Res 1983; 24: 1070–1076PubMed
56.
go back to reference Ma YS, Stone WL, Leclair IO. The effects of vitamin C and urate on the oxidation kinetics of human low-density lipoprotein. Proc Soc Exp Biol Med 1994; 206: 53–59PubMed Ma YS, Stone WL, Leclair IO. The effects of vitamin C and urate on the oxidation kinetics of human low-density lipoprotein. Proc Soc Exp Biol Med 1994; 206: 53–59PubMed
57.
go back to reference Terentis AC, Thomas SR, Burr JA, et al. Vitamin E oxidation in human atherosclerotic lesions. Circ Res 2002; 90 (3): 333–339PubMedCrossRef Terentis AC, Thomas SR, Burr JA, et al. Vitamin E oxidation in human atherosclerotic lesions. Circ Res 2002; 90 (3): 333–339PubMedCrossRef
58.
go back to reference Liu ML, Bergholm R, Makimattila S, et al. A marathon run increases the susceptibility of LDL to oxidation in vitro and modifies plasma antioxidants. Am J Physiol 1999; 276 (6): E1083–E1091PubMed Liu ML, Bergholm R, Makimattila S, et al. A marathon run increases the susceptibility of LDL to oxidation in vitro and modifies plasma antioxidants. Am J Physiol 1999; 276 (6): E1083–E1091PubMed
59.
go back to reference Pincemail J, Lecomte J, Castiau J, et al. Evaluation of autoantibodies against oxidized LDL and antioxidant status in top soccer and basketball players after 4 months of competition. Free Radic Biol Med 2000; 28 (4): 559–565PubMedCrossRef Pincemail J, Lecomte J, Castiau J, et al. Evaluation of autoantibodies against oxidized LDL and antioxidant status in top soccer and basketball players after 4 months of competition. Free Radic Biol Med 2000; 28 (4): 559–565PubMedCrossRef
60.
go back to reference Radak Z, Kaneko T, Tahara S, et al. The effect of exercise training on oxidative damage of lipids, proteins, and DNA in rat skeletal muscle: evidence for beneficial outcomes. Free Radic Biol Med 1999; 27 (1–2): 69–74PubMedCrossRef Radak Z, Kaneko T, Tahara S, et al. The effect of exercise training on oxidative damage of lipids, proteins, and DNA in rat skeletal muscle: evidence for beneficial outcomes. Free Radic Biol Med 1999; 27 (1–2): 69–74PubMedCrossRef
61.
go back to reference Tavazzi B, Di Pierro D, Amorini AM, et al. et al. Energy metabolism and lipid peroxidation of human erythrocytes as a function of increased oxidative stress. Eur J Biochem 2000; 267: 684–689PubMedCrossRef Tavazzi B, Di Pierro D, Amorini AM, et al. et al. Energy metabolism and lipid peroxidation of human erythrocytes as a function of increased oxidative stress. Eur J Biochem 2000; 267: 684–689PubMedCrossRef
62.
go back to reference Szweda PA, Friguet B, Szweda LI. Proteolysis, free radicals, and aging. Free Radic Biol Med 2002; 33 (1): 29–36PubMedCrossRef Szweda PA, Friguet B, Szweda LI. Proteolysis, free radicals, and aging. Free Radic Biol Med 2002; 33 (1): 29–36PubMedCrossRef
63.
64.
go back to reference Renke J, Popadiuk S, Korzon M, et al. Protein carbonyl groups’ content as a useful clinical marker of antioxidant barrier impairment in plasma of children with juvenile chronic arthrisis. Free Radic Biol Med 2000; 29 (2): 101–104PubMedCrossRef Renke J, Popadiuk S, Korzon M, et al. Protein carbonyl groups’ content as a useful clinical marker of antioxidant barrier impairment in plasma of children with juvenile chronic arthrisis. Free Radic Biol Med 2000; 29 (2): 101–104PubMedCrossRef
65.
go back to reference Levine RL. Carbonyl modified proteins in cellular regulation, aging and disease. Free Radic Biol Med 2002; 32 (9): 790–796PubMedCrossRef Levine RL. Carbonyl modified proteins in cellular regulation, aging and disease. Free Radic Biol Med 2002; 32 (9): 790–796PubMedCrossRef
67.
go back to reference Berlett BS, Stadtman ER. Protein oxidation in aging, disease, and oxidative stress. J Biol Chem 1997; 272 (33): 20313–20316PubMedCrossRef Berlett BS, Stadtman ER. Protein oxidation in aging, disease, and oxidative stress. J Biol Chem 1997; 272 (33): 20313–20316PubMedCrossRef
68.
go back to reference Wallace SS. Biological consequences of free radical-damaged DNA bases. Free Radic Biol Med 2002; 33 (1): 1–14PubMedCrossRef Wallace SS. Biological consequences of free radical-damaged DNA bases. Free Radic Biol Med 2002; 33 (1): 1–14PubMedCrossRef
69.
go back to reference Dizdaroglu M, Jaruga P, Birincioglu M, et al. Free radical-induced damage to DNA: mechanisms and measurement. Free Radic Biol Med 2002; 32 (11): 1102–1115PubMedCrossRef Dizdaroglu M, Jaruga P, Birincioglu M, et al. Free radical-induced damage to DNA: mechanisms and measurement. Free Radic Biol Med 2002; 32 (11): 1102–1115PubMedCrossRef
71.
go back to reference Kasai H. Chemistry-based studies on oxidative DNA damage: formation, repair, and mutagenesis. Free Radic Biol Med 2002; 33 (4): 450–456PubMedCrossRef Kasai H. Chemistry-based studies on oxidative DNA damage: formation, repair, and mutagenesis. Free Radic Biol Med 2002; 33 (4): 450–456PubMedCrossRef
72.
go back to reference Reid MB, Haack KE, Franchek KM, et al. Reactive oxygen in skeletal muscle I: intracellular oxidant kinetics and fatigue invitro. J Appl Physiol 1992; 73 (5): 1797–1804PubMed Reid MB, Haack KE, Franchek KM, et al. Reactive oxygen in skeletal muscle I: intracellular oxidant kinetics and fatigue invitro. J Appl Physiol 1992; 73 (5): 1797–1804PubMed
73.
go back to reference Tiidus PM. Radical species in inflammation and overtraining. Can J Physiol Pharmacol 1998; 76: 533–538PubMedCrossRef Tiidus PM. Radical species in inflammation and overtraining. Can J Physiol Pharmacol 1998; 76: 533–538PubMedCrossRef
74.
go back to reference Powers SK, Lennon SL. Analysis of cellular responses to free radicals: focus on exercise and skeletal muscle. Proc Nutr Soc 2000; 58: 1025–1033CrossRef Powers SK, Lennon SL. Analysis of cellular responses to free radicals: focus on exercise and skeletal muscle. Proc Nutr Soc 2000; 58: 1025–1033CrossRef
75.
go back to reference McArdle A, Pattwell D, Vasilaki A, et al. Contractile activity-induced oxidative stress: cellular origin and adaptative responses. Am J Physiol 2001; 280: C621–C627 McArdle A, Pattwell D, Vasilaki A, et al. Contractile activity-induced oxidative stress: cellular origin and adaptative responses. Am J Physiol 2001; 280: C621–C627
76.
go back to reference Dawson B, Henry GJ, Goodman C, et al. Effect of vitamin C and E supplementation on biochemical and ultrastructural indices of muscle damage after 21 km run. Int J Sports Med 2002; 23: 10–15PubMedCrossRef Dawson B, Henry GJ, Goodman C, et al. Effect of vitamin C and E supplementation on biochemical and ultrastructural indices of muscle damage after 21 km run. Int J Sports Med 2002; 23: 10–15PubMedCrossRef
77.
go back to reference Coombes JS, Rowell B, Dodd SL, et al. Effects of vitamin E deficiency on fatigue and muscle contractile properties. Eur J Appl Physiol 2002; 87: 272–277PubMedCrossRef Coombes JS, Rowell B, Dodd SL, et al. Effects of vitamin E deficiency on fatigue and muscle contractile properties. Eur J Appl Physiol 2002; 87: 272–277PubMedCrossRef
78.
go back to reference Evans WJ. Vitamin E, vitamin C, and exercise. Am J Clin Nutr 2000; 72 (S): 647–652 Evans WJ. Vitamin E, vitamin C, and exercise. Am J Clin Nutr 2000; 72 (S): 647–652
79.
go back to reference Childs A, Jacobs C, Kaminski T, et al. Supplementation with vitamin C and N-acetyl-cysteine increases oxidative stress in humans after an acute muscle injury induced by eccentric exercise. Free Radic Biol Med 2001; 31 (6): 745–753PubMedCrossRef Childs A, Jacobs C, Kaminski T, et al. Supplementation with vitamin C and N-acetyl-cysteine increases oxidative stress in humans after an acute muscle injury induced by eccentric exercise. Free Radic Biol Med 2001; 31 (6): 745–753PubMedCrossRef
80.
go back to reference Sen CK, Kolosova I, Hanninen O, et al. Inward potassium transport systems in skeletal muscle derived cells are highly sensitive to oxidant exposure. Free Radic Biol Med 1995; 18 (4): 795–800PubMedCrossRef Sen CK, Kolosova I, Hanninen O, et al. Inward potassium transport systems in skeletal muscle derived cells are highly sensitive to oxidant exposure. Free Radic Biol Med 1995; 18 (4): 795–800PubMedCrossRef
81.
go back to reference Radak Z, Pucsok J, Mecseki S, et al. Muscle soreness-induced reduction in force generation is accompanied by increased nitric oxide content and DNA damage in human skeletal muscle. Free Radic Biol Med 1999; 26 (7–8): 1059–1063PubMedCrossRef Radak Z, Pucsok J, Mecseki S, et al. Muscle soreness-induced reduction in force generation is accompanied by increased nitric oxide content and DNA damage in human skeletal muscle. Free Radic Biol Med 1999; 26 (7–8): 1059–1063PubMedCrossRef
82.
go back to reference Bigard AX. Lesions musculaires induites par l’exercice et surentrainement. Sci Sports 2001; 16: 204–215CrossRef Bigard AX. Lesions musculaires induites par l’exercice et surentrainement. Sci Sports 2001; 16: 204–215CrossRef
83.
go back to reference Petibois C, Cazorla G, Poortmans JR, et al. Biochemical aspects of overtraining in endurance sports: the metabolism alteration process syndrome. Sports Med 2003; 33 (2): 83–94PubMedCrossRef Petibois C, Cazorla G, Poortmans JR, et al. Biochemical aspects of overtraining in endurance sports: the metabolism alteration process syndrome. Sports Med 2003; 33 (2): 83–94PubMedCrossRef
84.
go back to reference Dekkers JC, van Doornen LJ, Kemper HC. The role of antioxidant vitamins and enzymes in the prevention of exercise-induced muscle damage. Sports Med 1996; 21 (3): 213–238PubMedCrossRef Dekkers JC, van Doornen LJ, Kemper HC. The role of antioxidant vitamins and enzymes in the prevention of exercise-induced muscle damage. Sports Med 1996; 21 (3): 213–238PubMedCrossRef
85.
go back to reference Das KC, Lewis-Molock Y, White CW. Elevation of manganese superoxide dismutase gene expression by thioredoxin. Am J Respir Cell Mol Biol 1997; 17: 713–726PubMed Das KC, Lewis-Molock Y, White CW. Elevation of manganese superoxide dismutase gene expression by thioredoxin. Am J Respir Cell Mol Biol 1997; 17: 713–726PubMed
86.
go back to reference Antunes F, Derick H, Cadenas E. Relative contributions of heart mitochondria glutathione peroxidase and catalase to H2O2 detoxification in in vivo conditions. Free Radic Biol Med 2002; 33 (9): 1260–1267PubMedCrossRef Antunes F, Derick H, Cadenas E. Relative contributions of heart mitochondria glutathione peroxidase and catalase to H2O2 detoxification in in vivo conditions. Free Radic Biol Med 2002; 33 (9): 1260–1267PubMedCrossRef
87.
go back to reference Ji LL. Oxidative stress during exercise: implication of antioxidant nutrients. Free Radic Biol Med 1995; 18 (6): 1079–1086PubMedCrossRef Ji LL. Oxidative stress during exercise: implication of antioxidant nutrients. Free Radic Biol Med 1995; 18 (6): 1079–1086PubMedCrossRef
88.
go back to reference Fuchs J, Weber S, Podda M, et al. HPLC analysis of vitamin E isoforms in human epidermis: correlation with minimal erythema dose and free radical scavenging activity. Free Radic Biol Med 2003; 34 (3): 330–336PubMedCrossRef Fuchs J, Weber S, Podda M, et al. HPLC analysis of vitamin E isoforms in human epidermis: correlation with minimal erythema dose and free radical scavenging activity. Free Radic Biol Med 2003; 34 (3): 330–336PubMedCrossRef
89.
go back to reference Liebler DC, Kling DS, Reed DJ. Antioxidant protection of lipid balayers by α-tocopherol: control of α-tocopherol status and lipid peroxidation by ascorbic acid and glutathione. J Biol Chem 1986; 261: 12144–12149 Liebler DC, Kling DS, Reed DJ. Antioxidant protection of lipid balayers by α-tocopherol: control of α-tocopherol status and lipid peroxidation by ascorbic acid and glutathione. J Biol Chem 1986; 261: 12144–12149
90.
go back to reference Mastaloudis A, Leonard SW, Traber MG. Oxidative stress in athletes during extreme endurance exercise. Free Radic Biol Med 2001; 31 (7): 911–922PubMedCrossRef Mastaloudis A, Leonard SW, Traber MG. Oxidative stress in athletes during extreme endurance exercise. Free Radic Biol Med 2001; 31 (7): 911–922PubMedCrossRef
91.
go back to reference Mitmesser SH, Giraud DW, Driskell JA. Dietary and plasma level of carotenoids, vitamin E, vitamin C in a group of young and middle-aged nonsupplemented women and men. Nutr Res 2000; 20 (11): 1537–1546CrossRef Mitmesser SH, Giraud DW, Driskell JA. Dietary and plasma level of carotenoids, vitamin E, vitamin C in a group of young and middle-aged nonsupplemented women and men. Nutr Res 2000; 20 (11): 1537–1546CrossRef
92.
go back to reference Goldfard AH. Antioxidant: role of supplementation to prevent exercise-induced oxidative stress. Med Sci Sports Exerc 1993; 25: 232–236 Goldfard AH. Antioxidant: role of supplementation to prevent exercise-induced oxidative stress. Med Sci Sports Exerc 1993; 25: 232–236
93.
go back to reference Willcox JK, Catignani GL, Roberts LJ. Dietary flavonoids fail to suppress F2-isoprostane formation in-vivo. Free Radic Biol Med 2002; 34 (7): 795–799CrossRef Willcox JK, Catignani GL, Roberts LJ. Dietary flavonoids fail to suppress F2-isoprostane formation in-vivo. Free Radic Biol Med 2002; 34 (7): 795–799CrossRef
94.
go back to reference McBride JM, Kraemer WJ, Triplett-McBride T, et al. Effect of resistance exercise on free radical production. Med Sci Sports Exerc 1998; 30 (1): 67–72PubMedCrossRef McBride JM, Kraemer WJ, Triplett-McBride T, et al. Effect of resistance exercise on free radical production. Med Sci Sports Exerc 1998; 30 (1): 67–72PubMedCrossRef
95.
go back to reference Takanami Y, Iwane H, Kawai Y, et al. Vitamin E, supplementation and endurance exercise. Sports Med 2000; 29 (2): 73–83PubMedCrossRef Takanami Y, Iwane H, Kawai Y, et al. Vitamin E, supplementation and endurance exercise. Sports Med 2000; 29 (2): 73–83PubMedCrossRef
96.
go back to reference Palmer FM, Nieman DC, Henson DA, et al. Influence of vitamin C supplementation on oxidative and salivary IgA changes following an ultramarathon. Eur J Appl Physiol 2003; 89: 100–107PubMedCrossRef Palmer FM, Nieman DC, Henson DA, et al. Influence of vitamin C supplementation on oxidative and salivary IgA changes following an ultramarathon. Eur J Appl Physiol 2003; 89: 100–107PubMedCrossRef
97.
go back to reference Ashton T, Young IS, Peters JR, et al. Electron spin resonance spectroscopy, exercise, and oxidative stress: an ascorbic acid intervention study. J Appl Physiol 1999; 87 (6): 2032–2036PubMed Ashton T, Young IS, Peters JR, et al. Electron spin resonance spectroscopy, exercise, and oxidative stress: an ascorbic acid intervention study. J Appl Physiol 1999; 87 (6): 2032–2036PubMed
98.
go back to reference Chung WY, Chung JKO, Szeto YT, et al. Plasma ascorbic acid: measurement, stability and clinical utility revisited. Clin Biochem 2001; 34: 623–627PubMedCrossRef Chung WY, Chung JKO, Szeto YT, et al. Plasma ascorbic acid: measurement, stability and clinical utility revisited. Clin Biochem 2001; 34: 623–627PubMedCrossRef
99.
go back to reference Thompson D, Williams C, Garcia-Roves P, et al. Post-exercise vitamin C supplementation and recovery from demanding exercise. Eur J Appl Physiol 2003; 89: 393–400PubMedCrossRef Thompson D, Williams C, Garcia-Roves P, et al. Post-exercise vitamin C supplementation and recovery from demanding exercise. Eur J Appl Physiol 2003; 89: 393–400PubMedCrossRef
100.
go back to reference Ozhogina OA, Kasaikina OT. ß-carotene as an interceptor of free radicals. Free Radic Biol Med 1995; 19 (5): 575–581PubMedCrossRef Ozhogina OA, Kasaikina OT. ß-carotene as an interceptor of free radicals. Free Radic Biol Med 1995; 19 (5): 575–581PubMedCrossRef
101.
go back to reference Livrea MA, Tesoriere L, Bongiorno A, et al. Contribution of vitamin A to the oxidation resistance of human low density lipoproteins. Free Radic Biol Med 1995; 18 (3): 401–409PubMedCrossRef Livrea MA, Tesoriere L, Bongiorno A, et al. Contribution of vitamin A to the oxidation resistance of human low density lipoproteins. Free Radic Biol Med 1995; 18 (3): 401–409PubMedCrossRef
102.
go back to reference Schröder H, Navarro E, Mora J, et al. Effects of α-tocopherol, ß-carotene and ascorbic acid on oxidative, hormonal and enzymatic exercise stress markers in habitual training activity of professional basketball players. Eur J Nutr 2001; 40: 178–184PubMedCrossRef Schröder H, Navarro E, Mora J, et al. Effects of α-tocopherol, ß-carotene and ascorbic acid on oxidative, hormonal and enzymatic exercise stress markers in habitual training activity of professional basketball players. Eur J Nutr 2001; 40: 178–184PubMedCrossRef
103.
go back to reference Singh A, Moses FM, Deuster PA. Chronic multivitamin-mineral supplementation does not enhance physical performance. Med Sci Sports Exerc 2001; 24 (6): 726–732 Singh A, Moses FM, Deuster PA. Chronic multivitamin-mineral supplementation does not enhance physical performance. Med Sci Sports Exerc 2001; 24 (6): 726–732
104.
go back to reference Wedworth SM, Lynch S. Dietary flavonoids in atherosclerosis prevention. Ann Pharmacother 1995; 29 (6): 627–628PubMed Wedworth SM, Lynch S. Dietary flavonoids in atherosclerosis prevention. Ann Pharmacother 1995; 29 (6): 627–628PubMed
105.
go back to reference Depeint F, Gee JM, Williamson G, et al. Evidence for consistent patterns between flavonoids structures and cellular activities. Proc Nutr Soc 2002; 61 (1): 97–103PubMedCrossRef Depeint F, Gee JM, Williamson G, et al. Evidence for consistent patterns between flavonoids structures and cellular activities. Proc Nutr Soc 2002; 61 (1): 97–103PubMedCrossRef
106.
go back to reference Morand C, Crespy V, Manach C, et al. Plasma metabolites of quercetin and their antioxidant properties. Am J Physiol 1998; 275 (44): R212–R219PubMed Morand C, Crespy V, Manach C, et al. Plasma metabolites of quercetin and their antioxidant properties. Am J Physiol 1998; 275 (44): R212–R219PubMed
107.
108.
go back to reference Arts MJTJ, Haenen GRMM, Wilms LC, et al. Interactions between flavonoids and proteins: effect on the total antioxidant capacity. J Agric Food Chem 2002; 50: 1184–1187PubMedCrossRef Arts MJTJ, Haenen GRMM, Wilms LC, et al. Interactions between flavonoids and proteins: effect on the total antioxidant capacity. J Agric Food Chem 2002; 50: 1184–1187PubMedCrossRef
109.
go back to reference Sen CK, Packer L. Thiol homeostasis and supplements in physical exercise. Am J Clin Nutr 2000; 72: 653S–669SPubMed Sen CK, Packer L. Thiol homeostasis and supplements in physical exercise. Am J Clin Nutr 2000; 72: 653S–669SPubMed
110.
go back to reference May JM, Qu Z, Whitesell RR, et al. Ascorbate recycling in human erythrocytes: role of GSH in reducing dehydroascorbate. Free Radic Biol Med 1996; 20 (4): 543–551PubMedCrossRef May JM, Qu Z, Whitesell RR, et al. Ascorbate recycling in human erythrocytes: role of GSH in reducing dehydroascorbate. Free Radic Biol Med 1996; 20 (4): 543–551PubMedCrossRef
111.
go back to reference Groussard C, Rannou-Bekono F, Machefer G, et al. Changes in blood lipid peroxidation markers and antioxidants after a single sprint anaerobic exercise. Eur J Appl Physiol 2003; 89: 14–20PubMedCrossRef Groussard C, Rannou-Bekono F, Machefer G, et al. Changes in blood lipid peroxidation markers and antioxidants after a single sprint anaerobic exercise. Eur J Appl Physiol 2003; 89: 14–20PubMedCrossRef
112.
go back to reference Tessier F, Margaritis I, Richard MJ, et al. Selenium and training effects on the glutathione system and aerobic performance. Med Sci Sports Exerc 1995; 27 (3): 390–396PubMed Tessier F, Margaritis I, Richard MJ, et al. Selenium and training effects on the glutathione system and aerobic performance. Med Sci Sports Exerc 1995; 27 (3): 390–396PubMed
113.
go back to reference Svensson M, Ekblom B, Cotgreave I, et al. Adaptative stress response of glutathione and acid uric metabolism in man following controlled exercise and diet. Acta Physiol Scand 2002; 176: 43–56PubMedCrossRef Svensson M, Ekblom B, Cotgreave I, et al. Adaptative stress response of glutathione and acid uric metabolism in man following controlled exercise and diet. Acta Physiol Scand 2002; 176: 43–56PubMedCrossRef
114.
go back to reference Schulz JB, Lindenau J, Seyfried J, et al. Glutathione, oxidative stress and neurodegeneration. Eur J Biochem 2000; 267: 4904–4911PubMedCrossRef Schulz JB, Lindenau J, Seyfried J, et al. Glutathione, oxidative stress and neurodegeneration. Eur J Biochem 2000; 267: 4904–4911PubMedCrossRef
115.
go back to reference Shang F, Lu M, Dudek E, et al. Vitamin C and vitamin E restore the resistance of GSH-depleted lens cells to H2O2. Free Radic Biol Med 2003; 34 (5): 521–530PubMedCrossRef Shang F, Lu M, Dudek E, et al. Vitamin C and vitamin E restore the resistance of GSH-depleted lens cells to H2O2. Free Radic Biol Med 2003; 34 (5): 521–530PubMedCrossRef
116.
go back to reference Serbinova E, Reznick SKAZ, Packer L. Thioctic acid protects against ischemia-reperfusion injury in the isolated langendorff heart. Free Radic Res Commun 1992; 17: 49–58PubMedCrossRef Serbinova E, Reznick SKAZ, Packer L. Thioctic acid protects against ischemia-reperfusion injury in the isolated langendorff heart. Free Radic Res Commun 1992; 17: 49–58PubMedCrossRef
117.
go back to reference Scott BC, Aruoma OI, Evans PJ, et al. Lipoic and dihydrolipoic acids as antioxidants: a critical evaluation. Free Radic Res 1994; 20: 119–130PubMedCrossRef Scott BC, Aruoma OI, Evans PJ, et al. Lipoic and dihydrolipoic acids as antioxidants: a critical evaluation. Free Radic Res 1994; 20: 119–130PubMedCrossRef
118.
go back to reference Khanna S, Atalay M, Laaksonen DE, et al. α-lipoic acid supplementation: tissue glutathione homeostasis at rest and after exercise. J Appl Physiol 1999; 86 (4): 1191–1196PubMed Khanna S, Atalay M, Laaksonen DE, et al. α-lipoic acid supplementation: tissue glutathione homeostasis at rest and after exercise. J Appl Physiol 1999; 86 (4): 1191–1196PubMed
119.
go back to reference Maulik N, Yoshida T, Engelman RM, et al. Dietary coenzyme Q10 supplement renders swine hearts resistant to ischemia-reperfusion injury. Am J Physiol 2000; 278: H1084–H1090 Maulik N, Yoshida T, Engelman RM, et al. Dietary coenzyme Q10 supplement renders swine hearts resistant to ischemia-reperfusion injury. Am J Physiol 2000; 278: H1084–H1090
120.
go back to reference Witt EH, Reznick AZ, Viguie CA, et al. Exercise, oxidative damage and effects of antioxidant manipulation. J Nutr 1992; 122 (3 Suppl.): 766–773PubMed Witt EH, Reznick AZ, Viguie CA, et al. Exercise, oxidative damage and effects of antioxidant manipulation. J Nutr 1992; 122 (3 Suppl.): 766–773PubMed
121.
go back to reference Crane FL. Biochemical functions of coenzyme Q10. J Am Coll Nutr 2001; 20 (6): 591–598PubMed Crane FL. Biochemical functions of coenzyme Q10. J Am Coll Nutr 2001; 20 (6): 591–598PubMed
122.
go back to reference Crestanello JA, Doliba NM, Babsky AM, et al. Effects of coenzyme Q10 supplementation on mitochondrial function after myocardial ischemia reperfusion. J Surg Res 2002; 102 (2): 221–228PubMedCrossRef Crestanello JA, Doliba NM, Babsky AM, et al. Effects of coenzyme Q10 supplementation on mitochondrial function after myocardial ischemia reperfusion. J Surg Res 2002; 102 (2): 221–228PubMedCrossRef
123.
go back to reference Rosenfelt FL, Pepe S, Linnane A, et al. Coenzyme Q10 protects the aging heart against stress: studies in rats, human tissues, and patients. Ann N Y Acad Sci 2002; 959: 355–359CrossRef Rosenfelt FL, Pepe S, Linnane A, et al. Coenzyme Q10 protects the aging heart against stress: studies in rats, human tissues, and patients. Ann N Y Acad Sci 2002; 959: 355–359CrossRef
124.
go back to reference Braun B, Clarkson PM, Freedson PS, et al. Effects of coenzyme Q10 supplementation on exercise performance, VO2 max, and lipid peroxidation in trained cyclists. Int J Sport Nutr 1991; 1 (4): 353–365PubMed Braun B, Clarkson PM, Freedson PS, et al. Effects of coenzyme Q10 supplementation on exercise performance, VO2 max, and lipid peroxidation in trained cyclists. Int J Sport Nutr 1991; 1 (4): 353–365PubMed
125.
go back to reference Svensson M, Malm C, Tonkonogi M, et al. Effect of Q10 supplementation on tissue Q10 levels and adenine nucleotide catabolism during high-intensity exercise. Int J Sport Nutr 1999; 9 (2): 166–180PubMed Svensson M, Malm C, Tonkonogi M, et al. Effect of Q10 supplementation on tissue Q10 levels and adenine nucleotide catabolism during high-intensity exercise. Int J Sport Nutr 1999; 9 (2): 166–180PubMed
126.
go back to reference Grootveld M, Halliwell B. Measurement of allantoin and uric acid in human body fluids: a potential index of free-radical reactions in vivo. Biochem J 1987; 243: 803–808PubMed Grootveld M, Halliwell B. Measurement of allantoin and uric acid in human body fluids: a potential index of free-radical reactions in vivo. Biochem J 1987; 243: 803–808PubMed
127.
go back to reference Hellsten Y, Tullson PC, Richter EA, et al. Oxidation of urate in human skeletal muscle during exercise. Free Radic Biol Med 1997; 22 (1–2): 169–174PubMedCrossRef Hellsten Y, Tullson PC, Richter EA, et al. Oxidation of urate in human skeletal muscle during exercise. Free Radic Biol Med 1997; 22 (1–2): 169–174PubMedCrossRef
128.
go back to reference Green HJ, Fraser IG. Differential effects of exercise intensity on serum uric acid concentration. Med Sci Sports Exerc 1988; 20 (2): 55–59PubMed Green HJ, Fraser IG. Differential effects of exercise intensity on serum uric acid concentration. Med Sci Sports Exerc 1988; 20 (2): 55–59PubMed
129.
go back to reference Hellsten Y, Sjödin B, Richter EA, et al. Urate uptake and lowered ATP levels in human muscle after high-intensity intermittent exercise. Am J Physiol 1998; 274: E600–E606PubMed Hellsten Y, Sjödin B, Richter EA, et al. Urate uptake and lowered ATP levels in human muscle after high-intensity intermittent exercise. Am J Physiol 1998; 274: E600–E606PubMed
130.
go back to reference Kaur H, Halliwell B. Action of biologically-relevant oxidizing species upon uric acid: identification of uric acid oxidation products. Chem-Biol Interactions 1990; 73: 235–247CrossRef Kaur H, Halliwell B. Action of biologically-relevant oxidizing species upon uric acid: identification of uric acid oxidation products. Chem-Biol Interactions 1990; 73: 235–247CrossRef
131.
go back to reference Wayner DDM, Burton GW, Ingold KU, et al. The relative contributions of vitamin E, urate, ascorbate and proteins to the total peroxyl radical-trapping antioxidant activity of human blood plasma. Biochim Biophys Acta 1987; 924: 408–419PubMedCrossRef Wayner DDM, Burton GW, Ingold KU, et al. The relative contributions of vitamin E, urate, ascorbate and proteins to the total peroxyl radical-trapping antioxidant activity of human blood plasma. Biochim Biophys Acta 1987; 924: 408–419PubMedCrossRef
132.
go back to reference Hooper DC, Spitsin S, Kean RB, et al. Uric acid, a natural scavenger of peroxynitrite, in experimental allergic encephalo-myelitis and multiple sclerosis. Proc Natl Acad Sci U S A 1998; 95: 675–680PubMedCrossRef Hooper DC, Spitsin S, Kean RB, et al. Uric acid, a natural scavenger of peroxynitrite, in experimental allergic encephalo-myelitis and multiple sclerosis. Proc Natl Acad Sci U S A 1998; 95: 675–680PubMedCrossRef
133.
go back to reference Hooper DC, Scott GS, Zborek A, et al. Uric acid, a peroxynitrite scavenger, inhibits CNS inflammation, blood-CNS barrier permeability changes and tissue damage in a mouse model of multiple sclerosis. FASEB J 2000; 14: 691–698PubMed Hooper DC, Scott GS, Zborek A, et al. Uric acid, a peroxynitrite scavenger, inhibits CNS inflammation, blood-CNS barrier permeability changes and tissue damage in a mouse model of multiple sclerosis. FASEB J 2000; 14: 691–698PubMed
134.
go back to reference Kean RB, Spitsin SV, Mikheeva T, et al. The peroxynitrite scavenger uric acid prevents inflammatory cell invasion into the central nervous system in experimental allergic encephalo-myelitis through maintenance of blood-central nervous system barrier integrity. J Immunol 2000; 165: 6511–6518PubMed Kean RB, Spitsin SV, Mikheeva T, et al. The peroxynitrite scavenger uric acid prevents inflammatory cell invasion into the central nervous system in experimental allergic encephalo-myelitis through maintenance of blood-central nervous system barrier integrity. J Immunol 2000; 165: 6511–6518PubMed
135.
go back to reference Davies KJA, Sevanian A, Muakkassah-Kelly SF, et al. Uric acid-iron ion complexes: a new aspect of the antioxidant functions of uric acid. Biochem J 1986; 235: 747–754PubMed Davies KJA, Sevanian A, Muakkassah-Kelly SF, et al. Uric acid-iron ion complexes: a new aspect of the antioxidant functions of uric acid. Biochem J 1986; 235: 747–754PubMed
136.
go back to reference Sevanian A, Davies KJA, Hochstein P. Serum urate as an antioxidant for ascorbic acid. Am J Clin Nutr 1991; 54: 1129S–11234SPubMed Sevanian A, Davies KJA, Hochstein P. Serum urate as an antioxidant for ascorbic acid. Am J Clin Nutr 1991; 54: 1129S–11234SPubMed
137.
go back to reference Marklund N, Östman B, Nalmo L, et al. Hypoxanthine, uric acid and allantoin as indicators of in vivo free radical reactions: description of a HPLC method and human brain microdialysis data. Acta Neurochir (Wien) 2000; 142: 1135–1142CrossRef Marklund N, Östman B, Nalmo L, et al. Hypoxanthine, uric acid and allantoin as indicators of in vivo free radical reactions: description of a HPLC method and human brain microdialysis data. Acta Neurochir (Wien) 2000; 142: 1135–1142CrossRef
138.
go back to reference Hellsten Y, Svensson M, Sjodin B, et al. Allantoin formation and urate and glutathione exchange in human muscle during submaximal exercise. Free Radic Biol Med 2001; 31 (11): 1313–1322PubMedCrossRef Hellsten Y, Svensson M, Sjodin B, et al. Allantoin formation and urate and glutathione exchange in human muscle during submaximal exercise. Free Radic Biol Med 2001; 31 (11): 1313–1322PubMedCrossRef
139.
go back to reference Nishizawa J, Nakai A, Matsuda K, et al. Reactive oxygen species play an important role in the activation of heat shock factor 1 in ischemic-reperfused heart. Circulation 1999; 99: 934–941PubMedCrossRef Nishizawa J, Nakai A, Matsuda K, et al. Reactive oxygen species play an important role in the activation of heat shock factor 1 in ischemic-reperfused heart. Circulation 1999; 99: 934–941PubMedCrossRef
140.
go back to reference Hamilton KL, Staib JL, Phillips T, et al. Exercise, antioxidants, and HSP72: protection against myocardial ischemia/reperfusion. Free Radic Biol Med 2003; 34 (7): 800–809PubMedCrossRef Hamilton KL, Staib JL, Phillips T, et al. Exercise, antioxidants, and HSP72: protection against myocardial ischemia/reperfusion. Free Radic Biol Med 2003; 34 (7): 800–809PubMedCrossRef
141.
go back to reference Smolka MB, Zoppi CC, Alves AA, et al. HSP72 as a complementary protection against oxidative stress induced by exercise in the soleus muscle of rats. Am J Physiol Regul Integr Comp Physiol 2000; 279: R1539–R1545PubMed Smolka MB, Zoppi CC, Alves AA, et al. HSP72 as a complementary protection against oxidative stress induced by exercise in the soleus muscle of rats. Am J Physiol Regul Integr Comp Physiol 2000; 279: R1539–R1545PubMed
142.
go back to reference Meneghini R. Iron homeostasis, oxidative stress, and DNA damage. Free Radic Biol Med 1997; 23 (5): 783–792PubMedCrossRef Meneghini R. Iron homeostasis, oxidative stress, and DNA damage. Free Radic Biol Med 1997; 23 (5): 783–792PubMedCrossRef
143.
go back to reference Cairo G, Recalcati S, Pietrangelo A, et al. The iron regulatory proteins: targets and modulators of free radical reactions and oxidative damage. Free Radic Biol Med 2002; 32 (12): 1237–1243PubMedCrossRef Cairo G, Recalcati S, Pietrangelo A, et al. The iron regulatory proteins: targets and modulators of free radical reactions and oxidative damage. Free Radic Biol Med 2002; 32 (12): 1237–1243PubMedCrossRef
144.
go back to reference Orino K, Lehman L, Tsuji Y, et al. Ferritin and the response to oxidative stress. Biochem J 2001; 357: 241–247PubMedCrossRef Orino K, Lehman L, Tsuji Y, et al. Ferritin and the response to oxidative stress. Biochem J 2001; 357: 241–247PubMedCrossRef
145.
go back to reference Arosio P, Levi S. Ferritin, iron homeostasis, and oxidative damage. Free Radic Biol Med 2002; 33 (4): 457–463PubMedCrossRef Arosio P, Levi S. Ferritin, iron homeostasis, and oxidative damage. Free Radic Biol Med 2002; 33 (4): 457–463PubMedCrossRef
146.
go back to reference Applegate LA, Scaletta C, Panizzon R, et al. Evidence that ferritin is UV inducible in human skin: part of putative defense mechanism. J Invest Dermatol 1998; 111: 159–163PubMedCrossRef Applegate LA, Scaletta C, Panizzon R, et al. Evidence that ferritin is UV inducible in human skin: part of putative defense mechanism. J Invest Dermatol 1998; 111: 159–163PubMedCrossRef
147.
go back to reference Erario MA, Gonzales S, Noriega GO, et al. Bilirubin and ferritin as protectors against hemin-induced oxidative stress in liver. Cell Mol Biol 2002; 48 (8): 877–884PubMed Erario MA, Gonzales S, Noriega GO, et al. Bilirubin and ferritin as protectors against hemin-induced oxidative stress in liver. Cell Mol Biol 2002; 48 (8): 877–884PubMed
148.
go back to reference Nikolaidis MG, Michailidis Y, Mougios V. Variation of soluble transferring receptor and ferritin concentrations in human serum during recovery and exercise. Eur J Appl Physiol 2003; 89: 500–502PubMedCrossRef Nikolaidis MG, Michailidis Y, Mougios V. Variation of soluble transferring receptor and ferritin concentrations in human serum during recovery and exercise. Eur J Appl Physiol 2003; 89: 500–502PubMedCrossRef
149.
go back to reference Atanasiu RL, Stea D, Mateescu MA, et al. Direct evidence of caeruloplasmin antioxidant properties. Moll Cell Biochem 1998; 189: 127–135CrossRef Atanasiu RL, Stea D, Mateescu MA, et al. Direct evidence of caeruloplasmin antioxidant properties. Moll Cell Biochem 1998; 189: 127–135CrossRef
150.
go back to reference Yesikaya A, Yegin A, Ozdem S, et al. The effect of bilirubin on lipid peroxidation and antioxidant enzymes in cumene hydroperoxide-treated erythrocytes. Int J Clin Lab Res 1998; 28 (4): 230–234CrossRef Yesikaya A, Yegin A, Ozdem S, et al. The effect of bilirubin on lipid peroxidation and antioxidant enzymes in cumene hydroperoxide-treated erythrocytes. Int J Clin Lab Res 1998; 28 (4): 230–234CrossRef
151.
go back to reference Kaur H, Hugues MN, Green CJ, et al. Interaction of bilirubin and biliverdin with reactive nitrogen species. FEBS Lett 2003; 543 (1–3): 113–119PubMedCrossRef Kaur H, Hugues MN, Green CJ, et al. Interaction of bilirubin and biliverdin with reactive nitrogen species. FEBS Lett 2003; 543 (1–3): 113–119PubMedCrossRef
152.
go back to reference Margaritis I, Palazzetti S, Rousseau AS, et al. Antioxidant supplementation and tapering exercise improve exercise-induced antioxidant response. J Am Coll Nutr 2003; 22 (2): 147–156PubMed Margaritis I, Palazzetti S, Rousseau AS, et al. Antioxidant supplementation and tapering exercise improve exercise-induced antioxidant response. J Am Coll Nutr 2003; 22 (2): 147–156PubMed
153.
go back to reference Palazzetti S, Richard MJ, Favier A, et al. Overload training increases exercise-induced oxidative stress and damage. Can J Appl Physiol 2003; 28 (4): 588–604PubMedCrossRef Palazzetti S, Richard MJ, Favier A, et al. Overload training increases exercise-induced oxidative stress and damage. Can J Appl Physiol 2003; 28 (4): 588–604PubMedCrossRef
154.
go back to reference Palazzetti S, Rousseau AS, Richard MJ, et al. Antioxidant supplementation preserves antioxidant response in physical training and low antioxidant intake. Br J Nutr 2004; 91: 91–100PubMedCrossRef Palazzetti S, Rousseau AS, Richard MJ, et al. Antioxidant supplementation preserves antioxidant response in physical training and low antioxidant intake. Br J Nutr 2004; 91: 91–100PubMedCrossRef
155.
go back to reference Finaud J, Scislowski V, Lac G, et al. Antioxidant status and oxidative stress in professional rugby players: evolution throughout a season. Int J Sports Med 2006; 27: 87–93PubMedCrossRef Finaud J, Scislowski V, Lac G, et al. Antioxidant status and oxidative stress in professional rugby players: evolution throughout a season. Int J Sports Med 2006; 27: 87–93PubMedCrossRef
156.
go back to reference Schröder H, Navarro E, Tramullas A, et al. Nutrition antioxidant status and oxidative stress in professional basketball players: effects of a three compound antioxidative supplement. Int J Sports Med 2000; 21 (2): 146–150PubMedCrossRef Schröder H, Navarro E, Tramullas A, et al. Nutrition antioxidant status and oxidative stress in professional basketball players: effects of a three compound antioxidative supplement. Int J Sports Med 2000; 21 (2): 146–150PubMedCrossRef
157.
go back to reference Herbert V. Symposium: prooxidant effects of antioxidant vita- mins. J Nutr 1996; 126: 1197–1200 Herbert V. Symposium: prooxidant effects of antioxidant vita- mins. J Nutr 1996; 126: 1197–1200
158.
go back to reference Choi EJ, Chee KM, Lee BH. Anti- and prooxidant effects of chronic quercitin administration in rats. Eur J Pharmacol 2003; 482: 281–285PubMedCrossRef Choi EJ, Chee KM, Lee BH. Anti- and prooxidant effects of chronic quercitin administration in rats. Eur J Pharmacol 2003; 482: 281–285PubMedCrossRef
159.
go back to reference James AM, Smith RAJ, Murphy MP. Antioxidant and prooxidant properties of mitochondrial coenzyme Q. Arch Biochem Biophys 2004; 423: 47–56PubMedCrossRef James AM, Smith RAJ, Murphy MP. Antioxidant and prooxidant properties of mitochondrial coenzyme Q. Arch Biochem Biophys 2004; 423: 47–56PubMedCrossRef
160.
go back to reference Duthié GG. Determination of activity of antioxidants in human subjects. Proc Nutr Soc 1999; 58 (4): 1015–1024PubMedCrossRef Duthié GG. Determination of activity of antioxidants in human subjects. Proc Nutr Soc 1999; 58 (4): 1015–1024PubMedCrossRef
161.
go back to reference Jenkins RR. Exercise and oxidative stress methodology: a critique. Am J Clin Nutr 2000; 72 (2- Suppl.): 670–674 Jenkins RR. Exercise and oxidative stress methodology: a critique. Am J Clin Nutr 2000; 72 (2- Suppl.): 670–674
162.
go back to reference Ashton T, Rowlands CC, Jones E, et al. Electron spin resonance spectroscopic detection of oxygen-centred radicals in human serum following exhaustive exercise. Eur J Appl Physiol 1998; 77 (6): 498–502CrossRef Ashton T, Rowlands CC, Jones E, et al. Electron spin resonance spectroscopic detection of oxygen-centred radicals in human serum following exhaustive exercise. Eur J Appl Physiol 1998; 77 (6): 498–502CrossRef
163.
go back to reference Frank J, Pompella A, Biesalski HK. Histochemical visualization of oxidant stress. Free Radic Biol Med 2000; 29 (11): 1096–1105PubMedCrossRef Frank J, Pompella A, Biesalski HK. Histochemical visualization of oxidant stress. Free Radic Biol Med 2000; 29 (11): 1096–1105PubMedCrossRef
164.
go back to reference Chen SS, Chang LS, Wei YH. Oxidative damage to proteins and decrease of antioxidant capacity in patients with varicocele. Free Radic Biol Med 2001; 30 (11): 1328–1334PubMedCrossRef Chen SS, Chang LS, Wei YH. Oxidative damage to proteins and decrease of antioxidant capacity in patients with varicocele. Free Radic Biol Med 2001; 30 (11): 1328–1334PubMedCrossRef
165.
go back to reference Hofer T, Möller L. Optimization of the workup procedure for the analysis of 8-oxo-7,8-dihydro-2’-deoxyguanosine with electrochemical detection. Chem Res Toxicol 2002; 15: 426–432PubMedCrossRef Hofer T, Möller L. Optimization of the workup procedure for the analysis of 8-oxo-7,8-dihydro-2’-deoxyguanosine with electrochemical detection. Chem Res Toxicol 2002; 15: 426–432PubMedCrossRef
166.
go back to reference Ortenblad N, Madsen K, Djurhuus MS. Antioxidant status and lipid peroxidation after short-term maximal exercise in trained and untrained humans. Am J Physiol 1997; 272 (4): R1258–R1263PubMed Ortenblad N, Madsen K, Djurhuus MS. Antioxidant status and lipid peroxidation after short-term maximal exercise in trained and untrained humans. Am J Physiol 1997; 272 (4): R1258–R1263PubMed
167.
go back to reference Varlet-Marie E, Maso F, Lac G, et al. Hemorheological disturbances in the overtraining syndrome. Clin Hemorheol Microcirc 2004; 30: 211–218PubMed Varlet-Marie E, Maso F, Lac G, et al. Hemorheological disturbances in the overtraining syndrome. Clin Hemorheol Microcirc 2004; 30: 211–218PubMed
168.
go back to reference Marzatico F, Pansarasa O, Bertorelli L, et al. Blood free radical antioxidant enzymes and lipid peroxides following long-distance and lactacidemic performances in highly trained aerobic and sprint athletes. J Sports Med Phys Fitness 1997; 37: 235–239PubMed Marzatico F, Pansarasa O, Bertorelli L, et al. Blood free radical antioxidant enzymes and lipid peroxides following long-distance and lactacidemic performances in highly trained aerobic and sprint athletes. J Sports Med Phys Fitness 1997; 37: 235–239PubMed
169.
go back to reference Miyazaki H, Oh-ishi S, Ookawara T, et al. Strenuous endurance training in humans reduces oxidative stress following exhaustive exercise. Eur J Appl Physiol 2001; 84: 1–6PubMedCrossRef Miyazaki H, Oh-ishi S, Ookawara T, et al. Strenuous endurance training in humans reduces oxidative stress following exhaustive exercise. Eur J Appl Physiol 2001; 84: 1–6PubMedCrossRef
170.
go back to reference Cao G, Prior RL. Postprandrial increases in serum antioxidant capacity in older women. J Appl Physiol 2000; 89: 877–883PubMed Cao G, Prior RL. Postprandrial increases in serum antioxidant capacity in older women. J Appl Physiol 2000; 89: 877–883PubMed
171.
go back to reference Kohen R, Vellaichamy E, Hrbac J, et al. Quantification of the overall reactive oxygen species scavenging capacity of biological fluids and tissues. Free Radic Biol Med 2000; 28 (6): 871–879PubMedCrossRef Kohen R, Vellaichamy E, Hrbac J, et al. Quantification of the overall reactive oxygen species scavenging capacity of biological fluids and tissues. Free Radic Biol Med 2000; 28 (6): 871–879PubMedCrossRef
172.
go back to reference Davies KJ, Quintanilha AT, Brooks GA, et al. Free radicals and tissue damage produced by exercise. Biochem Biophys Res Commun 1982; 107: 1198–1205PubMedCrossRef Davies KJ, Quintanilha AT, Brooks GA, et al. Free radicals and tissue damage produced by exercise. Biochem Biophys Res Commun 1982; 107: 1198–1205PubMedCrossRef
173.
go back to reference Child RB, Wilkinson DM, Fallowfield JL, et al. Elevated serum antioxidant capacity and plasma malondialdehyde concentration in response to a simulated half-marathon run. Med Sci Sports Exerc 1998; 30 (11): 1603–1607PubMedCrossRef Child RB, Wilkinson DM, Fallowfield JL, et al. Elevated serum antioxidant capacity and plasma malondialdehyde concentration in response to a simulated half-marathon run. Med Sci Sports Exerc 1998; 30 (11): 1603–1607PubMedCrossRef
174.
go back to reference Lovlin R, Cottle W, Pyke I, et al. Are indices of radical damage related to exercise intensity? Eur J Appl Physiol 1987; 56: 313–316CrossRef Lovlin R, Cottle W, Pyke I, et al. Are indices of radical damage related to exercise intensity? Eur J Appl Physiol 1987; 56: 313–316CrossRef
175.
go back to reference Aguilo A, Tauler P, Fuentespina E, et al. Antioxidant response to oxidative stress induced by exhaustive exercise. Physiol Behav 2005; 84 (1): 1–7PubMedCrossRef Aguilo A, Tauler P, Fuentespina E, et al. Antioxidant response to oxidative stress induced by exhaustive exercise. Physiol Behav 2005; 84 (1): 1–7PubMedCrossRef
176.
go back to reference Vider J, Lehtmaa J, Kullisaar T, et al. Acute immune response in respect to exercise-induced oxidative stress. Pathophysiology 2001; 7: 263–270PubMedCrossRef Vider J, Lehtmaa J, Kullisaar T, et al. Acute immune response in respect to exercise-induced oxidative stress. Pathophysiology 2001; 7: 263–270PubMedCrossRef
177.
go back to reference Margaritis I, Tessier F, Richard MJ, et al. No evidence of oxidative stress after a triathlon race in highly trained competitors. Int J Sports Med 1997; 18 (3): 186–190PubMedCrossRef Margaritis I, Tessier F, Richard MJ, et al. No evidence of oxidative stress after a triathlon race in highly trained competitors. Int J Sports Med 1997; 18 (3): 186–190PubMedCrossRef
178.
go back to reference Inal M, Akyüz F, Turgut A, et al. Effect of aerobic and anaerobic metabolism on free radical generation swimmers. Med Sci Sports Exerc 2001; 33 (4): 564–567PubMed Inal M, Akyüz F, Turgut A, et al. Effect of aerobic and anaerobic metabolism on free radical generation swimmers. Med Sci Sports Exerc 2001; 33 (4): 564–567PubMed
179.
go back to reference Chevion S, Moran DS, Heled Y, et al. Plasma antioxidant status and cell injury after severe physical exercise. Proc Natl Acad Sci U S A 2003; 100 (9): 5119–5123PubMedCrossRef Chevion S, Moran DS, Heled Y, et al. Plasma antioxidant status and cell injury after severe physical exercise. Proc Natl Acad Sci U S A 2003; 100 (9): 5119–5123PubMedCrossRef
180.
go back to reference Ji LL, Fu R. Antioxidant enzyme response to exercise and aging. Med Sci Sport Exerc 1993; 25 (2): 225–231CrossRef Ji LL, Fu R. Antioxidant enzyme response to exercise and aging. Med Sci Sport Exerc 1993; 25 (2): 225–231CrossRef
181.
go back to reference Criswell D, Powers S, Dodd S, et al. High intensity training-induced changes in skeletal muscle anti-oxidant enzyme activity. Med Sci Sports Exerc 1993; 25 (10): 1135–1140PubMed Criswell D, Powers S, Dodd S, et al. High intensity training-induced changes in skeletal muscle anti-oxidant enzyme activity. Med Sci Sports Exerc 1993; 25 (10): 1135–1140PubMed
182.
go back to reference Radak Z, Nakamura A, Nakamoto H, et al. A period of anaerobic exercise increases the accumulation of reactive carbonyl derivatives in the lungs of rats. Plügers Arch 1998; 435: 439–441CrossRef Radak Z, Nakamura A, Nakamoto H, et al. A period of anaerobic exercise increases the accumulation of reactive carbonyl derivatives in the lungs of rats. Plügers Arch 1998; 435: 439–441CrossRef
183.
go back to reference Kayatekin BM, Gönenc S, Açikgöz O, et al. Effects of sprint exercise on oxidative stress in skeletal muscle and liver. Eur J Appl Physiol 2002; 87: 141–144PubMedCrossRef Kayatekin BM, Gönenc S, Açikgöz O, et al. Effects of sprint exercise on oxidative stress in skeletal muscle and liver. Eur J Appl Physiol 2002; 87: 141–144PubMedCrossRef
184.
go back to reference Goldfarb AH, Bloomer RJ, McKenzie MJ. Combined antioxidant treatment effects on blood oxidative stress after eccentric exercise. Med Sci Sports Exerc 2005; 37 (2): 234–239PubMedCrossRef Goldfarb AH, Bloomer RJ, McKenzie MJ. Combined antioxidant treatment effects on blood oxidative stress after eccentric exercise. Med Sci Sports Exerc 2005; 37 (2): 234–239PubMedCrossRef
185.
go back to reference Ramel A, Wagner KH, Elmadfa I. Plasma antioxidants and lipid oxidation after submaximal resistance exercise in men. Eur J Nutr 2004; 43: 2–6PubMedCrossRef Ramel A, Wagner KH, Elmadfa I. Plasma antioxidants and lipid oxidation after submaximal resistance exercise in men. Eur J Nutr 2004; 43: 2–6PubMedCrossRef
186.
go back to reference Sahlin K, Cizinsky S, Warholm M, et al. Repetitive static muscle contractions in humans: a trigger of metabolic and oxidative stress? Eur J Appl Physiol 1992; 64: 228–236CrossRef Sahlin K, Cizinsky S, Warholm M, et al. Repetitive static muscle contractions in humans: a trigger of metabolic and oxidative stress? Eur J Appl Physiol 1992; 64: 228–236CrossRef
187.
go back to reference Saxton JM, Donnelly AE, Roper HP. Indices of free-radical-mediated damage following maximum voluntary eccentric and concentric muscular work. Eur J Appl Physiol 1994; 68: 189–193CrossRef Saxton JM, Donnelly AE, Roper HP. Indices of free-radical-mediated damage following maximum voluntary eccentric and concentric muscular work. Eur J Appl Physiol 1994; 68: 189–193CrossRef
188.
go back to reference Groussard C, Machefer G, Rannou F, et al. Physical fitness and plasma non-enzymatic antioxidant status at rest and after a Wingate test. Can J Appl Physiol 2003; 28 (1): 79–92PubMedCrossRef Groussard C, Machefer G, Rannou F, et al. Physical fitness and plasma non-enzymatic antioxidant status at rest and after a Wingate test. Can J Appl Physiol 2003; 28 (1): 79–92PubMedCrossRef
189.
go back to reference Chang CK, Tseng HF, Hsuuw YD, et al. Higher LDL oxidation at rest and after a rugby game in weekend warriors. Ann Nutr Metab 2002; 46: 103–107PubMedCrossRef Chang CK, Tseng HF, Hsuuw YD, et al. Higher LDL oxidation at rest and after a rugby game in weekend warriors. Ann Nutr Metab 2002; 46: 103–107PubMedCrossRef
190.
go back to reference Elosua R, Molina L, Fito M, et al. Response of oxidative stress biomarkers to a 16-week aerobic physical activity program, and to acute physical activity, in healthy young men and women. Atherosclerosis 2003; 167: 327–334PubMedCrossRef Elosua R, Molina L, Fito M, et al. Response of oxidative stress biomarkers to a 16-week aerobic physical activity program, and to acute physical activity, in healthy young men and women. Atherosclerosis 2003; 167: 327–334PubMedCrossRef
191.
go back to reference Ohno H, Yahata T, Sato Y, et al. Physical training and fasting erythrocyte activities of free radical scavenging enzyme systems in sedentary men. Eur J Appl Physiol 1988; 57 (2): 173–176CrossRef Ohno H, Yahata T, Sato Y, et al. Physical training and fasting erythrocyte activities of free radical scavenging enzyme systems in sedentary men. Eur J Appl Physiol 1988; 57 (2): 173–176CrossRef
192.
go back to reference Accominotti M, Dutey P, Lahet C, et al. Evolution des taux de selenium et de glutathion peroxydase sanguins de sportifs de haut niveau. Sci Sports 1991; 6: 165–172CrossRef Accominotti M, Dutey P, Lahet C, et al. Evolution des taux de selenium et de glutathion peroxydase sanguins de sportifs de haut niveau. Sci Sports 1991; 6: 165–172CrossRef
193.
go back to reference Bergholm R, Makimattila S, Valkonen M, et al. Intense physical training decreases circulating antioxidants and endothelium-dependant vasodilatation in-vivo. Atherosclerosis 1999; 145 (2): 341–349PubMedCrossRef Bergholm R, Makimattila S, Valkonen M, et al. Intense physical training decreases circulating antioxidants and endothelium-dependant vasodilatation in-vivo. Atherosclerosis 1999; 145 (2): 341–349PubMedCrossRef
194.
go back to reference Venditti P, Di Meo S. Effect of training on antioxidant capacity, tissue damage, and endurance of adult male rats. Int J Sports Med 1997; 18: 497–502PubMedCrossRef Venditti P, Di Meo S. Effect of training on antioxidant capacity, tissue damage, and endurance of adult male rats. Int J Sports Med 1997; 18: 497–502PubMedCrossRef
195.
go back to reference Hollander J, Fiebig R, Gore M, et al. Superoxide dismutase gene expression in skeletal muscle: fiber-specific adaptation to endurance training. Am J Physiol 1999; 277 (46): R856–R862PubMed Hollander J, Fiebig R, Gore M, et al. Superoxide dismutase gene expression in skeletal muscle: fiber-specific adaptation to endurance training. Am J Physiol 1999; 277 (46): R856–R862PubMed
196.
go back to reference Selamoglu S, Turgay F, Kayatekin BM, et al. Aerobic and anaerobic training effects on the antioxidant enzymes in the blood. Acta Physiol Hung 2000; 87 (3): 267–273PubMedCrossRef Selamoglu S, Turgay F, Kayatekin BM, et al. Aerobic and anaerobic training effects on the antioxidant enzymes in the blood. Acta Physiol Hung 2000; 87 (3): 267–273PubMedCrossRef
197.
go back to reference Powers SK, Ji LL, Leewenburgh C. Exercise training-induced alterations in skeletal muscle antioxidant capacity: a brief review. Med Sci Sports Exerc 1999; 31 (7): 987–997PubMedCrossRef Powers SK, Ji LL, Leewenburgh C. Exercise training-induced alterations in skeletal muscle antioxidant capacity: a brief review. Med Sci Sports Exerc 1999; 31 (7): 987–997PubMedCrossRef
198.
go back to reference Child RB, Wilkinson DM, Fallowfield JL. Resting serum anti-oxidant status is positively correlated with peak oxygen uptake in endurance trained runners. J Sports Med Phys Fitness 1999; 39 (4): 282–284PubMed Child RB, Wilkinson DM, Fallowfield JL. Resting serum anti-oxidant status is positively correlated with peak oxygen uptake in endurance trained runners. J Sports Med Phys Fitness 1999; 39 (4): 282–284PubMed
199.
go back to reference Rall LC, Roubenoff R, Meydani SN, et al. Urinary 8-hy-droxy-2’-deoxyguanosine (8-OHdG) as a marker of oxidative stress in rheumatoid arthritis and aging: effect of progressive resistance training. J Nutr Biochem 2000; 11: 581–584PubMedCrossRef Rall LC, Roubenoff R, Meydani SN, et al. Urinary 8-hy-droxy-2’-deoxyguanosine (8-OHdG) as a marker of oxidative stress in rheumatoid arthritis and aging: effect of progressive resistance training. J Nutr Biochem 2000; 11: 581–584PubMedCrossRef
200.
go back to reference Vincent KR, Vincent HK, Braith RW, et al. Resistance exercise training attenuates exercise-induced lipid peroxidation in the elderly. Eur J Appl Physiol 2002; 87: 416–423PubMedCrossRef Vincent KR, Vincent HK, Braith RW, et al. Resistance exercise training attenuates exercise-induced lipid peroxidation in the elderly. Eur J Appl Physiol 2002; 87: 416–423PubMedCrossRef
201.
go back to reference Hellsten Y, Apple FS, Sjodin B. Effect of sprint cycle training on activities of antioxidant enzymes in human skeletal muscle. J Appl Physiol 1996; 81 (4): 1484–1487PubMed Hellsten Y, Apple FS, Sjodin B. Effect of sprint cycle training on activities of antioxidant enzymes in human skeletal muscle. J Appl Physiol 1996; 81 (4): 1484–1487PubMed
202.
go back to reference Cazzola R, Russo-Volpe S, Cervato G, et al. Biochemical assessments of oxidative stress, erythrocyte membrane fluidity and antioxidant status in professional soccer players and sedentary controls. Eur J Clin Invest 2003; 33 (10): 924–930PubMedCrossRef Cazzola R, Russo-Volpe S, Cervato G, et al. Biochemical assessments of oxidative stress, erythrocyte membrane fluidity and antioxidant status in professional soccer players and sedentary controls. Eur J Clin Invest 2003; 33 (10): 924–930PubMedCrossRef
203.
go back to reference Metin G, Gumustas MK, Uslu E, et al. Effect of regular training on plasma thiols, malondialdehyde and carnitine concentrations in young soccer players. Chin J Physiol 2003; 46 (1): 35–39PubMed Metin G, Gumustas MK, Uslu E, et al. Effect of regular training on plasma thiols, malondialdehyde and carnitine concentrations in young soccer players. Chin J Physiol 2003; 46 (1): 35–39PubMed
204.
go back to reference Balakrishnan SD, Anuradha CV. Exercise, depletion of antioxidants and antioxidant manipulation. Cell Biochem Funct 1998; 16 (4): 269–275PubMedCrossRef Balakrishnan SD, Anuradha CV. Exercise, depletion of antioxidants and antioxidant manipulation. Cell Biochem Funct 1998; 16 (4): 269–275PubMedCrossRef
205.
go back to reference Brites FD, Evelson PA, Christiansen MG, et al. Soccer players under regular training show oxidative stress but an improved plasma antioxidant status. Clin Sci 1999; 96 (4): 381–385PubMedCrossRef Brites FD, Evelson PA, Christiansen MG, et al. Soccer players under regular training show oxidative stress but an improved plasma antioxidant status. Clin Sci 1999; 96 (4): 381–385PubMedCrossRef
206.
go back to reference Subudhi AW, Davis SL, Kipp RW, et al. Antioxidant status and oxidative stress in elite alpine ski racers. Int J Sport Nutr Exerc Metab 2001; 11 (1): 32–41PubMed Subudhi AW, Davis SL, Kipp RW, et al. Antioxidant status and oxidative stress in elite alpine ski racers. Int J Sport Nutr Exerc Metab 2001; 11 (1): 32–41PubMed
207.
go back to reference Evelson P, Gambino G, Travacio M, et al. Higher antioxidant defences in plasma and low density lipoproteins from rugby players. Eur J Clin Invest 2002; 32 (11): 818–825PubMedCrossRef Evelson P, Gambino G, Travacio M, et al. Higher antioxidant defences in plasma and low density lipoproteins from rugby players. Eur J Clin Invest 2002; 32 (11): 818–825PubMedCrossRef
208.
go back to reference Schippinger G, Wonisch W, Abuja PM, et al. Lipid peroxidation and antioxidant status in professional American football players during competition. Eur J Clin Invest 2002; 32 (9): 686–692PubMedCrossRef Schippinger G, Wonisch W, Abuja PM, et al. Lipid peroxidation and antioxidant status in professional American football players during competition. Eur J Clin Invest 2002; 32 (9): 686–692PubMedCrossRef
209.
210.
go back to reference Rowbottom DG, Keast D, Goodman C, et al. The haematological, biochemical and immunological profile of athletes suffering from the overtraining syndrome. Eur J Appl Physiol 1995; 70: 502–509CrossRef Rowbottom DG, Keast D, Goodman C, et al. The haematological, biochemical and immunological profile of athletes suffering from the overtraining syndrome. Eur J Appl Physiol 1995; 70: 502–509CrossRef
211.
go back to reference Urhausen A, Kindermann W. Diagnosis of overtraining: what tools do we have? Sports Med 2002; 32 (2): 95–102PubMedCrossRef Urhausen A, Kindermann W. Diagnosis of overtraining: what tools do we have? Sports Med 2002; 32 (2): 95–102PubMedCrossRef
Metadata
Title
Oxidative Stress
Relationship with Exercise and Training
Authors
Julien Finaud
Gérard Lac
Edith Filaire
Publication date
01-04-2006
Publisher
Springer International Publishing
Published in
Sports Medicine / Issue 4/2006
Print ISSN: 0112-1642
Electronic ISSN: 1179-2035
DOI
https://doi.org/10.2165/00007256-200636040-00004

Other articles of this Issue 4/2006

Sports Medicine 4/2006 Go to the issue

Current Opinion

Vegetarian Diets