Skip to main content
Log in

Biochemical Mechanisms for Oxygen Free Radical Formation During Exercise

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Summary

The biochemical mechanisms behind skeletal muscle soreness and damage with muscular overuse have remained unclear. Recently, however, a growing amount of evidence indicates that free radicals play an important role as mediators of skeletal muscle damage and inflammation. During exercise, two of the potentially harmful free radical generating sources are semiquinone in the mitochondria and xanthine oxidase in the capillary endothelial cells. During high intensity exercise the flow of oxygen through the skeletal muscle cells is greatly increased at the same time as the rate of ATP utilisation exceeds the rate of ATP generation. The metabolic stress in the cells causes several biochemical changes to occur, resulting in a markedly enhanced rate of production of oxygen free radicals from semiquinone and xanthine oxidase. During normal conditions free radicals are generated at a low rate and subsequently taken care of by the well developed scavenger and antioxidant systems. However, a greatly increased rate of free radical production may exceed the capacity of the cellular defence system. Consequently, a substantial attack of free radicals on the cell membranes may lead to a loss of cell viability and to cell necrosis and could initiate the skeletal muscle damage and inflammation caused by exhaustive exercise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aikawa KM, Quintanilha ATI, de Lumen BO, Brooks GA, Packer L. Exercise endurance training alters vitamin E tissue levels and red-blood-cell hemolysis in rodents. Bioscience Reports 4: 253–257, 1984

    Article  PubMed  CAS  Google Scholar 

  • Alessio HM, Goldfarb AH. Lipid peroxidation and scavenger enzymes during exercise: adaptive response to training. Journal of Applied Physiology 64(4): 1333–1336, 1988a

    PubMed  CAS  Google Scholar 

  • Alessio HM, Goldfarb AH, Cutler RG. MDA content increases in fast- and slow-twitch skeletal muscle with intensity of exercise in a rat. American Journal of Physiology 24: C874–C877, 1988b

    Google Scholar 

  • Al-Khalidi UAS, Chaglassian TH. The species distribution of xanthine oxidase. Biochemical Journal 97: 318–320, 1965

    PubMed  CAS  Google Scholar 

  • Apple FS, Rhodes M. Enzymatic estimation of skeletal muscle damage by analysis of changes in serum creatine kinase. Journal of Applied Physiology 65: 2598–2600, 1988

    PubMed  CAS  Google Scholar 

  • Archer SL, Peterson D, Nelson DP, DeMaster EG, Kelly B, et al. Oxygen radicals and antioxidant enzymes alter pulmonary vascular reactivity in the rat lung. Journal of Applied Physiology 66(1): 102–111, 1989

    PubMed  CAS  Google Scholar 

  • Åstrand P-O, Rodahl K. Textbook of work physiology: physiological bases of exercise, McGraw-Hill Book Company, New York, 1986

    Google Scholar 

  • Awata N, Ishiyama T, Harada H, Sawamura A, Ogura K, et al. The effect of coenzyme Qio on ischemic heart disease evaluated by dynamic exercise test. In Yamamura et al. (Eds) Biomedical and clinical aspects of coenzyme Q, Vol. 2, pp. 247–253, Elsevier/North-Holland, Amsterdam/New York, 1980

    Google Scholar 

  • Baker JE, Felix CC, Olinger GN, Kalyanaraman B. Myocardial ischemia and reperfusion: direct evidence for free radical generation by electron spin reasonance spectroscopy. Proceedings of the National Academy of Science USA 85: 2786–2789, 1988

    Article  CAS  Google Scholar 

  • Batelli MG, Lorenzoni E, Stirpe F. Milk xanthine oxidase type D (dehydrogenase) and type O (oxidase): purification, interconversion and some properties. Biochemical Journal 131: 191–198, 1973

    Google Scholar 

  • Batelli MG. Enzymic conversion of rat liver xanthine oxidase from dehydrogenase (D form) to oxidase (O form). FEBS Letters 113: 47–51, 1980

    Article  Google Scholar 

  • Beyer RE, Morales-Coral PG, Ramp BJ, Kreitman KR, Falzon MJ, et al. Elevation of coenzyme Q (ubiquinone) and cytochrome C concentrations by endurance exercise in the rat. Archives of Biochemistry and Biophysics 234(2): 323–329, 1984

    Article  PubMed  CAS  Google Scholar 

  • Biemond P, Swaak AJG, Beindorff M, Koster JF. Superoxide dependent and independent mechanisms of iron mobilization from ferritin by xanthine oxidase. Biochemical Journal 239: 169–173, 1986

    PubMed  CAS  Google Scholar 

  • Bindoli A, Cavallini L, Rigobello MP, Coassin M, di Lisa F. Modification of the xanthine-converting enzyme of perfused rat heart during ischemia and oxidative stress. Free Radical Biology and Medicine 4: 163–167, 1988

    Article  PubMed  CAS  Google Scholar 

  • Boveris A, Chance B. The mitochondrial generation of hydrogen peroxide: general properties and effects of hyperbaric oxygen. Biochemistry Journal 134: 707–716, 1973

    CAS  Google Scholar 

  • Boveris A, Cadenas E. Mitochondrial production of superoxide ions and its relationship to the antimycin insensitive respiration. FEBS Letters 54: 311–314, 1975

    Article  PubMed  CAS  Google Scholar 

  • Boveris A, Cadenas E, Stoppani AOK. Role of ubiquinone in mitochondrial generation of hydrogen peroxide. Biochemistry Journal 156: 435–444, 1976

    CAS  Google Scholar 

  • Brady PS, Brady LJ, Ullrey DE. Selenium, vitamin E and the response to swimming stress in the rat. Journal of Nutrition 109: 1103–1109, 1979

    PubMed  CAS  Google Scholar 

  • Bratell S, Folmerz P, Hansson R, Jonsson O, Lundstam S, et al. Effects of oxygen free radical scavengers, xanthine oxidase inhibition and calcium entry blockers on leakage of albumin after ischaemia: an experimental study in rabbit kidneys. Acta Physiologica Scandinavica 134: 35–41, 1988

    Article  PubMed  CAS  Google Scholar 

  • Chambers DE, Parks DA, Patterson G, Roy R, McCord RM, et al. Xanthine oxidase as a source of free radical damage in myocardial ischemia. Journal of Molecular and Cell Cardiology 17: 145–152, 1985

    Article  CAS  Google Scholar 

  • Chan PH, Schmidely JW, Fishman RA, Longar SM. Brian injury, edema, and vascular permeability changes induced by oxygen derived free radicals. Neurology 34: 315–320, 1984

    Article  PubMed  CAS  Google Scholar 

  • Chance B, Sies H, Boveris A. Hydroperoxide metabolism in mammalian organs. Physiological Review 59: 527–605, 1979

    CAS  Google Scholar 

  • Clarkson PM, Tremblay I. Exercise induced muscle damage, repair, and adaption in humans. Journal of Applied Physiology 65: 1–6, 1988

    PubMed  CAS  Google Scholar 

  • Cohen G. Hochstein P. Glutathione peroxidase: the primary agent for the elimination of H2O2 in erythrocytes. Biochemistry 2: 1420–1428, 1963

    Article  PubMed  CAS  Google Scholar 

  • Davies KJA, Quintanilha AT, Brooks GA, Packer L. Free radicals and tissue damage produced by exercise. Biochemical and Biophysical Research Communications 107: 1198–1205, 1982

    Article  PubMed  CAS  Google Scholar 

  • Della Corte E, Stirpe F. The regulation of rat liver xanthine oxidase. Biochemical Journal 126: 739–745, 1972

    PubMed  CAS  Google Scholar 

  • Dillard CJ, Litov RE, Savin WM, Dumelin EE, Tappel AL. Effects of exercise, vitamin E, and ozone on pulmonary function and lipid peroxidation. Journal of Applied Physiology 45: 927–932, 1978

    PubMed  CAS  Google Scholar 

  • Dillard CJ, Tappel AL. Lipid peroxidation products in biological tissues. Free Radical Biology & Medicine 5: 193–196, 1989

    Article  Google Scholar 

  • Dionisi O, Galleotti T, Terranova T, Azzi A. Superoxide radical and hydrogen peroxide formation in normal and neoplastic tissue. Biochimica et Biophysica Acta 403: 292–300, 1975

    Article  PubMed  CAS  Google Scholar 

  • Downey JM, Hearse DJ, Yellon DM. The role of xanthine oxidase during myocardial ischemia in several species including man. Journal of Molecular and Cell Cardiology 20: 55–63, 1988

    Article  CAS  Google Scholar 

  • Ebbeling CB, Clarkson PM. Exercise-induced muscle damage and repair. Sports Medicine 7: 207–234, 1989

    Article  PubMed  CAS  Google Scholar 

  • Ernster L. Oxygen as an environmental poison. Chemical Scripta 26: 525–534, 1986

    CAS  Google Scholar 

  • Esterbauer H, Lang J, Zadravec S, Slater TF. Detection of malonaldehyde by high performance liquid chromatography. Methods in Enzymology 105: 319–328, 1984

    Article  PubMed  CAS  Google Scholar 

  • Esterbauer H, Zollner H. Methods for determination of aldehydic lipid peroxidation products. Free Radicals in Biology and Medicine 5: 197–203, 1989

    Article  Google Scholar 

  • Filser JG, Bolt HM, Muliawan H, Kappus H. Quantitative evaluation of ethane and n-pentane as indicators of lipid peroxidation in vivo. Archives of Toxicology 52: 135–147, 1983

    Article  PubMed  CAS  Google Scholar 

  • Freeman BA, Crapo JD. Biology of disease: free radicals and tissue injury. Laboratory Investigation 47: 412–426, 1982

    PubMed  CAS  Google Scholar 

  • Gidlof A, Hammersen F, Larsson J, Lewis DH, Liljedahl S-O. Is capillary endothelium in human skeletal muscle an ischemic shock tissue? In Lewis DH (Ed.) Induced skeletal muscle ischemia in man, pp. 63–79, Karger, Basel, 1982

    Google Scholar 

  • Girotti AW, Thomas JP, Jordan JE. Xanthine oxidase crosslinking of cell membrane proteins. Archives of Biochemistry and Biophysics 251: 639–653, 1986

    Article  PubMed  CAS  Google Scholar 

  • Gohil K, Rothfuss L, Lang J, Packer L. Effect of exercise training on tissue vitamin E and ubiquinone content. Journal of Applied Physiology 63(4): 1638–1641, 1987

    PubMed  CAS  Google Scholar 

  • Gollnick PD. Metabolic regulation in skeletal muscle: influence of endurance training as exerted by mitochondrial protein concentration. Acta Physiologica Scandinavica 128: 53–56, 1986

    Google Scholar 

  • Gollnick PD, Bertocci LA, Kelso TB, Witt EH, Hodgson DR. The effect of high intensity exercise on the respiratory capacity of skeletal muscle. Pflügers Archiv (European Journal of Physiology) 415: 407–413, 1990

    Article  CAS  Google Scholar 

  • Granger DN, Rutili G, McCord JM. Superoxide radicals in feline intestinal ischemia. Gastroenterology 81: 22–29, 1981

    PubMed  CAS  Google Scholar 

  • Granger DN. Role of xanthine oxidase and granulocytes in ischemia reperfusion injury. American Journal of Physiology: H1269–H1275, 1988

    Google Scholar 

  • Grisham MB, Hernandez LA, Granger DN. Xanthine oxidase and neutrophil infiltration in intestinal ischemia. American Journal of Physiology: G567–G574, 1986

    Google Scholar 

  • Halliwell B. Superoxide, iron, vascular endothelium and reperfusion injury. Free Radical Research Communications 5: 315–318, 1989

    Article  PubMed  CAS  Google Scholar 

  • Hearse DJ, Manning AS, Downey JM, Yellon DM. Xanthine oxidase: a critical mediator of myocardial injury during ischemia. and reperfusion. Acta Physiologica Scandinavica (Suppl. 548): 65–78, 1986

    Google Scholar 

  • Hellsten Y, Ahlborg G, Jensen-Urstad M, Sjödin B. Indication of in vivo xanthine oxidase activity in human skeletal muscle during exercise in man. Acta Physiologica Scandinavica 137: 159–160, 1988

    Article  Google Scholar 

  • Hellsten Westing Y, Ekblom B, Sjödin B. The metabolic relation between hypoxanthine and uric acid in man following maximal short-distance running. Acta Physiologica Scandinavica 137: 341–345, 1989

    Article  Google Scholar 

  • Hernandez LA, Grisham MB, Twohig B, Arfors KE, Harlan JM, et al. Role of neutrophils in ischemia-reperfusion-induced microvascular injury. American Journal of Physiology 253: H699–H703, 1987

    PubMed  CAS  Google Scholar 

  • Higuchi M, Cartier LJ, Chen M, Holloszy JO. Superoxide dismutase and catalase in skeletal muscle: adaptive response to exercise. Journal of Gerontology 40: 281–286, 1985

    PubMed  CAS  Google Scholar 

  • Hikida RS, Staron RS, Hagerman FC, Sherman WM, Costill DL. Muscle fiber necrosis associated with human marathon runners. Journal of Neurology Sciences 59: 185–203, 1983

    Article  CAS  Google Scholar 

  • Hooper C. Free radicals: research on biochemical bad boys comes of age. Journal of National Institute of Health Research 1: 101, 1989

    Google Scholar 

  • Jackson MJ, Jones DA, Edwards RHT. Vitamin E and skeletal muscle. In Ciba Foundation Symposium 1: Biology of vitamin E, pp. 224–239, Pitman Books, London, 1983

    Google Scholar 

  • Jackson MJ, Edwards RHT, Symons MCR. Electron spin resonans studies of intact mammalian skeletal muscle. Biochimica et Biophysica Acta 847: 185–190, 1985

    Article  PubMed  CAS  Google Scholar 

  • Jarasch E-D, Grund C, Bruder G, Heid HW, Keenan TW, et al. Localization of xanthine oxidase in mammary gland epithelium and capillary endothelium. Cell 25: 67–82, 1981

    Article  PubMed  CAS  Google Scholar 

  • Jenkins R. Effect of use and disuse on catalase activity in fast and slow skeletal muscle. Proceedings on the Congress De Medicina Deportiva, San Juan, Puerto Rico, 1979

  • Jenkins RR. The role of superoxide dismutase and catalase in muscle fatigue. In Knuttgen et al. (Eds) Biochemistry of exercise, Vol. 13, pp. 467–471, Human Kinetics, Champaign, 1983

    Google Scholar 

  • Jenkins RR. Free radical chemistry: relationship to exercise. Sports Medicine 5: 156–170, 1988

    Article  PubMed  CAS  Google Scholar 

  • Jenkins RR, Friedland R, Howald H. The relationship of oxygen uptake to superoxide dismutase and catalase activity in human skeletal muscle. International Journal of Sports Medicine 5: 11–14, 1984

    Article  PubMed  CAS  Google Scholar 

  • Jenkins RR, Goldberg DME. Lipid peroxidation in skeletal muscle during atrophy and acute exercise. Medicine and Science in Sports and Exercise 15: 93, 1983

    Google Scholar 

  • Jenkins RR, Newham D. Catalase activity in electrically stimulated muscle. Experienta 36: 843–846, 1980

    Article  CAS  Google Scholar 

  • Jenkins RR, Newham D, Rushmore R, Tengie J. Effect of disuse on the skeletal muscle catalase of rats. Biochemical Medicine 27: 195–199, 1982

    Article  PubMed  CAS  Google Scholar 

  • Jenkins RR, Tengie J. Catalase activity in skeletal muscle of varying fiber types. Experientia 37: 67–68, 1981

    Article  PubMed  CAS  Google Scholar 

  • Jensen PK. Antimycin insensitive oxidation of succinate and NADH in electron transport particles. Biochimica et Biophysica Acta. 122: 157–166, 1966

    Article  PubMed  CAS  Google Scholar 

  • Ji LL, Stratman FW, Lardy HA. Antioxidant enzyme systems in rat liver and skeletal muscle. Archives of Biochemistry and Biophysics 263: 150–160, 1988

    Article  PubMed  CAS  Google Scholar 

  • Johnson JL, Rajagopalan KV. Molecular basis of the biological function of molybdenum: effect of tungsten on xanthine oxidase and sulfite oxidase in the rat. Journal of Biological Chemistry 249: 859–866, 1974a

    PubMed  CAS  Google Scholar 

  • Johnson JL, Waud WR, Cohen HJ, Rajagopalan KV. Molecular basis of the biological function of molybdenum: molybdenum free xanthine oxidase from liver of tungsten treated rats. Journal of Biological Chemistry 249: 5056–5061, 1974b

    PubMed  CAS  Google Scholar 

  • Jones DA, Newham DJ, Round JM, Tolfree SEJ. Experimental human muscle damage: morphological changes in relation to other indices of damage. Journal of Physiology 375: 435–448, 1986

    PubMed  CAS  Google Scholar 

  • Kanter MM, Kaminsky LA, Laham-Seger J, Lesmes GR, Nequin ND. Serum enzyme levels and lipid peroxidation in ultramarathon runners. Annals of Sports Medicine 3: 39–41, 1986

    CAS  Google Scholar 

  • Kappus H. Lipid peroxidation: mechanisms, analysis, enzymology, and biological relevance in oxidative stress. In Sies H (Ed.) Metabolic compartmentation, pp. 273–310, 1985

    Google Scholar 

  • Karlsson J. Heart and skeletal muscle ubiquinone or CO Q10 as a protective agent against radical formation in man. In Benzi & Libbey (Eds) Advances in myochemistry, pp. 305–318, Eurotext Ltd, 1987

    Google Scholar 

  • Kawabata T, Ogino T, Awai M. Lipid peroxidation and glutathione metabolism in chronic iron overload: medical biochemical and chemical aspects of free radicals, pp. 551–554, Elsevier Science Publishers, B.V. Amsterdam, 1989

    Google Scholar 

  • Kehrer JP, Piper HM, Sies H. Xanthine oxidase is not responsible for reoxygenation injury in isolated-perfused rat heart. Free Radical Research Communication 3: 69–78, 1987

    Article  CAS  Google Scholar 

  • Ketai LH, Simon RH, Kreit JW, Grum CM. Plasma hypoxanthine and exercise. American Review of Respiratory Disease 136: 98–101, 1987

    Article  PubMed  CAS  Google Scholar 

  • Korthuis RJ, Granger DN, Townsley MI, Taylor AE. The role of oxygen derived free radicals in ischemia-induced increases in canine skeletal muscle vascular permeability. Circulation Research 57: 599–609, 1985

    Article  PubMed  CAS  Google Scholar 

  • Kosower NS, Kosower EM. The glutathione status of cells. International Review of Cytology 54: 109–160, 1978

    Article  PubMed  CAS  Google Scholar 

  • Krenitsky TA, Tuttle JV, Cattau EL, Wang P. A comparison of the distribution and electron acceptor specificities of xanthine oxidase and aldehyde oxidase. Comparative Biochemistry and Physiology 49B: 687–703, 1974

    Google Scholar 

  • Kuppusamy P, Zweier JL. Characterization of free radical generation by xanthine oxidase. Journal of Biological Chemistry 264: 9880–9884, 1989

    PubMed  CAS  Google Scholar 

  • Kvietys PR, Inauen W, Bacon BR, Grisham MB. Xanthine oxidase induced injury to endothelium: role of intracellular iron and hydroxy radical. American Journal of Physiology 257: H1640–H1646, 1989

    PubMed  CAS  Google Scholar 

  • Lamb FS, Webb RC. Vascular effect of free radicals generated by electrical stimulation. American Journal of Physiology 247: H709–H714, 1984

    PubMed  CAS  Google Scholar 

  • Lew H, Pyke S. Quintanilha A. Changes in the glutathione status of plasma, liver, and muscle following exhaustive exercise in rats. FEBS Letters 185(2): 262–266, 1985

    Article  PubMed  CAS  Google Scholar 

  • Lindsay T, Walker PM, Mickle DAG, Romaschin AD. Measurement of hydroxy conjugated dienes after ischemia-reperfusion in canine skeletal muscle. American Journal of Physiology 254: H578–H583, 1988

    PubMed  CAS  Google Scholar 

  • Loschen G, Azzi A, Richter C, Flohé L. Superoxide radicals as precursors of mitochondrial hydrogen peroxide. FEBS Letters 42: 68–72, 1974

    Article  PubMed  CAS  Google Scholar 

  • Lovlin R, Cottle W, Pyke I, Kavanagh M, Belcastro AN. Are indices of free radical damage related to exercise intensity. European Journal of Applied Physiology 56: 313–316, 1987

    Article  CAS  Google Scholar 

  • Massey V, Komai H, Palmer G, Elion GB. On the mechanism of inactivation of xanthine oxidase by allopurinol and other pyrazolo [3,4-d] pyrimidines. Journal of Biological Chemistry 245: 2837–2844, 1970

    PubMed  CAS  Google Scholar 

  • Maughan RJ, Donnelly AR, Gleeson M, Whiting PH, Walker KA, et al. Delayed-onset muscle damage and lipid peroxidation in man after a downhill run. Muscle and Nerve 12: 332–336, 1989

    Article  PubMed  CAS  Google Scholar 

  • Mbemba F, Houbion A, Raes M, Remacle J. Subcellular localization and modification with ageing of glutathione, glutathione peroxidase and glutathione reductase activities in human fibroblasts. Biochimica et Biophysica Acta 838: 211–220, 1985

    Article  PubMed  CAS  Google Scholar 

  • McCord JM, Boyle JA, Day Jr ED, Rizzolo LJ, Salin ML. A manganese containing SOD from human liver. In Michelson et al. (Eds) Superoxide and superoxide dismutase, pp. 129–138, Academic Press London, 1977

    Google Scholar 

  • McCord JM, Fridovich I. Superoxide dismutase an enzymatic function for erythrocuperein (hemocuprein). Journal of Biological Chemistry 244: 6049–6055, 1969

    PubMed  CAS  Google Scholar 

  • McCord JM. Superoxide radical: a likely link between reperfusion injury and inflammation. Advances in Free Radical Biology and Medicine 2: 325–345, 1986

    Article  CAS  Google Scholar 

  • McIntyre TM, Curthoys NP. The interorgan metabolism of glutathione. International Journal of Biochemistry 12: 545–551, 1980

    Article  PubMed  CAS  Google Scholar 

  • McKelvey TG, Höllwarth ME, Granger DN, Engerson TD, Landler U, et al. Mechanisms of conversion of xanthine dehydrogenase to xanthine oxidase in ischemic rat liver and kidney. American Journal of Physiology 254: G753–G760, 1988

    PubMed  CAS  Google Scholar 

  • Michelson A, Durosay P, Hemolysis of human erythrocytes by activated oxygen species. Photochemistry and Photobiology 25: 55–63, 1977

    Article  PubMed  CAS  Google Scholar 

  • Moorehouse PC, Grootveld M, Halliwell B, Quinlan JG, Gutteridge JM. Allopurinol and oxypurinol are hydroxyl radical scavengers. FEBS Letters 213: 23–28, 1987

    Article  Google Scholar 

  • Mullane KM, Read N, Salmon JA, Moncada S. Role of leukocytes in acute myocardia infarction in anesthetized dogs: relationship to myocardial salvage by antiinflammatory drugs. Journal of Pharmacology and Experimental Therapeutics 228: 510–522, 1984

    PubMed  CAS  Google Scholar 

  • Myers CL, Weiss SJ, Kirsch MM, Shephard BM, Schlafer M. Effects of supplementing hypothermic crystalloid cardioplegic solution with catalase, superoxide dismutase, allopurinol, or deferoxamine on functional recovery of globally ischemic and reperfused isolated hearts. Journal of Thoracic and Cardiovascular Surgery 91: 281–289, 1986

    PubMed  CAS  Google Scholar 

  • Nohl H, Hegner D. Do mitochondria produce oxygen radicals in vivo? European Journal of Biochemistry 82: 563–567, 1978

    Article  PubMed  CAS  Google Scholar 

  • Nohl, H, Jordan W, Youngman RJ. Quinones in biology: function in electron transfer and oxygen activation. Advances in Free Radical Biology and Medicine 2: 211, 1986

    Article  CAS  Google Scholar 

  • Norman B, Sollevi A, Kaijser L, Jansson E. ATP breakdown products in human skeletal muscle during prolonged exercise to exhaustion. Clinical Physiology 7: 503–509, 1987

    Article  PubMed  CAS  Google Scholar 

  • Ohno H, Sato Y, Yamashita K. The effect of brief physical exercise on free radical scavenging enzyme systems in human red blood cells. Canadian Journal of Physiology and Pharmacology 64: 1263, 1986

    Article  PubMed  CAS  Google Scholar 

  • Öjteg G, Bayati A, Källskog Ö, Wolgast M. Renal capillary permeability and intravascular red cell aggregation after ischaemia. I. Effects of xanthine oxidase activity. Acta Physiologica Scandinavica 129: 295–304, 1987

    Article  PubMed  Google Scholar 

  • Olson CE. Glutathione modulates toxic oxygen metabolite injury of canine chief cell monolayers in primary culture. American Journal of Physiology 254: 649–656, 1988

    Google Scholar 

  • Parks DA, Granger DN. Ischemia-induced vascular changes: role of xanthine oxidase and hydroxyl radicals. American Journal of Physiology 245: G285–G289, 1983

    PubMed  CAS  Google Scholar 

  • Parks DA, Granger DN. Role of oxygen radials in gastrointestinal ischaemia. In Superoxide and superoxide dismutase in chemistry, biology and medicine, Elsevier Publishers, 1986

    Google Scholar 

  • Parks DA, Williams TK, Beckman JS. Conversion of xanthine dehydrogenase to oxidase in ischemic rat intestine: a reevaluation. American Journal of Physiology 254: G768–G774, 1988

    PubMed  CAS  Google Scholar 

  • Peters-Joris C, Vandervoorde AM, Bandhuin P. Subcellular localization of superoxide dismutase in rat liver. Biochemistry Journal 150: 31–39, 1975

    Google Scholar 

  • Peterson DA, Asinger RW, Elspenger KJ, Homans DC, Eaton JW. Reactive oxygen species may cause myocardial reperfusion injury. Biochemical and Biophysical Research Communications 127: 87–93, 1985

    Article  PubMed  CAS  Google Scholar 

  • Petrone WF, English DK, Wong K, McCord JM. Free radicals and inflammation: superoxide dependent chemotactic factor in plasma. Proceedings of National Academy of Sciences 77: 1159, 1980

    Article  CAS  Google Scholar 

  • Phan SH. Xanthine dehydrogenase to xanthine oxidase conversion in neutrophil mediated endothelial cell injury. In Catravas JD (Ed.) Vascular endothelium: receptors and transduction mechanisms, NATO ASI Series, Series A: Live science, Vol. 175, p. 270, Plenum Press, New York, 1989

    Google Scholar 

  • Poli G, Albano E, Potto E, Biasi F, Carini R, et al. Lipid peroxidation and tissue damage. In Hayashi et al. (Eds) Medical, biochemical and chemical aspects of free radicals, pp. 931–936, Elsevier Science Publishing Company, Amsterdam, 1989

    Google Scholar 

  • Pyke S, Lew H. Quintanilha A. Severe depletion in liver glutathione during physical exercise. Biochemical and Biophysical Research Communication 139(3): 926–931, 1986

    Article  CAS  Google Scholar 

  • Quintanilha AT. Effects of physical exercise and/or vitamin E on tissue oxidation metabolism. Biochemical Society Transactions 12: 403–404, 1984

    PubMed  CAS  Google Scholar 

  • Quintanilha AT, Packer L, Szyszlo-Davies JM, Racanelli TL, Davies KJA. Membrane effects of vitamin E deficiency: bioenergetic and surface charge density studies of skeletal muscle and liver mitochondria. Annals of the New York Academy of Sciences 393: 32–47, 1982

    Article  PubMed  CAS  Google Scholar 

  • Rao PS, Cohen MV, Mueller HS. Production of free radicals and lipid peroxides in early experimental myocardial ischemia. Journal of Molecular Cell Cardiology 15: 713–716, 1983

    Article  CAS  Google Scholar 

  • Reimer KA, Jennings RB. Failure of the xanthine oxidase inhibitor allopurinol to limit infarct size after ischemia and reperfusion in dogs. Circulation 71: 1069–1075, 1985

    Article  PubMed  CAS  Google Scholar 

  • Roy RS, McCord JM. Superoxide and ischemia: conversion of xanthine dehydrogenase to xanthine oxidase. In Greenwald & Cohen (Eds) Oxy radicals and their scavenger systems, Vol II: Cellular and medical aspects, pp. 145–153, Elsevier Science Publishing Company, Amsterdam, 1983

    Google Scholar 

  • Salminen A, Kainulainen H, Vihko V. Endurance training and antioxidants of lung. Experientia 40: 822, 1984

    Article  PubMed  CAS  Google Scholar 

  • Salminen A, Vihko V. Endurance training reduces the susceptibility of mouse skeletal muscle to lipid peroxidation in vitro. Acta Physiologica Scandinavica 117: 109–113, 1983a

    Article  PubMed  CAS  Google Scholar 

  • Salminen A, Vihko V. Lipid peroxidation in exercise myopathy. Experimental and Molecular Pathology 38: 380–388, 1983b

    Article  PubMed  CAS  Google Scholar 

  • Saugstad OD. Hypoxanthine as a measurement of hypoxia. Pediatric Research 9: 158–161, 1975

    Article  PubMed  CAS  Google Scholar 

  • Schlafer M, Kane PF, Kirsch MM. Superoxide dismutase plus catalase enhances the efficacy of hypothermic cardioplegia to protect the globally ischemic, reperfused heart. Journal of Thoracic Cardiovascular Surgery 83: 830–834, 1982

    Google Scholar 

  • Smith JK, Carden DL, Grisham MB, Granger DN, Korthuis RJ. Role of iron in postischemic microvascular injury. American Journal of Physiology 256: H1472–H1477, 1989

    PubMed  CAS  Google Scholar 

  • Soussi B, Idström JP, Scherstén T, Bylund-Fellenius AC. Cytochrome C oxidase and cardiolipin alterations in response to skeletal muscle ischaemia and reperfusion. Acta Physiologica Scandinavica 138: 107–114, 1990

    Article  PubMed  CAS  Google Scholar 

  • Southard JH, Marsh DC, McAnulty DVM, Beizer FO. Oxygen-derived free radical damage in organ preservation: activity of superoxide dismutase and xanthine oxidase. Surgery 101: 566–570, 1987

    PubMed  CAS  Google Scholar 

  • Southorn PA, Powis G. Free radicals in medicine. Mayo Clinic Proceedings 63: 390 and 63: 381, 1988

    PubMed  CAS  Google Scholar 

  • Stainsby WN, Brechere WF, O’Drobinak DN, Barclay JK. Oxidation/reduction state of cytochrome oxidase during repetitive contractions. Journal of Applied Physiology 67(5): 2158–2162, 1989

    PubMed  CAS  Google Scholar 

  • Stewart JR, Crute SL, Loughlin V, Hess ML, Greenfield LJ. Prevention of free radical induced myocardial reperfusion injury with allopurinol. Journal of Thoracic Cardiovascular Surgery 90: 68–72, 1985

    CAS  Google Scholar 

  • Stirpe F, Della Corte E. The regulation of rat liver xanthine oxidase: conversion in vitro of the enzyme activity from dehydrogenase (Type D) to oxidase (Type O). Journal of Biological Chemistry 244: 3855–3863, 1969

    PubMed  CAS  Google Scholar 

  • Strock PE, Majno GM. Vascular responses to experimental tourniquet ischemia. Surgery in Gynecological Obstetrics 129: 309–318, 1969a

    CAS  Google Scholar 

  • Strock E, Majno G. Microvascular changes in acutely ischemic rat muscle. Surgery in Gynecological Obstetrics 129: 1213–1224, 1969b

    CAS  Google Scholar 

  • Suzuki M, Inauen W, Kvietys PR, Grisham MB, Meininger C, et al. Superoxide mediates reperfusion-induced leukocyte-endothelial cell interactions. American Journal of Physiology: H1740–H1745, 1989

    Google Scholar 

  • Tappel AL. Will antioxidant nutrients slow aging processes? Geriatrics 23: 97–105, 1968

    PubMed  CAS  Google Scholar 

  • Thomas CE, Morehouse LA, Aust SD. Ferritin and superoxide-dependent lipid peroxidation. Journal of Biological Chemistry 260: 3275–3280, 1985

    PubMed  CAS  Google Scholar 

  • Thompson-Gorman SL, Zweier JL. Evaluation of the role of xanthine oxidase in myocardial reperfusion injury. Journal of Biological Chemistry 265: 6656–6663, 1990

    PubMed  CAS  Google Scholar 

  • Tsan M-F, White JE, Rosano CL. Modelation of endothelial GSH concentrations: effect of exogenous GSH and GSH monoethyl ester. Journal of Applied Physiology 66(3): 1029–1034, 1989

    PubMed  CAS  Google Scholar 

  • Tyler PD. Polarographie assay and intracellular distribution of superoxide dismutase in rat liver. Biochemistry Journal 147: 493–504, 1975

    CAS  Google Scholar 

  • van Bilsen M, van der Vusse GJ, Coumans WA, de Groot MJM, Willemsen PHM, et al. Degradation of adenine nucleotides in ischemic and reperfused rat heart. American Journal of Physiology 257: H47–H54, 1989

    PubMed  Google Scholar 

  • van Fraechem JHP, Folkers K. Coenzyme Q10 and physical performance. In Folkers & Yamamura (Eds) Biomedical and clinical aspects of coenzyme Q, Vol. 3, pp. 235–241, Elsevier/North-Holland, Amsterdam/New York, 1981

    Google Scholar 

  • van Hemmen JJ, Meuling WJ. Inactivation of biologically active DNA by gamma-ray-induced superoxide radicals and their dismutation products: singlet molecular oxygen and hydrogen peroxide. Biochimica et Biophysica Acta 402: 133–141, 1975

    Article  PubMed  Google Scholar 

  • van Rollins M, Murphy R. Auto oxidation of docosahexanoic acid, analysis of ten isomers of hydroxy docohexaenoate. Journal of Lipid Research 25: 507–517, 1984

    Google Scholar 

  • Wade CR, Van Rij AM. In vivo lipid peroxidation in man as measured by the respiratory excretion of ethane, pentane and other low-molecular weight hydrocarbons. Analytical Biochemistry 150: 1–7, 1985

    Article  PubMed  CAS  Google Scholar 

  • Wade CR, Jackson PG, Highton J, van Rij AM. Lipid peroxidation and malondialdehyde in the synovial fluid and plasma of patients with rheumatoid arthritis. Clinica Chimica Acta 164: 245–250, 1987

    Article  CAS  Google Scholar 

  • Wajner M, Harkness RA. Distribution of xanthine dehydrogenase and oxidase activities in human and rabbit tissues. Biochimica et Biophysica Acta 991: 79–84, 1989

    Article  PubMed  CAS  Google Scholar 

  • Watts RWE, Watts JEM, Seegmiller JE. Xanthine oxidase activity in human tissues and its inhibition by allopurinol (4-hydroxypyrazolo [3,4-d] pyrimidine. Journal of Laboratory and Clinical Medicine 66: 688–697, 1965

    PubMed  CAS  Google Scholar 

  • Weisiger RA, Fridovich I. Mitochondrial superoxide dismutase: site of synthesis and intramitochondrial localization. Journal of Biological Chemistry 248(13): 4793–4796, 1973

    PubMed  CAS  Google Scholar 

  • Viinikka L, Vuori J, Ylikorkala O. Lipid peroxides, prostacyclin, and thromboxane A2 in runners during acute exercise. Medicine and Science in Sports and Exercise 16: 275–277, 1984

    PubMed  CAS  Google Scholar 

  • Willson RL. Free radical repair mechanisms and the interaction of glutathione and vitamins C and E. In Nygaard & Simic (Eds) Radioprotectors and anticarcinogens, pp. 1–22, Academic, Press, New York, 1983

    Google Scholar 

  • Wong SHY, Knight JA, Hopfer SM, Zaharia O, Leach CN, Sunderman FW. Lipid peroxides in plasma as measured by liquid chromatographic separation of malondialdehyde thiobarbituric acid adduct. Clinical Chemistry 33: 214–220, 1987

    PubMed  CAS  Google Scholar 

  • Zweier JL, Flaherty JT, Weisfeldt ML. Measurement of free radical generation in the post-ischemic heart. In Gerutti et al. (Eds) Oxy-radicals in molecular biology and pathology, pp. 365–383, Liss AR Inc., New York, 1988

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sjödin, B., Westing, Y.H. & Apple, F.S. Biochemical Mechanisms for Oxygen Free Radical Formation During Exercise. Sports Med 10, 236–254 (1990). https://doi.org/10.2165/00007256-199010040-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00007256-199010040-00003

Keywords

Navigation