Skip to main content
Top
Published in: Drugs & Aging 5/2003

01-04-2003 | Review Article

Glutamate Receptors and Parkinson’s Disease

Opportunities for Intervention

Authors: Michael J. Marino, Ornella Valenti, Dr P. Jeffrey Conn

Published in: Drugs & Aging | Issue 5/2003

Login to get access

Abstract

Parkinson’s disease is a debilitating neurodegenerative movement disorder that is the result of a degeneration of dopaminergic neurons in the substantia nigra pars compacta. The resulting loss of striatal dopaminergic tone is believed to underlie a series of changes in the circuitry of the basal ganglia that ultimately lead to severe motor disturbances due to excessive basal ganglia outflow. Glutamate plays a central role in the disruption of normal basal ganglia function, and it has been hypothesised that agents acting to restore normal glutamatergic function may provide therapeutic interventions that bypass the severe motor side effects associated with current dopamine replacement strategies. Analysis of the effects of glutamate receptor ligands in the basal ganglia circuit suggests that both ionotropic and metabotropic glutamate receptors could have antiparkinsonian actions. In particular, NMDA receptor antagonists that selectively target the NR2B subunit and antagonists of the metabotropic glutamate receptor mGluR5 appear to hold promise and deserve future attention.
Literature
1.
go back to reference Lang AE, Lozano AM. Parkinson’s Disease — first of two parts. N Engl J Med 1998; 339(15): 1044–53PubMedCrossRef Lang AE, Lozano AM. Parkinson’s Disease — first of two parts. N Engl J Med 1998; 339(15): 1044–53PubMedCrossRef
2.
go back to reference Bennett DA, Beckett LA, Murray AM, et al. Prevalence of Parkinsonian signs and associated mortality in a community population of older people. N Engl J Med 1996; 334(2): 71–6PubMedCrossRef Bennett DA, Beckett LA, Murray AM, et al. Prevalence of Parkinsonian signs and associated mortality in a community population of older people. N Engl J Med 1996; 334(2): 71–6PubMedCrossRef
3.
go back to reference Hassler R. Zur Pathologie der Paralysis agitans und des postenzephalitischen Parkinsonismus. J Psychol Neurol 1938; 48: 387–476 Hassler R. Zur Pathologie der Paralysis agitans und des postenzephalitischen Parkinsonismus. J Psychol Neurol 1938; 48: 387–476
4.
go back to reference Erhinger H, Homykiewicz O. Verteilung von Noradrenalin und Dopamin (3-Hydroxytyramin) im Gehirn des Menschen und ihr Verhalten bei Erkrankungen des extrapyramidalen Systems. Klin Wochenschr 1960; 38: 1236–9CrossRef Erhinger H, Homykiewicz O. Verteilung von Noradrenalin und Dopamin (3-Hydroxytyramin) im Gehirn des Menschen und ihr Verhalten bei Erkrankungen des extrapyramidalen Systems. Klin Wochenschr 1960; 38: 1236–9CrossRef
5.
go back to reference Jankovic J. Levodopa strengths and weaknesses. Neurology 2002; 58(90001): 19S–32CrossRef Jankovic J. Levodopa strengths and weaknesses. Neurology 2002; 58(90001): 19S–32CrossRef
6.
go back to reference DeLong MR. Primate models of movement disorders of basal ganglia origin. Trends Neurosci 1990; 13(7): 281–5PubMedCrossRef DeLong MR. Primate models of movement disorders of basal ganglia origin. Trends Neurosci 1990; 13(7): 281–5PubMedCrossRef
7.
go back to reference Wichmann T, DeLong MR. Models of basal ganglia function and pathophysiology of movement disorders. Neurosurg Clin N Am 1998; 9(2): 223–36PubMed Wichmann T, DeLong MR. Models of basal ganglia function and pathophysiology of movement disorders. Neurosurg Clin N Am 1998; 9(2): 223–36PubMed
8.
go back to reference Hollerman JR, Grace AA. Subthalamic nucleus cell firing in the 6-OHDA-treated rat: basal activity and response to haloperidol. Brain Res 1992; 590(1–2): 291–9PubMedCrossRef Hollerman JR, Grace AA. Subthalamic nucleus cell firing in the 6-OHDA-treated rat: basal activity and response to haloperidol. Brain Res 1992; 590(1–2): 291–9PubMedCrossRef
9.
go back to reference Bergman H, Wichmann T, Karmon B, et al. The primate subthalamic nucleus: II. neuronal activity in the MPTP model of parkinsonism. J Neurophysiol 1994; 72(2): 507–20PubMed Bergman H, Wichmann T, Karmon B, et al. The primate subthalamic nucleus: II. neuronal activity in the MPTP model of parkinsonism. J Neurophysiol 1994; 72(2): 507–20PubMed
10.
go back to reference Hassani OK, Mouroux M, Feger J. Increased subthalamic neuronal activity after nigral dopaminergic lesion independent of disinhibition via the globus pallidus. Neuroscience 1996; 72(1): 105–15PubMedCrossRef Hassani OK, Mouroux M, Feger J. Increased subthalamic neuronal activity after nigral dopaminergic lesion independent of disinhibition via the globus pallidus. Neuroscience 1996; 72(1): 105–15PubMedCrossRef
11.
go back to reference Benazzouz A, Breit S, Koudsie A, et al. Intraoperative microrecordings of the subthalamic nucleus in Parkinson’s disease. Mov Disord 2002; 17Suppl. 3: S145–9PubMedCrossRef Benazzouz A, Breit S, Koudsie A, et al. Intraoperative microrecordings of the subthalamic nucleus in Parkinson’s disease. Mov Disord 2002; 17Suppl. 3: S145–9PubMedCrossRef
12.
go back to reference Rodriguez-Oroz MC, Rodriguez M, Guridi J, et al. The subthalamic nucleus in Parkinson’s disease: somatotopic organization and physiological characteristics. Brain 2001; 124 (Pt 9): 1777–90PubMedCrossRef Rodriguez-Oroz MC, Rodriguez M, Guridi J, et al. The subthalamic nucleus in Parkinson’s disease: somatotopic organization and physiological characteristics. Brain 2001; 124 (Pt 9): 1777–90PubMedCrossRef
13.
go back to reference Alvarez L, Macias R, Guridi J, et al. Dorsal subthalamotomy for Parkinson’s disease. Mov Disord 2001; 16(1): 72–8PubMedCrossRef Alvarez L, Macias R, Guridi J, et al. Dorsal subthalamotomy for Parkinson’s disease. Mov Disord 2001; 16(1): 72–8PubMedCrossRef
14.
go back to reference Guridi J, Obeso JA. The subthalamic nucleus, hemiballismus and Parkinson’s disease: reappraisal of a neurosurgical dogma. Brain 2001; 124 (Pt 1): 5–19PubMedCrossRef Guridi J, Obeso JA. The subthalamic nucleus, hemiballismus and Parkinson’s disease: reappraisal of a neurosurgical dogma. Brain 2001; 124 (Pt 1): 5–19PubMedCrossRef
15.
go back to reference Laitinen LV, Bergenheim AT, Hariz MI. Leksell’s posteroventral pallidotomy in the treatment of Parkinson’s disease. J Neurosurg 1992; 76(1): 53–61PubMedCrossRef Laitinen LV, Bergenheim AT, Hariz MI. Leksell’s posteroventral pallidotomy in the treatment of Parkinson’s disease. J Neurosurg 1992; 76(1): 53–61PubMedCrossRef
16.
go back to reference Bakay RA, DeLong MR, Vitek JL. Posteroventral pallidotomy for Parkinson’s disease. J Neurosurg 1992; 77(3): 487–8PubMed Bakay RA, DeLong MR, Vitek JL. Posteroventral pallidotomy for Parkinson’s disease. J Neurosurg 1992; 77(3): 487–8PubMed
17.
go back to reference Baron MS, Vitek JL, Bakay RA, et al. Treatment of advanced Parkinson’s disease by posterior GPi pallidotomy: 1-year results of a pilot study. Ann Neurol 1996; 40(3): 355–66PubMedCrossRef Baron MS, Vitek JL, Bakay RA, et al. Treatment of advanced Parkinson’s disease by posterior GPi pallidotomy: 1-year results of a pilot study. Ann Neurol 1996; 40(3): 355–66PubMedCrossRef
18.
go back to reference Vitek JL, Bakay RA, Hashimoto T, et al. Microelectrodeguided pallidotomy: technical approach and its application in medically intractable Parkinson’s disease. J Neurosurg 1998; 88(6): 1027–43PubMedCrossRef Vitek JL, Bakay RA, Hashimoto T, et al. Microelectrodeguided pallidotomy: technical approach and its application in medically intractable Parkinson’s disease. J Neurosurg 1998; 88(6): 1027–43PubMedCrossRef
19.
go back to reference Limousin P, Pollak P, Benazzouz A, et al. Effect of parkinsonian signs and symptoms of bilateral subthalamic nucleus stimulation. Lancet 1995; 345(8942): 91–5PubMedCrossRef Limousin P, Pollak P, Benazzouz A, et al. Effect of parkinsonian signs and symptoms of bilateral subthalamic nucleus stimulation. Lancet 1995; 345(8942): 91–5PubMedCrossRef
20.
go back to reference Deep-Brain Stimulation For Parkinson’s Disease Study Group. Deep-brain stimulation of the subthalamic nucleus or the pars interna of the globus pallidus in Parkinson’s disease. N Engl J Med 2001; 345(13): 956–63CrossRef Deep-Brain Stimulation For Parkinson’s Disease Study Group. Deep-brain stimulation of the subthalamic nucleus or the pars interna of the globus pallidus in Parkinson’s disease. N Engl J Med 2001; 345(13): 956–63CrossRef
21.
go back to reference Blandini F, Nappi G, Tassorelli C, et al. Functional changes of the basal ganglia circuitry in Parkinson’s disease. Prog Neurobiol 2000; 62(1): 63–88PubMedCrossRef Blandini F, Nappi G, Tassorelli C, et al. Functional changes of the basal ganglia circuitry in Parkinson’s disease. Prog Neurobiol 2000; 62(1): 63–88PubMedCrossRef
22.
go back to reference Borges K, Dingledine R. AMPA receptors: molecular and functional diversity. Prog Brain Res 1998; 116: 153–70PubMedCrossRef Borges K, Dingledine R. AMPA receptors: molecular and functional diversity. Prog Brain Res 1998; 116: 153–70PubMedCrossRef
23.
go back to reference Conn PJ, Pin JP. Pharmacology and functions of metabotropic glutamate receptors. Annu Rev Pharmacol Toxicol 1997; 37: 205–37PubMedCrossRef Conn PJ, Pin JP. Pharmacology and functions of metabotropic glutamate receptors. Annu Rev Pharmacol Toxicol 1997; 37: 205–37PubMedCrossRef
24.
go back to reference Dingledine R, Borges K, Bowie D, et al. The glutamate receptor ion channels. Pharmacol Rev 1999; 51(1): 7–61PubMed Dingledine R, Borges K, Bowie D, et al. The glutamate receptor ion channels. Pharmacol Rev 1999; 51(1): 7–61PubMed
25.
go back to reference Rouse ST, Marino MJ, Bradley SR, et al. Distribution and roles of metabotropic glutamate receptors in the basal ganglia motor circuit: implications for treatment of Parkinson’s disease and related disorders. Pharmacol Ther 2000; 88(3): 427–35PubMedCrossRef Rouse ST, Marino MJ, Bradley SR, et al. Distribution and roles of metabotropic glutamate receptors in the basal ganglia motor circuit: implications for treatment of Parkinson’s disease and related disorders. Pharmacol Ther 2000; 88(3): 427–35PubMedCrossRef
26.
go back to reference Smith Y, Charara A, Paquet M, et al. Ionotropic and metabotropic GABA and glutamate receptors in primate basal ganglia. J Chem Neuroanat 2001; 22(1–2): 13–42PubMedCrossRef Smith Y, Charara A, Paquet M, et al. Ionotropic and metabotropic GABA and glutamate receptors in primate basal ganglia. J Chem Neuroanat 2001; 22(1–2): 13–42PubMedCrossRef
27.
go back to reference Malenka RC, Nicoll RA. NMDA-receptor-dependent synaptic plasticity: multiple forms and mechanisms. Trends Neurosci 1993; 16(12): 521–7PubMedCrossRef Malenka RC, Nicoll RA. NMDA-receptor-dependent synaptic plasticity: multiple forms and mechanisms. Trends Neurosci 1993; 16(12): 521–7PubMedCrossRef
28.
go back to reference Morris RG, Davis S, Butcher SP. Hippocampal synaptic plasticity and NMDA receptors: a role in information storage? Philos Trans R Soc Lond B Biol Sci 1990; 329(1253): 187–204PubMedCrossRef Morris RG, Davis S, Butcher SP. Hippocampal synaptic plasticity and NMDA receptors: a role in information storage? Philos Trans R Soc Lond B Biol Sci 1990; 329(1253): 187–204PubMedCrossRef
29.
go back to reference Cotman CW, Monaghan DT, Ganong AH. Excitatory amino acid neurotransmission: NMDA receptors and Hebb-type synaptic plasticity. Annu Rev Neurosci 1988; 11: 61–80PubMedCrossRef Cotman CW, Monaghan DT, Ganong AH. Excitatory amino acid neurotransmission: NMDA receptors and Hebb-type synaptic plasticity. Annu Rev Neurosci 1988; 11: 61–80PubMedCrossRef
30.
go back to reference Contestabile A. Roles of NMDA receptor activity and nitric oxide production in brain development. Brain Res Brain Res Rev 2000; 32(2–3): 476–509PubMedCrossRef Contestabile A. Roles of NMDA receptor activity and nitric oxide production in brain development. Brain Res Brain Res Rev 2000; 32(2–3): 476–509PubMedCrossRef
31.
go back to reference Scheetz AJ, Constantine-Paton M. Modulation of NMDA receptor function: implications for vertebrate neural development. FASEB J 1994; 8(10): 745–52PubMed Scheetz AJ, Constantine-Paton M. Modulation of NMDA receptor function: implications for vertebrate neural development. FASEB J 1994; 8(10): 745–52PubMed
32.
go back to reference Mody I, MacDonald JF. NMDA receptor-dependent excitotoxicity: the role of intracellular Ca2+ release. Trends Pharmacol Sci 1995; 16(10): 356–9PubMedCrossRef Mody I, MacDonald JF. NMDA receptor-dependent excitotoxicity: the role of intracellular Ca2+ release. Trends Pharmacol Sci 1995; 16(10): 356–9PubMedCrossRef
33.
go back to reference Rothman SM, Olney JW. Excitotoxicity and the NMDA receptor: still lethal after eight years. Trends Neurosci 1995; 18(2): 57–8PubMedCrossRef Rothman SM, Olney JW. Excitotoxicity and the NMDA receptor: still lethal after eight years. Trends Neurosci 1995; 18(2): 57–8PubMedCrossRef
34.
go back to reference Johnson JW, Ascher P. Glycine potentiates the NMDA response in cultured mouse brain neurons. Nature 1987; 325(6104): 529–31PubMedCrossRef Johnson JW, Ascher P. Glycine potentiates the NMDA response in cultured mouse brain neurons. Nature 1987; 325(6104): 529–31PubMedCrossRef
35.
go back to reference Johnson JW, Ascher P. Equilibrium and kinetic study of glycine action on the N-methyl-D-aspartate receptor in cultured mouse brain neurons. J Physiol 1992; 455: 339–65PubMed Johnson JW, Ascher P. Equilibrium and kinetic study of glycine action on the N-methyl-D-aspartate receptor in cultured mouse brain neurons. J Physiol 1992; 455: 339–65PubMed
36.
go back to reference Laube B, Hirai H, Sturgess M, et al. Molecular determinants of agonist discrimination by NMDA receptor subunits: analysis of the glutamate binding site on the NR2B subunit. Neuron 1997; 18(3): 493–503PubMedCrossRef Laube B, Hirai H, Sturgess M, et al. Molecular determinants of agonist discrimination by NMDA receptor subunits: analysis of the glutamate binding site on the NR2B subunit. Neuron 1997; 18(3): 493–503PubMedCrossRef
37.
go back to reference Anson LC, Chen PE, Wyllie DJ, et al. Identification of amino acid residues of the NR2A subunit that control glutamate potency in recombinant NR1/NR2A NMDA receptors. J Neurosci 1998; 18(2): 581–9PubMed Anson LC, Chen PE, Wyllie DJ, et al. Identification of amino acid residues of the NR2A subunit that control glutamate potency in recombinant NR1/NR2A NMDA receptors. J Neurosci 1998; 18(2): 581–9PubMed
38.
go back to reference Kuryatov A, Laube B, Betz H, et al. Mutational analysis of the glycine-binding site of the NMDA receptor: structural similarity with bacterial amino acid-binding proteins. Neuron 1994: 12(6): 1291–300PubMedCrossRef Kuryatov A, Laube B, Betz H, et al. Mutational analysis of the glycine-binding site of the NMDA receptor: structural similarity with bacterial amino acid-binding proteins. Neuron 1994: 12(6): 1291–300PubMedCrossRef
39.
go back to reference Wafford KA, Kathoria M, Bain CJ, et al. Identification of amino acids in the N-methyl-D-aspartate receptor NR1 subunit that contribute to the glycine binding site. Mol Pharmacol 1995; 47(2): 374–80PubMed Wafford KA, Kathoria M, Bain CJ, et al. Identification of amino acids in the N-methyl-D-aspartate receptor NR1 subunit that contribute to the glycine binding site. Mol Pharmacol 1995; 47(2): 374–80PubMed
40.
go back to reference Hirai H, Kirsch J, Laube B, et al. The glycine binding site of the N-methyl-D-aspartate receptor subunit NR1: identification of novel determinants of co-agonist potentiation in the extracellular M3-M4 loop region. Proc Natl Acad Sci U S A 1996; 93(12): 6031–6PubMedCrossRef Hirai H, Kirsch J, Laube B, et al. The glycine binding site of the N-methyl-D-aspartate receptor subunit NR1: identification of novel determinants of co-agonist potentiation in the extracellular M3-M4 loop region. Proc Natl Acad Sci U S A 1996; 93(12): 6031–6PubMedCrossRef
41.
go back to reference Williams K, Chao J, Kashiwagi K, et al. Activation of N-methyl-D-aspartate receptors by glycine: role of an aspartate residue in the M3-M4 loop of the NR1 subunit. Mol Pharmacol 1996; 50(4): 701–8PubMed Williams K, Chao J, Kashiwagi K, et al. Activation of N-methyl-D-aspartate receptors by glycine: role of an aspartate residue in the M3-M4 loop of the NR1 subunit. Mol Pharmacol 1996; 50(4): 701–8PubMed
42.
go back to reference Wood MW, VanDongen HM, VanDongen AM. An alanine residue in the M3-M4 linker lines the glycine binding pocket of the N-methyl-D-aspartate receptor. J Biol Chem 1997; 272(6): 3532–7PubMedCrossRef Wood MW, VanDongen HM, VanDongen AM. An alanine residue in the M3-M4 linker lines the glycine binding pocket of the N-methyl-D-aspartate receptor. J Biol Chem 1997; 272(6): 3532–7PubMedCrossRef
43.
go back to reference Ascher P, Bregestovski P, Nowak L. N-methyl-D-aspartateactivated channels of mouse central neurones in magnesium-free solutions. J Physiol 1988; 399: 207–26PubMed Ascher P, Bregestovski P, Nowak L. N-methyl-D-aspartateactivated channels of mouse central neurones in magnesium-free solutions. J Physiol 1988; 399: 207–26PubMed
44.
go back to reference Mayer ML, Westbrook GL. Permeation and block of N-methyl-D-aspartic acid receptor channels by divalent cations in mouse cultured central neurones. J Physiol 1987; 394: 501–27PubMed Mayer ML, Westbrook GL. Permeation and block of N-methyl-D-aspartic acid receptor channels by divalent cations in mouse cultured central neurones. J Physiol 1987; 394: 501–27PubMed
45.
go back to reference Mayer ML, Westbrook GL. The action of N-methyl-D-aspartic acid on mouse spinal neurones in culture. J Physiol 1985; 361: 65–90PubMed Mayer ML, Westbrook GL. The action of N-methyl-D-aspartic acid on mouse spinal neurones in culture. J Physiol 1985; 361: 65–90PubMed
46.
go back to reference Ascher P, Nowak L. The role of divalent cations in the N-methyl-D-aspartate responses of mouse central neurones in culture. J Physiol 1988; 399: 247–66PubMed Ascher P, Nowak L. The role of divalent cations in the N-methyl-D-aspartate responses of mouse central neurones in culture. J Physiol 1988; 399: 247–66PubMed
47.
go back to reference Nowak L, Bregestovski P, Ascher P, et al. Magnesium gates glutamate-activated channels in mouse central neurones. Nature 1984; 307(5950): 462–5PubMedCrossRef Nowak L, Bregestovski P, Ascher P, et al. Magnesium gates glutamate-activated channels in mouse central neurones. Nature 1984; 307(5950): 462–5PubMedCrossRef
48.
go back to reference Tsien JZ. Linking Hebb’s coincidence-detection to memory formation. Curr Opin Neurobiol 2000; 10(2): 266–73PubMedCrossRef Tsien JZ. Linking Hebb’s coincidence-detection to memory formation. Curr Opin Neurobiol 2000; 10(2): 266–73PubMedCrossRef
49.
go back to reference Seeburg PH, Burnashev N, Kohr G, et al. The NMDA receptor channel: molecular design of a coincidence detector. Recent Prog Horm Res 1995; 50: 19–34PubMed Seeburg PH, Burnashev N, Kohr G, et al. The NMDA receptor channel: molecular design of a coincidence detector. Recent Prog Horm Res 1995; 50: 19–34PubMed
50.
go back to reference Pisani A, Calabresi P, Centonze D, et al. Enhancement of NMDA responses by group I metabotropic glutamate receptor activation in striatal neurones. Br J Pharmacol 1997; 120(6): 1007–14PubMedCrossRef Pisani A, Calabresi P, Centonze D, et al. Enhancement of NMDA responses by group I metabotropic glutamate receptor activation in striatal neurones. Br J Pharmacol 1997; 120(6): 1007–14PubMedCrossRef
51.
go back to reference Gotz T, Kraushaar U, Geiger J, et al. Functional properties of AMPA and NMDA receptors expressed in identified types of basal ganglia neurons. J Neurosci 1997; 17(1): 204–15PubMed Gotz T, Kraushaar U, Geiger J, et al. Functional properties of AMPA and NMDA receptors expressed in identified types of basal ganglia neurons. J Neurosci 1997; 17(1): 204–15PubMed
52.
go back to reference Awad H, Hubert GW, Smith Y, et al. Activation of metabotropic glutamate receptor 5 has direct excitatory effects and potentiates NMDA receptor currents in neurons of the subthalamic nucleus. J Neurosci 2000; 20(21): 7871–9PubMed Awad H, Hubert GW, Smith Y, et al. Activation of metabotropic glutamate receptor 5 has direct excitatory effects and potentiates NMDA receptor currents in neurons of the subthalamic nucleus. J Neurosci 2000; 20(21): 7871–9PubMed
53.
go back to reference Marino MJ, Hubert GW, Smith Y, et al. Functional roles of group I metabotropic glutamate receptors in the substantia nigra pars reticulata [abstract]. Soc Neurosci 2000; 30(16): 740 Marino MJ, Hubert GW, Smith Y, et al. Functional roles of group I metabotropic glutamate receptors in the substantia nigra pars reticulata [abstract]. Soc Neurosci 2000; 30(16): 740
54.
go back to reference Starr MS. Antiparkinsonian actions of glutamate antagonists, alone and with LEVODOPA: a review of evidence and suggestions for possible mechanisms. J Neural Transm Park Dis Dement Sect 1995; 10(2–3): 141–85PubMed Starr MS. Antiparkinsonian actions of glutamate antagonists, alone and with LEVODOPA: a review of evidence and suggestions for possible mechanisms. J Neural Transm Park Dis Dement Sect 1995; 10(2–3): 141–85PubMed
55.
go back to reference Williams K. Ifenprodil discriminates subtypes of the N-methyl-D-aspartate receptor: selectivity and mechanisms at recombinant heteromeric receptors. Mol Pharmacol 1993; 44(4): 851–9PubMed Williams K. Ifenprodil discriminates subtypes of the N-methyl-D-aspartate receptor: selectivity and mechanisms at recombinant heteromeric receptors. Mol Pharmacol 1993; 44(4): 851–9PubMed
56.
go back to reference Avenet P, Leonardon J, Besnard F, et al. Antagonist properties of eliprodil and other NMDA receptor antagonists at rat NR1A/NR2A and NR1A/NR2B receptors expressed in Xe-nopus oocytes. Neurosci Lett 1997; 223(2): 133–6PubMedCrossRef Avenet P, Leonardon J, Besnard F, et al. Antagonist properties of eliprodil and other NMDA receptor antagonists at rat NR1A/NR2A and NR1A/NR2B receptors expressed in Xe-nopus oocytes. Neurosci Lett 1997; 223(2): 133–6PubMedCrossRef
57.
go back to reference Gallagher MJ, Huang H, Pritchett DB, et al. Interactions between ifenprodil and the NR2B subunit of the N-methyl-D-aspartate receptor. J Biol Chem 1996; 271(16): 9603–11PubMedCrossRef Gallagher MJ, Huang H, Pritchett DB, et al. Interactions between ifenprodil and the NR2B subunit of the N-methyl-D-aspartate receptor. J Biol Chem 1996; 271(16): 9603–11PubMedCrossRef
58.
go back to reference Menniti F, Chenard B, Collins M, et al. CP-101,606, a potent neuroprotectant selective for forebrain neurons. Eur J Pharmacol 1997; 331(2–3): 117–26PubMedCrossRef Menniti F, Chenard B, Collins M, et al. CP-101,606, a potent neuroprotectant selective for forebrain neurons. Eur J Pharmacol 1997; 331(2–3): 117–26PubMedCrossRef
59.
go back to reference Chenard BL, Bordner J, Butler TW, et al. (lS,2S)-l-(4-hydroxyphenyl)-2-(4-hydroxy-4-phenylpiperidino)-l-propanol: apotent new neuroprotectant which blocks N-methyl-D-aspartate responses. J Med Chem 1995; 38(16): 3138–45PubMedCrossRef Chenard BL, Bordner J, Butler TW, et al. (lS,2S)-l-(4-hydroxyphenyl)-2-(4-hydroxy-4-phenylpiperidino)-l-propanol: apotent new neuroprotectant which blocks N-methyl-D-aspartate responses. J Med Chem 1995; 38(16): 3138–45PubMedCrossRef
60.
go back to reference Bormann J. Memantine is a potent blocker of N-methyl-D-aspartate (NMDA) receptor channels. Eur J Pharmacol 1989; 166(3): 591–2PubMedCrossRef Bormann J. Memantine is a potent blocker of N-methyl-D-aspartate (NMDA) receptor channels. Eur J Pharmacol 1989; 166(3): 591–2PubMedCrossRef
61.
go back to reference Kornhuber J, Weiler M, Schoppmeyer K, et al. Amantadine and memantine are NMDA receptor antagonists with neuroprotective properties. J Neural Transm Suppl 1994; 43: 91–104PubMed Kornhuber J, Weiler M, Schoppmeyer K, et al. Amantadine and memantine are NMDA receptor antagonists with neuroprotective properties. J Neural Transm Suppl 1994; 43: 91–104PubMed
62.
go back to reference Klockgether T, Jacobsen P, Loschmann PA, et al. The antiparkinsonian agent budipine is an N-methyl-D-aspartate antagonist. J Neural Transm Park Dis Dement Sect 1993; 5(2): 101–6PubMedCrossRef Klockgether T, Jacobsen P, Loschmann PA, et al. The antiparkinsonian agent budipine is an N-methyl-D-aspartate antagonist. J Neural Transm Park Dis Dement Sect 1993; 5(2): 101–6PubMedCrossRef
63.
go back to reference Parsons CG, Hartmann S, Spielmanns P. Budipine is a low affinity, N-methyl-D-aspartate receptor antagonist: patch clamp studies in cultured striatal, hippocampal, cortical and superior colliculus neurones. Neuropharmacology 1998; 37(6): 719–27PubMedCrossRef Parsons CG, Hartmann S, Spielmanns P. Budipine is a low affinity, N-methyl-D-aspartate receptor antagonist: patch clamp studies in cultured striatal, hippocampal, cortical and superior colliculus neurones. Neuropharmacology 1998; 37(6): 719–27PubMedCrossRef
64.
go back to reference Kornhuber J, Herr B, Thome J, et al. The antiparkinsonian drug budipine binds to NMDA and sigma receptors in postmortem human brain tissue. J Neural Transm Suppl 1995; 46: 131–7PubMed Kornhuber J, Herr B, Thome J, et al. The antiparkinsonian drug budipine binds to NMDA and sigma receptors in postmortem human brain tissue. J Neural Transm Suppl 1995; 46: 131–7PubMed
65.
go back to reference Jackisch R, Kruchen A, Sauermann W, et al. The antiparkinsonian drugs budipine and biperiden are use-dependent (uncompetitive) NMDA receptor antagonists. Eur J Pharmacol 1994; 264(2): 207–11PubMedCrossRef Jackisch R, Kruchen A, Sauermann W, et al. The antiparkinsonian drugs budipine and biperiden are use-dependent (uncompetitive) NMDA receptor antagonists. Eur J Pharmacol 1994; 264(2): 207–11PubMedCrossRef
66.
go back to reference Steece-Collier K, Chambers LK, Jaw-Tsai SS, et al. Antiparkinsonian actions of CP-101,606, an antagonist of NR2B subunitcontaining N-methyl-d-aspartate receptors. Exp Neurol 2000; 163(1): 239–43PubMedCrossRef Steece-Collier K, Chambers LK, Jaw-Tsai SS, et al. Antiparkinsonian actions of CP-101,606, an antagonist of NR2B subunitcontaining N-methyl-d-aspartate receptors. Exp Neurol 2000; 163(1): 239–43PubMedCrossRef
67.
go back to reference Bubser M, Zadow B, Kronthaler UO, et al. Behavioural pharmacology of the non-competitive NMDA antagonists dextrorphan and ADCI: relations between locomotor stimulation, anticataleptic potential and forebrain dopamine metabolism. Naunyn Schmiedebergs Arch Pharmacol 1997; 355(6): 767–73PubMedCrossRef Bubser M, Zadow B, Kronthaler UO, et al. Behavioural pharmacology of the non-competitive NMDA antagonists dextrorphan and ADCI: relations between locomotor stimulation, anticataleptic potential and forebrain dopamine metabolism. Naunyn Schmiedebergs Arch Pharmacol 1997; 355(6): 767–73PubMedCrossRef
68.
go back to reference Kaur S, Ozer H, Starr M. MK 801 reverses haloperidol-induced catalepsy from both striatal and extrastriatal sites in the rat brain. Eur J Pharmacol 1997; 332(2): 153–60PubMedCrossRef Kaur S, Ozer H, Starr M. MK 801 reverses haloperidol-induced catalepsy from both striatal and extrastriatal sites in the rat brain. Eur J Pharmacol 1997; 332(2): 153–60PubMedCrossRef
69.
go back to reference McAllister KH. The competitive NMDA receptor antagonist SDZ 220-581 reverses haloperidol-induced catalepsy in rats. Eur J Pharmacol 1996; 314(3): 307–11PubMedCrossRef McAllister KH. The competitive NMDA receptor antagonist SDZ 220-581 reverses haloperidol-induced catalepsy in rats. Eur J Pharmacol 1996; 314(3): 307–11PubMedCrossRef
70.
go back to reference Moore NA, Blackman A, Awere S, et al. NMDA receptor antagonists inhibit catalepsy induced by either dopamine Dl or D2 receptor antagonists. Eur J Pharmacol 1993; 237(1): 1–7PubMedCrossRef Moore NA, Blackman A, Awere S, et al. NMDA receptor antagonists inhibit catalepsy induced by either dopamine Dl or D2 receptor antagonists. Eur J Pharmacol 1993; 237(1): 1–7PubMedCrossRef
71.
go back to reference Nash JE, Hill MP, Brotchie JM. Antiparkinsonian actions of blockade of NR2B-containing NMDA receptors in the reserpine-treated rat. Exp Neurol 1999; 155(1): 42–8PubMedCrossRef Nash JE, Hill MP, Brotchie JM. Antiparkinsonian actions of blockade of NR2B-containing NMDA receptors in the reserpine-treated rat. Exp Neurol 1999; 155(1): 42–8PubMedCrossRef
72.
go back to reference Kaur S, Starr MS. Antiparkinsonian action of dextromethorphan in the reserpine-treated mouse. Eur J Pharmacol 1995; 280(2): 159–66PubMedCrossRef Kaur S, Starr MS. Antiparkinsonian action of dextromethorphan in the reserpine-treated mouse. Eur J Pharmacol 1995; 280(2): 159–66PubMedCrossRef
73.
go back to reference Ossowska K, Lorenc-Koci E, Wolfarth S. Antiparkinsonian action of MK-801 on the reserpine-induced rigidity: a mechanomyographic analysis. J Neural Transm Park Dis Dement Sect 1994; 7(2): 143–52PubMedCrossRef Ossowska K, Lorenc-Koci E, Wolfarth S. Antiparkinsonian action of MK-801 on the reserpine-induced rigidity: a mechanomyographic analysis. J Neural Transm Park Dis Dement Sect 1994; 7(2): 143–52PubMedCrossRef
74.
go back to reference Skuza G, Rogoz Z, Quack G, et al. Memantine, amantadine, and L-deprenyl potentiate the action of levodopa in monoaminedepleted rats. J Neural Transm Gen Sect 1994; 98(1): 57–67PubMedCrossRef Skuza G, Rogoz Z, Quack G, et al. Memantine, amantadine, and L-deprenyl potentiate the action of levodopa in monoaminedepleted rats. J Neural Transm Gen Sect 1994; 98(1): 57–67PubMedCrossRef
76.
go back to reference Carlsson M, Carlsson A. Dramatic synergism between MK-801 and clonidine with respect to locomotor stimulatory effect in monoamine-depleted mice. J Neural Transm 1989; 77(1): 65–71PubMedCrossRef Carlsson M, Carlsson A. Dramatic synergism between MK-801 and clonidine with respect to locomotor stimulatory effect in monoamine-depleted mice. J Neural Transm 1989; 77(1): 65–71PubMedCrossRef
77.
go back to reference Stauch-Slusher B, Rissolo KC, Jackson PF, et al. Centrally-administered glycine antagonists increase locomotion in monoamine-depleted mice. J Neural Transm Gen Sect 1994; 97(3): 175–85PubMedCrossRef Stauch-Slusher B, Rissolo KC, Jackson PF, et al. Centrally-administered glycine antagonists increase locomotion in monoamine-depleted mice. J Neural Transm Gen Sect 1994; 97(3): 175–85PubMedCrossRef
78.
go back to reference Karcz-Kubicha M, Lorenz B, Danysz W. GlycineB antagonists and partial agonists in rodent models of Parkinson’s disease: comparison with uncompetitive N-methyl-D-aspartate receptor antagonist. Neuropharmacology 1999; 38(1): 109–19PubMedCrossRef Karcz-Kubicha M, Lorenz B, Danysz W. GlycineB antagonists and partial agonists in rodent models of Parkinson’s disease: comparison with uncompetitive N-methyl-D-aspartate receptor antagonist. Neuropharmacology 1999; 38(1): 109–19PubMedCrossRef
79.
go back to reference Kretschmer BD, Zadow B, Volz TL, et al. The contribution of the different binding sites of the N-methyl-D-aspartate (NMDA) receptor to the expression of behavior. J Neural Transm Gen Sect 1992; 87(1): 23–35PubMedCrossRef Kretschmer BD, Zadow B, Volz TL, et al. The contribution of the different binding sites of the N-methyl-D-aspartate (NMDA) receptor to the expression of behavior. J Neural Transm Gen Sect 1992; 87(1): 23–35PubMedCrossRef
80.
go back to reference Kretschmer BD, Koch M. Role of the strychnine-insensitive glycine binding site in the nucleus accumbens and anterodorsal striatum in sensorimotor gating: a behavioral and microdialysis study. Psychopharmacology 1997; 130(2): 131–8PubMedCrossRef Kretschmer BD, Koch M. Role of the strychnine-insensitive glycine binding site in the nucleus accumbens and anterodorsal striatum in sensorimotor gating: a behavioral and microdialysis study. Psychopharmacology 1997; 130(2): 131–8PubMedCrossRef
81.
go back to reference Mokry J. Experimental models and behavioural tests used in the study of Parkinson’s disease. Physiol Res 1995; 44(3): 143–50PubMed Mokry J. Experimental models and behavioural tests used in the study of Parkinson’s disease. Physiol Res 1995; 44(3): 143–50PubMed
82.
go back to reference Klockgether T, Wullner U, Steinbach JP, et al. Effects of the antiparkinsonian drug budipine on central neurotransmitter systems. Eur J Pharmacol 1996; 301(1–3): 67–73PubMedCrossRef Klockgether T, Wullner U, Steinbach JP, et al. Effects of the antiparkinsonian drug budipine on central neurotransmitter systems. Eur J Pharmacol 1996; 301(1–3): 67–73PubMedCrossRef
83.
go back to reference St Pierre JA, Bedard PJ. Systemic administration of the NMDA receptor antagonist MK-801 potentiates circling induced by intrastriatal microinjection of dopamine. Eur J Pharmacol 1995; 272(2–3): 123–9PubMedCrossRef St Pierre JA, Bedard PJ. Systemic administration of the NMDA receptor antagonist MK-801 potentiates circling induced by intrastriatal microinjection of dopamine. Eur J Pharmacol 1995; 272(2–3): 123–9PubMedCrossRef
84.
go back to reference Loschmann PA, Wullner U, Heneka MT, et al. Differential interaction of competitive NMDA and AMPA antagonists with selective dopamine D-1 and D-2 agonists in a rat model of Parkinson’s disease. Synapse 1997; 26(4): 381–91PubMedCrossRef Loschmann PA, Wullner U, Heneka MT, et al. Differential interaction of competitive NMDA and AMPA antagonists with selective dopamine D-1 and D-2 agonists in a rat model of Parkinson’s disease. Synapse 1997; 26(4): 381–91PubMedCrossRef
85.
go back to reference Marin C, Papa S, Engber TM, et al. MK-801 prevents levodopainduced motor response alterations in parkinsonian rats. Brain Res 1996; 736(1–2): 202–5PubMedCrossRef Marin C, Papa S, Engber TM, et al. MK-801 prevents levodopainduced motor response alterations in parkinsonian rats. Brain Res 1996; 736(1–2): 202–5PubMedCrossRef
86.
go back to reference Engber TM, Papa SM, Boldry RC, et al. NMDA receptor blockade reverses motor response alterations induced by levodopa. Neuroreport 1994; 5(18): 2586–8PubMedCrossRef Engber TM, Papa SM, Boldry RC, et al. NMDA receptor blockade reverses motor response alterations induced by levodopa. Neuroreport 1994; 5(18): 2586–8PubMedCrossRef
87.
go back to reference Schmidt WJ, Kretschmer BD. Behavioural pharmacology of glutamate receptors in the basal ganglia. Neurosci Biobehav Rev 1997; 21(4): 381–92PubMedCrossRef Schmidt WJ, Kretschmer BD. Behavioural pharmacology of glutamate receptors in the basal ganglia. Neurosci Biobehav Rev 1997; 21(4): 381–92PubMedCrossRef
88.
go back to reference Di Chiara G, Morelli M, Consolo S. Modulatory functions of neurotransmitters in the striatum: ACh/dopamine/NMDA interactions. Trends Neurosci 1994; 17(6): 228–33PubMedCrossRef Di Chiara G, Morelli M, Consolo S. Modulatory functions of neurotransmitters in the striatum: ACh/dopamine/NMDA interactions. Trends Neurosci 1994; 17(6): 228–33PubMedCrossRef
89.
go back to reference Carlsson M, Carlsson A. Interactions between glutamatergic and monoaminergic systems within the basal ganglia: implications for schizophrenia and Parkinson’s disease. Trends Neurosci 1990; 13(7): 272–6PubMedCrossRef Carlsson M, Carlsson A. Interactions between glutamatergic and monoaminergic systems within the basal ganglia: implications for schizophrenia and Parkinson’s disease. Trends Neurosci 1990; 13(7): 272–6PubMedCrossRef
90.
go back to reference Morelli M, Fenu S, Pinna A, et al. Opposite effects of NMDA receptor blockade on dopaminergic D1- and D2-mediated behavior in the 6-hydroxydopamine model of turning: relationship with c-fos expression. J Pharmacol Exp Ther 1992; 260(1): 402–8PubMed Morelli M, Fenu S, Pinna A, et al. Opposite effects of NMDA receptor blockade on dopaminergic D1- and D2-mediated behavior in the 6-hydroxydopamine model of turning: relationship with c-fos expression. J Pharmacol Exp Ther 1992; 260(1): 402–8PubMed
91.
go back to reference Morelli M, Di Chiara G. MK-801 potentiates dopaminergic D1 but reduces D2 responses in the 6-hydroxydopamine model of Parkinson’s disease. Eur J Pharmacol 1990; 182(3): 611–2PubMedCrossRef Morelli M, Di Chiara G. MK-801 potentiates dopaminergic D1 but reduces D2 responses in the 6-hydroxydopamine model of Parkinson’s disease. Eur J Pharmacol 1990; 182(3): 611–2PubMedCrossRef
92.
go back to reference Carlsson M, Carlsson A. The NMDA antagonist MK-801 causes marked locomotor stimulation in monoamine-depleted mice. J Neural Transm 1989; 75(3): 221–6PubMedCrossRef Carlsson M, Carlsson A. The NMDA antagonist MK-801 causes marked locomotor stimulation in monoamine-depleted mice. J Neural Transm 1989; 75(3): 221–6PubMedCrossRef
93.
go back to reference Dunah AW, Wang Y, Yasuda RP, et al. Alterations in subunit expression, composition, and phosphorylation of striatal N-methyl-D-aspartate glutamate receptors in a rat 6-hydroxydopamine model of Parkinson’s disease. Mol Pharmacol 2000; 57(2): 342–52PubMed Dunah AW, Wang Y, Yasuda RP, et al. Alterations in subunit expression, composition, and phosphorylation of striatal N-methyl-D-aspartate glutamate receptors in a rat 6-hydroxydopamine model of Parkinson’s disease. Mol Pharmacol 2000; 57(2): 342–52PubMed
94.
go back to reference Dunah AW, Standaert DG. Dopamine D1 receptor-dependent trafficking of striatal NMDA glutamate receptors to the postsynaptic membrane. J Neurosci 2001; 21(15): 5546–58PubMed Dunah AW, Standaert DG. Dopamine D1 receptor-dependent trafficking of striatal NMDA glutamate receptors to the postsynaptic membrane. J Neurosci 2001; 21(15): 5546–58PubMed
95.
go back to reference Ganguly A, Keefe KA. Unilateral dopamine depletion increases expression of the 2A subunit of the N-methyl-D-aspartate receptor in enkephalin-positive and enkephalin-negative neurons. Neuroscience 2001; 103(2): 405–12PubMedCrossRef Ganguly A, Keefe KA. Unilateral dopamine depletion increases expression of the 2A subunit of the N-methyl-D-aspartate receptor in enkephalin-positive and enkephalin-negative neurons. Neuroscience 2001; 103(2): 405–12PubMedCrossRef
96.
go back to reference Meshul CK, Emre N, Nakamura CM, et al. Time-dependent changes in striatal glutamate synapses following a 6-hydroxydopamine lesion. Neuroscience 1999; 88(1): 1–16PubMedCrossRef Meshul CK, Emre N, Nakamura CM, et al. Time-dependent changes in striatal glutamate synapses following a 6-hydroxydopamine lesion. Neuroscience 1999; 88(1): 1–16PubMedCrossRef
97.
go back to reference Graham WC, Robertson RG, Sambrook MA, et al. Injection of excitatory amino acid antagonists into the medial pallidal segment of a l-methyl-4-phenyl-l,2,3,6-tetrahydropyridine (MPTP) treated primate reverses motor symptoms of parkinsonism. Life Sci 1990; 47(18): L91–7CrossRef Graham WC, Robertson RG, Sambrook MA, et al. Injection of excitatory amino acid antagonists into the medial pallidal segment of a l-methyl-4-phenyl-l,2,3,6-tetrahydropyridine (MPTP) treated primate reverses motor symptoms of parkinsonism. Life Sci 1990; 47(18): L91–7CrossRef
98.
go back to reference Crossman AR, Peggs D, Boyce S, et al. Effect of the NMDA antagonist MK-801 on MPTP-induced parkinsonism in the monkey. Neuropharmacology 1989; 28(11): 1271–3PubMedCrossRef Crossman AR, Peggs D, Boyce S, et al. Effect of the NMDA antagonist MK-801 on MPTP-induced parkinsonism in the monkey. Neuropharmacology 1989; 28(11): 1271–3PubMedCrossRef
99.
go back to reference Blanchet PJ, Konitsiotis S, Whittemore ER, et al. Differing effects of N-methyl-D-aspartate receptor subtype selective antagonists on dyskinesias in levodopa-treated 1-methyl-4-phenyl-tetrahydropyridine monkeys. J Pharmacol Exp Ther 1999; 290(3): 1034–40PubMed Blanchet PJ, Konitsiotis S, Whittemore ER, et al. Differing effects of N-methyl-D-aspartate receptor subtype selective antagonists on dyskinesias in levodopa-treated 1-methyl-4-phenyl-tetrahydropyridine monkeys. J Pharmacol Exp Ther 1999; 290(3): 1034–40PubMed
100.
go back to reference Greenamyre JT, Eller RV, Zhang Z, et al. Antiparkinsonian effects of remacemide hydrochloride, a glutamate antagonist, in rodent and primate models of Parkinson’s disease. Ann Neurol 1994; 35(6): 655–61PubMedCrossRef Greenamyre JT, Eller RV, Zhang Z, et al. Antiparkinsonian effects of remacemide hydrochloride, a glutamate antagonist, in rodent and primate models of Parkinson’s disease. Ann Neurol 1994; 35(6): 655–61PubMedCrossRef
101.
go back to reference Loschmann PA, Lange KW, Kunow M, et al. Synergism of the AMPA-antagonist NBQX and the NMDA-antagonist CPP with Levodopa in models of Parkinson’s disease. J Neural Transm Park Dis Dement Sect 1991; 3(3): 203–13PubMedCrossRef Loschmann PA, Lange KW, Kunow M, et al. Synergism of the AMPA-antagonist NBQX and the NMDA-antagonist CPP with Levodopa in models of Parkinson’s disease. J Neural Transm Park Dis Dement Sect 1991; 3(3): 203–13PubMedCrossRef
102.
go back to reference Papa SM, Chase TN. Levodopa-induced dyskinesias improved by a glutamate antagonist in Parkinsonian monkeys. Ann Neurol 1996; 39(5): 574–8PubMedCrossRef Papa SM, Chase TN. Levodopa-induced dyskinesias improved by a glutamate antagonist in Parkinsonian monkeys. Ann Neurol 1996; 39(5): 574–8PubMedCrossRef
103.
go back to reference Avenet P, Leonardon J, Besnard F, et al. Antagonist properties of the stereoisomers of ifenprodil at NR1A/NR2A and NR1A/NR2B subtypes of the NMDA receptor expressed in Xenopus oocytes. Eur J Pharmacol 1996; 296(2): 209–13PubMedCrossRef Avenet P, Leonardon J, Besnard F, et al. Antagonist properties of the stereoisomers of ifenprodil at NR1A/NR2A and NR1A/NR2B subtypes of the NMDA receptor expressed in Xenopus oocytes. Eur J Pharmacol 1996; 296(2): 209–13PubMedCrossRef
104.
go back to reference Kuppenbender KD, Standaert DG, Feuerstein TJ, et al. Expression of NMDA receptor subunit mRNAs in neurochemically identified projection and interneurons in the human striatum. J Comp Neurol 2000; 419(4): 407–21PubMedCrossRef Kuppenbender KD, Standaert DG, Feuerstein TJ, et al. Expression of NMDA receptor subunit mRNAs in neurochemically identified projection and interneurons in the human striatum. J Comp Neurol 2000; 419(4): 407–21PubMedCrossRef
105.
go back to reference Kosinski CM, Standaert DG, Counihan TJ, et al. Expression of N-methyl-D-aspartate receptor subunit mRNAs in the human brain: striatum and globus pallidus. J Comp Neurol 1998; 390(1): 63–74PubMedCrossRef Kosinski CM, Standaert DG, Counihan TJ, et al. Expression of N-methyl-D-aspartate receptor subunit mRNAs in the human brain: striatum and globus pallidus. J Comp Neurol 1998; 390(1): 63–74PubMedCrossRef
106.
go back to reference Schito AM, Pizzuti A, Di Maria E, et al. mRNA distribution in adult human brain of GRIN2B, a N-methyl-D-aspartate (NMDA) receptor subunit. Neurosci Lett 1997; 239(1): 49–53PubMedCrossRef Schito AM, Pizzuti A, Di Maria E, et al. mRNA distribution in adult human brain of GRIN2B, a N-methyl-D-aspartate (NMDA) receptor subunit. Neurosci Lett 1997; 239(1): 49–53PubMedCrossRef
107.
go back to reference Jin DH, Jung YW, Ko BH, et al. Immunoblot analyses on the differential distribution of NR2A and NR2B subunits in the adult rat brain. Mol Cells 1997; 7(6): 749–54PubMed Jin DH, Jung YW, Ko BH, et al. Immunoblot analyses on the differential distribution of NR2A and NR2B subunits in the adult rat brain. Mol Cells 1997; 7(6): 749–54PubMed
108.
go back to reference Nash JE, Fox SH, Henry B, et al. Antiparkinsonian actions of ifenprodil in the MPTP-lesioned marmoset model of Parkinson’s disease. Exp Neurol 2000; 165(1): 136–42PubMedCrossRef Nash JE, Fox SH, Henry B, et al. Antiparkinsonian actions of ifenprodil in the MPTP-lesioned marmoset model of Parkinson’s disease. Exp Neurol 2000; 165(1): 136–42PubMedCrossRef
109.
go back to reference Mitchell IJ, Carroll CB. Reversal of parkinsonian symptoms in primates by antagonism of excitatory amino acid transmission: potential mechanisms of action. Neurosci Biobehav Rev 1997; 21(4): 469–75PubMedCrossRef Mitchell IJ, Carroll CB. Reversal of parkinsonian symptoms in primates by antagonism of excitatory amino acid transmission: potential mechanisms of action. Neurosci Biobehav Rev 1997; 21(4): 469–75PubMedCrossRef
110.
go back to reference Montastruc JL, Rascol O, Senard JM, et al. A pilot study of N-methyl-D-aspartate (NMDA) antagonist in Parkinson’s disease. J Neurol Neurosurg Psychiatry 1992; 55(7): 630–1PubMedCrossRef Montastruc JL, Rascol O, Senard JM, et al. A pilot study of N-methyl-D-aspartate (NMDA) antagonist in Parkinson’s disease. J Neurol Neurosurg Psychiatry 1992; 55(7): 630–1PubMedCrossRef
111.
go back to reference Schwab RS, England Jr AC, Poskanzer DC, et al. Amantadine in the treatment of Parkinson’s disease. JAMA 1969; 208(7): 1168–70PubMedCrossRef Schwab RS, England Jr AC, Poskanzer DC, et al. Amantadine in the treatment of Parkinson’s disease. JAMA 1969; 208(7): 1168–70PubMedCrossRef
112.
go back to reference Fischer PA, Jacobi P, Schneider E, et al. Effects of intravenous administration of memantine in parkinsonian patients. Arzneimittelforschung 1977; 27(7): 1487–9PubMed Fischer PA, Jacobi P, Schneider E, et al. Effects of intravenous administration of memantine in parkinsonian patients. Arzneimittelforschung 1977; 27(7): 1487–9PubMed
113.
go back to reference Kornhuber J, Bormann J, Retz W, et al. Memantine displaces [3H]MK-801 at therapeutic concentrations in postmortem human frontal cortex. Eur J Pharmacol 1989; 166(3): 589–90PubMedCrossRef Kornhuber J, Bormann J, Retz W, et al. Memantine displaces [3H]MK-801 at therapeutic concentrations in postmortem human frontal cortex. Eur J Pharmacol 1989; 166(3): 589–90PubMedCrossRef
114.
go back to reference Kornhuber J, Bormann J, Hubers M, et al. Effects of the 1-amino-adamantanes at the MK-801-binding site of the NMDA-receptor-gated ion channel: a human postmortem brain study. Eur J Pharmacol 1991; 206(4): 297–300PubMedCrossRef Kornhuber J, Bormann J, Hubers M, et al. Effects of the 1-amino-adamantanes at the MK-801-binding site of the NMDA-receptor-gated ion channel: a human postmortem brain study. Eur J Pharmacol 1991; 206(4): 297–300PubMedCrossRef
115.
go back to reference Kornhuber J, Quack G, Danysz W, et al. Therapeutic brain concentration of the NMDA receptor antagonist amantadine. Neuropharmacology 1995; 34(7): 713–21PubMedCrossRef Kornhuber J, Quack G, Danysz W, et al. Therapeutic brain concentration of the NMDA receptor antagonist amantadine. Neuropharmacology 1995; 34(7): 713–21PubMedCrossRef
116.
go back to reference Del Dotto P, Pavese N, Gambaccini G, et al. Intravenous amantadine improves levadopa-induced dyskinesias: an acute double-blind placebo-controlled study. Mov Disord 2001; 16(3): 515–20PubMedCrossRef Del Dotto P, Pavese N, Gambaccini G, et al. Intravenous amantadine improves levadopa-induced dyskinesias: an acute double-blind placebo-controlled study. Mov Disord 2001; 16(3): 515–20PubMedCrossRef
117.
go back to reference Snow BJ, Macdonald L, Mcauley D, et al. The effect of amantadine on levodopa-induced dyskinesias in Parkinson’s disease: a double-blind, placebo-controlled study. Clin Neuropharmacol 2000; 23(2): 82–5PubMedCrossRef Snow BJ, Macdonald L, Mcauley D, et al. The effect of amantadine on levodopa-induced dyskinesias in Parkinson’s disease: a double-blind, placebo-controlled study. Clin Neuropharmacol 2000; 23(2): 82–5PubMedCrossRef
118.
go back to reference Verhagen-Metman L, Del Dotto P, van den Munckhof P, et al. Amantadine as treatment for dyskinesias and motor fluctuations in Parkinson’s disease. Neurology 1998; 50(5): 1323–6PubMedCrossRef Verhagen-Metman L, Del Dotto P, van den Munckhof P, et al. Amantadine as treatment for dyskinesias and motor fluctuations in Parkinson’s disease. Neurology 1998; 50(5): 1323–6PubMedCrossRef
119.
go back to reference Metman LV, Del Dotto P, LePoole K, et al. Amantadine for levodopa-induced dyskinesias: a 1-year follow-up study. Arch Neurol 1999; 56(11): 1383–6PubMedCrossRef Metman LV, Del Dotto P, LePoole K, et al. Amantadine for levodopa-induced dyskinesias: a 1-year follow-up study. Arch Neurol 1999; 56(11): 1383–6PubMedCrossRef
120.
go back to reference Merello M, Nouzeilles MI, Cammarota A, et al. Effect of memantine (NMDA antagonist) on Parkinson’s disease: a double-blind crossover randomized study. Clin Neuropharmacol 1999; 22(5): 273–6PubMed Merello M, Nouzeilles MI, Cammarota A, et al. Effect of memantine (NMDA antagonist) on Parkinson’s disease: a double-blind crossover randomized study. Clin Neuropharmacol 1999; 22(5): 273–6PubMed
121.
go back to reference Rabey JM, Nissipeanu P, Korczyn AD. Efficacy of memantine, an NMDA receptor antagonist, in the treatment of Parkinson’s disease. J Neural Transm Park Dis Dement Sect 1992; 4: 277–82PubMedCrossRef Rabey JM, Nissipeanu P, Korczyn AD. Efficacy of memantine, an NMDA receptor antagonist, in the treatment of Parkinson’s disease. J Neural Transm Park Dis Dement Sect 1992; 4: 277–82PubMedCrossRef
122.
go back to reference Schneider E, Fischer PA, Clemens R, et al. Wirkungen oraler Memantin-Gaben auf die Parkinson-Symptomatik. Ergebnisse einer placebo-kontrollierten Multicenter-Studie. Dtsch Med Wochenschr 1984; 109(25): 987–90PubMedCrossRef Schneider E, Fischer PA, Clemens R, et al. Wirkungen oraler Memantin-Gaben auf die Parkinson-Symptomatik. Ergebnisse einer placebo-kontrollierten Multicenter-Studie. Dtsch Med Wochenschr 1984; 109(25): 987–90PubMedCrossRef
123.
go back to reference Fischer PA, Jacobi P, Schneider E, et al. Die Wirkung intravenoser Gaben von Memantin bei Parkinson-Kranken. Arzneimittelforschung 1977; 27(7): 1487–9PubMed Fischer PA, Jacobi P, Schneider E, et al. Die Wirkung intravenoser Gaben von Memantin bei Parkinson-Kranken. Arzneimittelforschung 1977; 27(7): 1487–9PubMed
124.
go back to reference Maisch U, Bliesath H, Bother K, et al. Monotherapie der Parkinsonschen Erkrankung mit Budipin. Ein randomisierter Doppelblindvergleich mit Amantadin. Fortschr Neurol Psychiatr 2001; 69(2): 86–9CrossRef Maisch U, Bliesath H, Bother K, et al. Monotherapie der Parkinsonschen Erkrankung mit Budipin. Ein randomisierter Doppelblindvergleich mit Amantadin. Fortschr Neurol Psychiatr 2001; 69(2): 86–9CrossRef
125.
go back to reference Spieker S, Loschmann PA, Klockgether T. The NMDA antagonist budipine can alleviate levodopa-induced motor fluctuations. Mov Disord 1999; 14(3): 517–9PubMedCrossRef Spieker S, Loschmann PA, Klockgether T. The NMDA antagonist budipine can alleviate levodopa-induced motor fluctuations. Mov Disord 1999; 14(3): 517–9PubMedCrossRef
126.
go back to reference Jellinger K, Bliesath H. Adjuvant treatment of Parkinson’s disease with budipine: a double-blind trial versus placebo. J Neurol 1987; 234(5): 280–2PubMedCrossRef Jellinger K, Bliesath H. Adjuvant treatment of Parkinson’s disease with budipine: a double-blind trial versus placebo. J Neurol 1987; 234(5): 280–2PubMedCrossRef
127.
go back to reference Verhagen-Metman L, Del Dotto P, Natte R, et al. Dextromethorphan improves levodopa-induced dyskinesias in Parkinson’s disease. Neurology 1998; 51(1): 203–6PubMedCrossRef Verhagen-Metman L, Del Dotto P, Natte R, et al. Dextromethorphan improves levodopa-induced dyskinesias in Parkinson’s disease. Neurology 1998; 51(1): 203–6PubMedCrossRef
128.
go back to reference Verhagen-Metman L, Blanchet PJ, van den Munckhof P, et al. A trial of dextromethorphan in parkinsonian patients with motor response complications. Mov Disord 1998; 13(3): 414–7PubMedCrossRef Verhagen-Metman L, Blanchet PJ, van den Munckhof P, et al. A trial of dextromethorphan in parkinsonian patients with motor response complications. Mov Disord 1998; 13(3): 414–7PubMedCrossRef
129.
go back to reference Blanchet PJ, Metman LV, Mouradian MM, et al. Acute pharmacologic blockade of dyskinesias in Parkinson’s disease. Mov Disord 1996; 11(5): 580–1PubMedCrossRef Blanchet PJ, Metman LV, Mouradian MM, et al. Acute pharmacologic blockade of dyskinesias in Parkinson’s disease. Mov Disord 1996; 11(5): 580–1PubMedCrossRef
130.
go back to reference Kieburtz K, Feigin A, McDermott M, et al. A controlled trial of remacemide hydrochloride in Huntington’s disease. Mov Disord 1996; 11(3): 273–7PubMedCrossRef Kieburtz K, Feigin A, McDermott M, et al. A controlled trial of remacemide hydrochloride in Huntington’s disease. Mov Disord 1996; 11(3): 273–7PubMedCrossRef
131.
go back to reference Richens A, Mawer G, Crawford P, et al. A placebo-controlled, double-blind cross-over trial of adjunctive one month remacemide hydrochloride treatment in patients with refractory epilepsy. Seizure 2000; 9(8): 537–43PubMedCrossRef Richens A, Mawer G, Crawford P, et al. A placebo-controlled, double-blind cross-over trial of adjunctive one month remacemide hydrochloride treatment in patients with refractory epilepsy. Seizure 2000; 9(8): 537–43PubMedCrossRef
132.
go back to reference Dyker AG, Lees KR. Remacemide hydrochloride: a double-blind, placebo-controlled, safety and tolerability study in patients with acute ischemic stroke. Stroke 1999; 30(9): 1796–801PubMedCrossRef Dyker AG, Lees KR. Remacemide hydrochloride: a double-blind, placebo-controlled, safety and tolerability study in patients with acute ischemic stroke. Stroke 1999; 30(9): 1796–801PubMedCrossRef
133.
go back to reference Palmer GC, Murray RJ, Wilson TC, et al. Biological profile of the metabolites and potential metabolites of the anticonvulsant remacemide. Epilepsy Res 1992; 12(1): 9–20PubMedCrossRef Palmer GC, Murray RJ, Wilson TC, et al. Biological profile of the metabolites and potential metabolites of the anticonvulsant remacemide. Epilepsy Res 1992; 12(1): 9–20PubMedCrossRef
134.
go back to reference Clarke CE, Cooper JA, Holdich TA. A randomized, double-blind, placebo-controlled, ascending-dose tolerability and safety study of remacemide as adjuvant therapy in Parkinson’s disease with response fluctuations. Clin Neuropharmacol 2001; 24(3): 133–8PubMedCrossRef Clarke CE, Cooper JA, Holdich TA. A randomized, double-blind, placebo-controlled, ascending-dose tolerability and safety study of remacemide as adjuvant therapy in Parkinson’s disease with response fluctuations. Clin Neuropharmacol 2001; 24(3): 133–8PubMedCrossRef
135.
go back to reference Parkinson-Study-Group. A multicenter randomized controlled trial of remacemide hydrochloride as monotherapy for PD: Parkinson Study Group. Neurology 2000; 54(8): 1583–8CrossRef Parkinson-Study-Group. A multicenter randomized controlled trial of remacemide hydrochloride as monotherapy for PD: Parkinson Study Group. Neurology 2000; 54(8): 1583–8CrossRef
136.
go back to reference Shoulson I, Penney J, McDermott M, et al. A randomized, controlled trial of remacemide for motor fluctuations in Parkinson’s disease. Neurology 2001; 56(4): 455–62PubMedCrossRef Shoulson I, Penney J, McDermott M, et al. A randomized, controlled trial of remacemide for motor fluctuations in Parkinson’s disease. Neurology 2001; 56(4): 455–62PubMedCrossRef
137.
go back to reference Parkinson-Study-Group. Evaluation of dyskinesias in a pilot, randomized, placebo-controlled trial of remacemide in advanced Parkinson disease. Arch Neurol 2001; 58(10): 1660–8CrossRef Parkinson-Study-Group. Evaluation of dyskinesias in a pilot, randomized, placebo-controlled trial of remacemide in advanced Parkinson disease. Arch Neurol 2001; 58(10): 1660–8CrossRef
138.
go back to reference Danysz W, Parsons AC. Glycine and N-methyl-D-aspartate receptors: physiological significance and possible therapeutic applications. Pharmacol Rev 1998; 50(4): 597–664PubMed Danysz W, Parsons AC. Glycine and N-methyl-D-aspartate receptors: physiological significance and possible therapeutic applications. Pharmacol Rev 1998; 50(4): 597–664PubMed
139.
go back to reference Giuffra ME, Sethy VH, Davis TL, et al. Milacemide therapy for Parkinson’s disease. Mov Disord 1993; 8(1): 47–50PubMedCrossRef Giuffra ME, Sethy VH, Davis TL, et al. Milacemide therapy for Parkinson’s disease. Mov Disord 1993; 8(1): 47–50PubMedCrossRef
140.
go back to reference Jonas P, Racca C, Sakmann B, et al. Differences in Ca2+ permeability of AMPA-type glutamate receptor channels in neocortical neurons caused by differential GluR-B subunit expression. Neuron 1994; 12(6): 1281–9PubMedCrossRef Jonas P, Racca C, Sakmann B, et al. Differences in Ca2+ permeability of AMPA-type glutamate receptor channels in neocortical neurons caused by differential GluR-B subunit expression. Neuron 1994; 12(6): 1281–9PubMedCrossRef
141.
go back to reference Burnashev N, Monyer H, Seeburg PH, et al. Divalent ion-permeability of AMPA receptor channels is dominated by the edited form of a single subunit. Neuron 1992; 8(1): 189–98PubMedCrossRef Burnashev N, Monyer H, Seeburg PH, et al. Divalent ion-permeability of AMPA receptor channels is dominated by the edited form of a single subunit. Neuron 1992; 8(1): 189–98PubMedCrossRef
142.
go back to reference Muller T, Moller T, Berger T, et al. Calcium entry through kainate receptors and resulting potassium-channel blockade in Bergmann glial cells. Science 1992; 256(5063): 1563–6PubMedCrossRef Muller T, Moller T, Berger T, et al. Calcium entry through kainate receptors and resulting potassium-channel blockade in Bergmann glial cells. Science 1992; 256(5063): 1563–6PubMedCrossRef
143.
go back to reference Hollmann M, Hartley M, Heinemann S. Ca2+ permeability of KA-AMPA: gated glutamate receptor channels depends on subunit composition. Science 1991; 252(5007): 851–3PubMedCrossRef Hollmann M, Hartley M, Heinemann S. Ca2+ permeability of KA-AMPA: gated glutamate receptor channels depends on subunit composition. Science 1991; 252(5007): 851–3PubMedCrossRef
144.
go back to reference Rueter SM, Burns CM, Coode SA, et al. Glutamate receptor RNA editing in vitro by enzymatic conversion of adenosine to inosine. Science 1995; 267(5203): 1491–4PubMedCrossRef Rueter SM, Burns CM, Coode SA, et al. Glutamate receptor RNA editing in vitro by enzymatic conversion of adenosine to inosine. Science 1995; 267(5203): 1491–4PubMedCrossRef
145.
go back to reference Washburn MS, Dingledine R. Block of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors by polyamines and polyamine toxins. J Pharmacol Exp Ther 1996; 278(2): 669–78PubMed Washburn MS, Dingledine R. Block of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors by polyamines and polyamine toxins. J Pharmacol Exp Ther 1996; 278(2): 669–78PubMed
146.
go back to reference Swanson GT, Feldmeyer D, Kaneda M, et al. Effect of RNA editing and subunit co-assembly single-channel properties of recombinant kainate receptors. J Physiol 1996; 492 (Pt 1): 129–42PubMed Swanson GT, Feldmeyer D, Kaneda M, et al. Effect of RNA editing and subunit co-assembly single-channel properties of recombinant kainate receptors. J Physiol 1996; 492 (Pt 1): 129–42PubMed
147.
go back to reference Herlitze S, Raditsch M, Ruppersberg JP, et al. Argiotoxin detects molecular differences in AMPA receptor channels. Neuron 1993; 10(6): 1131–40PubMedCrossRef Herlitze S, Raditsch M, Ruppersberg JP, et al. Argiotoxin detects molecular differences in AMPA receptor channels. Neuron 1993; 10(6): 1131–40PubMedCrossRef
148.
go back to reference Brackley PT, Bell DR, Choi SK, et al. Selective antagonism of native and cloned kainate and NMDA receptors by polyamine-containing toxins. J Pharmacol Exp Ther 1993; 266(3): 1573–80PubMed Brackley PT, Bell DR, Choi SK, et al. Selective antagonism of native and cloned kainate and NMDA receptors by polyamine-containing toxins. J Pharmacol Exp Ther 1993; 266(3): 1573–80PubMed
149.
go back to reference Tanaka H, Grooms SY, Bennett MV, et al. The AMP AR subunit GluR2: still front and center-stage. Brain Res 2000; 886(1–2): 190–207PubMedCrossRef Tanaka H, Grooms SY, Bennett MV, et al. The AMP AR subunit GluR2: still front and center-stage. Brain Res 2000; 886(1–2): 190–207PubMedCrossRef
150.
go back to reference Myers SJ, Dingledine R, Borges K. Genetic regulation of glutamate receptor ion channels. Annu Rev Pharmacol Toxicol 1999; 39: 221–41PubMedCrossRef Myers SJ, Dingledine R, Borges K. Genetic regulation of glutamate receptor ion channels. Annu Rev Pharmacol Toxicol 1999; 39: 221–41PubMedCrossRef
151.
go back to reference Pellegrini-Giampietro DE, Gorter JA, Bennett MV, et al. The GluR2 (GluR-B) hypothesis: Ca (2+)-permeable AMPA receptors in neurological disorders. Trends Neurosci 1997; 20(10): 464–70PubMedCrossRef Pellegrini-Giampietro DE, Gorter JA, Bennett MV, et al. The GluR2 (GluR-B) hypothesis: Ca (2+)-permeable AMPA receptors in neurological disorders. Trends Neurosci 1997; 20(10): 464–70PubMedCrossRef
152.
go back to reference Betarbet R, Porter RH, Greenamyre JT. GluRl glutamate receptor subunit is regulated differentially in the primate basal ganglia following nigrostriatal dopamine denervation. J Neurochem 2000; 74(3): 1166–74PubMedCrossRef Betarbet R, Porter RH, Greenamyre JT. GluRl glutamate receptor subunit is regulated differentially in the primate basal ganglia following nigrostriatal dopamine denervation. J Neurochem 2000; 74(3): 1166–74PubMedCrossRef
153.
go back to reference He Y, Lee T, Leong SK. Effect of 6-OHDA injection on the AMPA glutamate receptor subunits in the substantia nigra of Sprague-Dawley rats. Neurosci Lett 1998; 241(1): 1–4PubMedCrossRef He Y, Lee T, Leong SK. Effect of 6-OHDA injection on the AMPA glutamate receptor subunits in the substantia nigra of Sprague-Dawley rats. Neurosci Lett 1998; 241(1): 1–4PubMedCrossRef
154.
go back to reference Bernard V, Gardiol A, Faucheux B, et al. Expression of glutamate receptors in the human and rat basal ganglia: effect of the dopaminergic denervation on AMPA receptor gene expression in the striatopallidal complex in Parkinson’s disease and rat with 6-OHDA lesion. J Comp Neurol 1996; 368(4): 553–68PubMedCrossRef Bernard V, Gardiol A, Faucheux B, et al. Expression of glutamate receptors in the human and rat basal ganglia: effect of the dopaminergic denervation on AMPA receptor gene expression in the striatopallidal complex in Parkinson’s disease and rat with 6-OHDA lesion. J Comp Neurol 1996; 368(4): 553–68PubMedCrossRef
155.
go back to reference Arnt J. Turning behaviour and catalepsy after injection of excitatory amino acids into rat substantia nigra. Neurosci Lett 1981; 23(3): 337–42PubMedCrossRef Arnt J. Turning behaviour and catalepsy after injection of excitatory amino acids into rat substantia nigra. Neurosci Lett 1981; 23(3): 337–42PubMedCrossRef
156.
go back to reference Turski W, Turski L, Czuczwar SJ, et al. (RS)-alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid: wet dog shakes, catalepsy and body temperature changes in rats. Pharmacol Biochem Behav 1981; 15(4): 545–9PubMedCrossRef Turski W, Turski L, Czuczwar SJ, et al. (RS)-alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid: wet dog shakes, catalepsy and body temperature changes in rats. Pharmacol Biochem Behav 1981; 15(4): 545–9PubMedCrossRef
157.
go back to reference Wachtel H, Kunow M, Loschmann PA. NBQX (6-nitro-sulfamoyl-benzo-quinoxaline-dione) and CPP (3-carboxy-pi-perazin-propyl phosphonic acid) potentiate dopamine agonist induced rotations in substantia nigra lesioned rats. Neurosci Lett 1992; 142(2): 179–82PubMedCrossRef Wachtel H, Kunow M, Loschmann PA. NBQX (6-nitro-sulfamoyl-benzo-quinoxaline-dione) and CPP (3-carboxy-pi-perazin-propyl phosphonic acid) potentiate dopamine agonist induced rotations in substantia nigra lesioned rats. Neurosci Lett 1992; 142(2): 179–82PubMedCrossRef
158.
go back to reference Loschmann PA, Kunow M, Wachtel H. Synergism of NBQX with dopamine agonists in the 6-OHDA rat model of Parkinson’s disease. J Neural Transm Suppl 1992; 38: 55–64PubMed Loschmann PA, Kunow M, Wachtel H. Synergism of NBQX with dopamine agonists in the 6-OHDA rat model of Parkinson’s disease. J Neural Transm Suppl 1992; 38: 55–64PubMed
159.
go back to reference Zadow B, Schmidt WJ. The AMPA antagonists NBQX and GYKI 52466 do not counteract neuroleptic-induced catalepsy. Naunyn Schmiedebergs Arch Pharmacol 1994; 349(1): 61–5PubMedCrossRef Zadow B, Schmidt WJ. The AMPA antagonists NBQX and GYKI 52466 do not counteract neuroleptic-induced catalepsy. Naunyn Schmiedebergs Arch Pharmacol 1994; 349(1): 61–5PubMedCrossRef
160.
go back to reference Papa SM, Engber TM, Boldry RC, et al. Opposite effects of NMDA and AMPA receptor blockade on catalepsy induced by dopamine receptor antagonists. Eur J Pharmacol 1993; 232(2–3): 247–53PubMedCrossRef Papa SM, Engber TM, Boldry RC, et al. Opposite effects of NMDA and AMPA receptor blockade on catalepsy induced by dopamine receptor antagonists. Eur J Pharmacol 1993; 232(2–3): 247–53PubMedCrossRef
161.
go back to reference Maj J, Rogoz Z, Skuza G, et al. Some central effects of GYKI 52466, a non-competitive AMPA receptor antagonist. Pol J Pharmacol 1995; 47(6): 501–7PubMed Maj J, Rogoz Z, Skuza G, et al. Some central effects of GYKI 52466, a non-competitive AMPA receptor antagonist. Pol J Pharmacol 1995; 47(6): 501–7PubMed
162.
go back to reference Konitsiotis S, Blanchet PJ, Verhagen L, et al. AMPA receptor blockade improves levodopa-induced dyskinesia in MPTP monkeys. Neurology 2000; 54(8): 1589–95PubMedCrossRef Konitsiotis S, Blanchet PJ, Verhagen L, et al. AMPA receptor blockade improves levodopa-induced dyskinesia in MPTP monkeys. Neurology 2000; 54(8): 1589–95PubMedCrossRef
163.
go back to reference Marin C, Jimenez A, Bonastre M, et al. Non-NMDA receptor-mediated mechanisms are involved in levodopa-induced motor response alterations in Parkinsonian rats. Synapse 2000; 36(4): 267–74PubMedCrossRef Marin C, Jimenez A, Bonastre M, et al. Non-NMDA receptor-mediated mechanisms are involved in levodopa-induced motor response alterations in Parkinsonian rats. Synapse 2000; 36(4): 267–74PubMedCrossRef
164.
go back to reference Marin C, Jimenez A, Bonastre M, et al. LY293558, an AMPA glutamate receptor antagonist, prevents and reverses levodopainduced motor alterations in Parkinsonian rats. Synapse 2001; 42(1): 40–7PubMedCrossRef Marin C, Jimenez A, Bonastre M, et al. LY293558, an AMPA glutamate receptor antagonist, prevents and reverses levodopainduced motor alterations in Parkinsonian rats. Synapse 2001; 42(1): 40–7PubMedCrossRef
165.
go back to reference Klockgether T, Turski L, Honore T, et al. The AMPA receptor antagonist NBQX has antiparkinsonian effects in monoamine-depleted rats and MPTP-treated monkeys. Ann Neurol 1991; 30(5): 717–23PubMedCrossRef Klockgether T, Turski L, Honore T, et al. The AMPA receptor antagonist NBQX has antiparkinsonian effects in monoamine-depleted rats and MPTP-treated monkeys. Ann Neurol 1991; 30(5): 717–23PubMedCrossRef
166.
go back to reference Luquin MR, Obeso JA, Laguna J, et al. The AMPA receptor antagonist NBQX does not alter the motor response induced by selective dopamine agonists in MPTP-treated monkeys. Eur J Pharmacol 1993; 235(2–3): 297–300PubMedCrossRef Luquin MR, Obeso JA, Laguna J, et al. The AMPA receptor antagonist NBQX does not alter the motor response induced by selective dopamine agonists in MPTP-treated monkeys. Eur J Pharmacol 1993; 235(2–3): 297–300PubMedCrossRef
167.
go back to reference Rodriguez-Moreno A, Lopez-Garcia JC, Lerma J. Two populations of kainate receptors with separate signaling mechanisms in hippocampal interneurons. Proc Natl Acad Sci U S A 2000; 97(3): 1293–8PubMedCrossRef Rodriguez-Moreno A, Lopez-Garcia JC, Lerma J. Two populations of kainate receptors with separate signaling mechanisms in hippocampal interneurons. Proc Natl Acad Sci U S A 2000; 97(3): 1293–8PubMedCrossRef
168.
go back to reference Rodriguez-Moreno A, Lerma J. Kainate receptor modulation of GABA release involves a metabotropic function. Neuron 1998; 20(6): 1211–8PubMedCrossRef Rodriguez-Moreno A, Lerma J. Kainate receptor modulation of GABA release involves a metabotropic function. Neuron 1998; 20(6): 1211–8PubMedCrossRef
169.
go back to reference Rodriguez-Moreno A, Herreras O, Lerma J. Kainate receptors presynaptically downregulate GABAergic inhibition in the rat hippocampus. Neuron 1997; 19(4): 893–901PubMedCrossRef Rodriguez-Moreno A, Herreras O, Lerma J. Kainate receptors presynaptically downregulate GABAergic inhibition in the rat hippocampus. Neuron 1997; 19(4): 893–901PubMedCrossRef
170.
go back to reference Charara A, Blankstein E, Smith Y. Presynaptic kainate receptors in the monkey striatum. Neuroscience 1999; 91(4): 1195–200PubMedCrossRef Charara A, Blankstein E, Smith Y. Presynaptic kainate receptors in the monkey striatum. Neuroscience 1999; 91(4): 1195–200PubMedCrossRef
171.
go back to reference Kieval JZ, Hubert GW, Charara A, et al. Subcellular and subsynaptic localization of presynaptic and postsynaptic kainate receptor subunits in the monkey striatum. J Neurosci 2001; 21(22): 8746–57PubMed Kieval JZ, Hubert GW, Charara A, et al. Subcellular and subsynaptic localization of presynaptic and postsynaptic kainate receptor subunits in the monkey striatum. J Neurosci 2001; 21(22): 8746–57PubMed
172.
go back to reference Sherer TB, Betarbet R, Greenamyre JT. Pathogenesis of Parkinson’s disease. Curr Opin Investig Drugs 2001; 2(5): 657–62PubMed Sherer TB, Betarbet R, Greenamyre JT. Pathogenesis of Parkinson’s disease. Curr Opin Investig Drugs 2001; 2(5): 657–62PubMed
173.
go back to reference Beal MF. Energetics in the pathogenesis of neurodegenerative diseases. Trends Neurosci 2000; 23(7): 298–304PubMedCrossRef Beal MF. Energetics in the pathogenesis of neurodegenerative diseases. Trends Neurosci 2000; 23(7): 298–304PubMedCrossRef
174.
go back to reference Zhang Y, Dawson VL, Dawson TM. Oxidative stress and genetics in the pathogenesis of Parkinson’s disease. Neurobiol Dis 2000; 7(4): 240–50PubMedCrossRef Zhang Y, Dawson VL, Dawson TM. Oxidative stress and genetics in the pathogenesis of Parkinson’s disease. Neurobiol Dis 2000; 7(4): 240–50PubMedCrossRef
175.
go back to reference Nicklas WJ, Vyas I, Heikkila RE. Inhibition of NADH-linked oxidation in brain mitochondria by 1-methyl-4-phenyl-pyridine, a metabolite of the neurotoxin, l-methyl-4-phenyl-l,2,5,6-tetrahydropyridine. Life Sci 1985: 36(26): 2503–8PubMedCrossRef Nicklas WJ, Vyas I, Heikkila RE. Inhibition of NADH-linked oxidation in brain mitochondria by 1-methyl-4-phenyl-pyridine, a metabolite of the neurotoxin, l-methyl-4-phenyl-l,2,5,6-tetrahydropyridine. Life Sci 1985: 36(26): 2503–8PubMedCrossRef
176.
go back to reference Yoshino H, Nakagawa-Hattori Y, Kondo T, et al. Mitochondrial complex I and II activities of lymphocytes and platelets in Parkinson’s disease. J Neural Transm Park Dis Dement Sect 1992; 4(1): 27–34PubMedCrossRef Yoshino H, Nakagawa-Hattori Y, Kondo T, et al. Mitochondrial complex I and II activities of lymphocytes and platelets in Parkinson’s disease. J Neural Transm Park Dis Dement Sect 1992; 4(1): 27–34PubMedCrossRef
177.
go back to reference Krige D, Carroll MT, Cooper JM, et al. Platelet mitochondrial function in Parkinson’s disease. The Royal Kings and Queens Parkinson Disease Research Group. Ann Neurol 1992; 32(6): 782–8PubMedCrossRef Krige D, Carroll MT, Cooper JM, et al. Platelet mitochondrial function in Parkinson’s disease. The Royal Kings and Queens Parkinson Disease Research Group. Ann Neurol 1992; 32(6): 782–8PubMedCrossRef
178.
go back to reference Schapira AH, Cooper JM, Dexter D, et al. Mitochondrial complex I deficiency in Parkinson’s disease. J Neurochem 1990; 54(3): 823–7PubMedCrossRef Schapira AH, Cooper JM, Dexter D, et al. Mitochondrial complex I deficiency in Parkinson’s disease. J Neurochem 1990; 54(3): 823–7PubMedCrossRef
179.
go back to reference Parker WD, Boyson SJ, Parks JK. Abnormalities of the electron transport chain in idiopathic Parkinson’s disease. Ann Neurol 1989; 26(6): 719–23PubMedCrossRef Parker WD, Boyson SJ, Parks JK. Abnormalities of the electron transport chain in idiopathic Parkinson’s disease. Ann Neurol 1989; 26(6): 719–23PubMedCrossRef
180.
go back to reference Doble A. The role of excitotoxicity in neurodegenerative disease: implications for therapy. Pharmacol Ther 1999; 81(3): 163–221PubMedCrossRef Doble A. The role of excitotoxicity in neurodegenerative disease: implications for therapy. Pharmacol Ther 1999; 81(3): 163–221PubMedCrossRef
181.
go back to reference Massieu L, Garcia O. The role of excitotoxicity and metabolic failure in the pathogenesis of neurological disorders. Neurobiology (Bp) 1998; 6(1): 99–108 Massieu L, Garcia O. The role of excitotoxicity and metabolic failure in the pathogenesis of neurological disorders. Neurobiology (Bp) 1998; 6(1): 99–108
182.
go back to reference Ikonomidou C, Turski L. Excitotoxicity and neurodegenerative diseases. Curr Opin Neurol 1995; 8(6): 487–97PubMedCrossRef Ikonomidou C, Turski L. Excitotoxicity and neurodegenerative diseases. Curr Opin Neurol 1995; 8(6): 487–97PubMedCrossRef
183.
go back to reference Beal MF. Role of excitotoxicity in human neurological disease. Curr Opin Neurobiol 1992; 2(5): 657–62PubMedCrossRef Beal MF. Role of excitotoxicity in human neurological disease. Curr Opin Neurobiol 1992; 2(5): 657–62PubMedCrossRef
184.
185.
go back to reference Beal MF, Hyman BT, Koroshetz W. Do defects in mitochondrial energy metabolism underlie the pathology of neurodegenerative diseases? Trends Neurosci 1993; 16(4): 125–31PubMedCrossRef Beal MF, Hyman BT, Koroshetz W. Do defects in mitochondrial energy metabolism underlie the pathology of neurodegenerative diseases? Trends Neurosci 1993; 16(4): 125–31PubMedCrossRef
186.
go back to reference Erecinska M, Dagani F. Relationships between the neuronal sodium/potassium pump and energy metabolism: Effects of K+, Na+, and adenosine triphosphate in isolated brain synaptosomes. J Gen Physiol 1990; 95(4): 591–616PubMedCrossRef Erecinska M, Dagani F. Relationships between the neuronal sodium/potassium pump and energy metabolism: Effects of K+, Na+, and adenosine triphosphate in isolated brain synaptosomes. J Gen Physiol 1990; 95(4): 591–616PubMedCrossRef
187.
go back to reference Novelli A, Reilly JA, Lysko PG, et al. Glutamate becomes neurotoxic via the N-methyl-D-aspartate receptor when intracellular energy levels are reduced. Brain Res 1988; 451(1–2): 205–12PubMedCrossRef Novelli A, Reilly JA, Lysko PG, et al. Glutamate becomes neurotoxic via the N-methyl-D-aspartate receptor when intracellular energy levels are reduced. Brain Res 1988; 451(1–2): 205–12PubMedCrossRef
188.
go back to reference Kita H, Kitai ST. Efferent projections of the subthalamic nucleus in the rat: light and electron microscopic analysis with the PHA-L method. J Comp Neurol 1987; 260(3): 435–52PubMedCrossRef Kita H, Kitai ST. Efferent projections of the subthalamic nucleus in the rat: light and electron microscopic analysis with the PHA-L method. J Comp Neurol 1987; 260(3): 435–52PubMedCrossRef
189.
go back to reference Smith ID, Grace AA. Role of the subthalamic nucleus in the regulation of nigral dopamine neuron activity. Synapse 1992: 12(4): 287–303PubMedCrossRef Smith ID, Grace AA. Role of the subthalamic nucleus in the regulation of nigral dopamine neuron activity. Synapse 1992: 12(4): 287–303PubMedCrossRef
190.
go back to reference Iribe Y, Moore K, Pang KC, et al. Subthalamic stimulation-induced synaptic responses in substantia nigra pars compacta dopaminergic neurons in vitro. J Neurophysiol 1999; 82(2): 925–33PubMed Iribe Y, Moore K, Pang KC, et al. Subthalamic stimulation-induced synaptic responses in substantia nigra pars compacta dopaminergic neurons in vitro. J Neurophysiol 1999; 82(2): 925–33PubMed
191.
go back to reference Rodriguez MC, Obeso JA, Olanow CW. Subthalamic nucleus-mediated excitotoxicity in Parkinson’s disease: a target for neuroprotection. Ann Neurol. 1998; 44 (3 Suppl. 1): S175–88PubMed Rodriguez MC, Obeso JA, Olanow CW. Subthalamic nucleus-mediated excitotoxicity in Parkinson’s disease: a target for neuroprotection. Ann Neurol. 1998; 44 (3 Suppl. 1): S175–88PubMed
192.
go back to reference Piallat B, Benazzouz A, Benabid AL. Subthalamic nucleus lesion in rats prevents dopaminergic nigral neuron degeneration after striatal 6-OHDA injection: behavioural and immunohistochemical studies. Eur J Neurosci 1996; 8(7): 1408–14PubMedCrossRef Piallat B, Benazzouz A, Benabid AL. Subthalamic nucleus lesion in rats prevents dopaminergic nigral neuron degeneration after striatal 6-OHDA injection: behavioural and immunohistochemical studies. Eur J Neurosci 1996; 8(7): 1408–14PubMedCrossRef
193.
go back to reference Turski L, Bressler K, Rettig KJ, et al. Protection of substantia nigra from MPP+ neurotoxicity by N-methyl-D-aspartate antagonists. Nature 1991; 349(6308): 414–8PubMedCrossRef Turski L, Bressler K, Rettig KJ, et al. Protection of substantia nigra from MPP+ neurotoxicity by N-methyl-D-aspartate antagonists. Nature 1991; 349(6308): 414–8PubMedCrossRef
194.
go back to reference Sonsalla PK, Zeevalk GD, Manzino L, et al. MK-801 fails to protect against the dopaminergic neuropathology produced by systemic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in mice or intranigral 1-methyl-4-phenylpyridinium in rats. J Neurochem 1992; 58(5): 1979–82PubMedCrossRef Sonsalla PK, Zeevalk GD, Manzino L, et al. MK-801 fails to protect against the dopaminergic neuropathology produced by systemic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in mice or intranigral 1-methyl-4-phenylpyridinium in rats. J Neurochem 1992; 58(5): 1979–82PubMedCrossRef
195.
go back to reference Lange KW, Loschmann PA, Sofic E, et al. The competitive NMDA antagonist CPP protects substantia nigra neurons from MPTP-induced degeneration in primates. Naunyn Schmiedebergs Arch Pharmacol 1993; 348(6): 586–92PubMedCrossRef Lange KW, Loschmann PA, Sofic E, et al. The competitive NMDA antagonist CPP protects substantia nigra neurons from MPTP-induced degeneration in primates. Naunyn Schmiedebergs Arch Pharmacol 1993; 348(6): 586–92PubMedCrossRef
196.
go back to reference Zuddas A, Oberto G, Vaglini F, et al. MK-801 prevents 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonism in primates. J Neurochem 1992; 59(2): 733–9PubMedCrossRef Zuddas A, Oberto G, Vaglini F, et al. MK-801 prevents 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonism in primates. J Neurochem 1992; 59(2): 733–9PubMedCrossRef
197.
go back to reference Blandini F, Nappi G, Greenamyre JT. Subthalamic infusion of an NMDA antagonist prevents basal ganglia metabolic changes and nigral degeneration in a rodent model of Parkinson’s disease. Ann Neurol 2001; 49(4): 525–9PubMedCrossRef Blandini F, Nappi G, Greenamyre JT. Subthalamic infusion of an NMDA antagonist prevents basal ganglia metabolic changes and nigral degeneration in a rodent model of Parkinson’s disease. Ann Neurol 2001; 49(4): 525–9PubMedCrossRef
198.
go back to reference De Blasi A, Conn PJ, Pin J, et al. Molecular determinants of metabotropic glutamate receptor signaling. Trends Pharmacol Sci 2001; 22(3): 114–20PubMedCrossRef De Blasi A, Conn PJ, Pin J, et al. Molecular determinants of metabotropic glutamate receptor signaling. Trends Pharmacol Sci 2001; 22(3): 114–20PubMedCrossRef
199.
go back to reference Alagarsamy S, Sorensen SD, Conn PJ. Coordinate regulation of metabotropic glutamate receptors. Curr Opin Neurobiol 2001; 11(3): 357–62PubMedCrossRef Alagarsamy S, Sorensen SD, Conn PJ. Coordinate regulation of metabotropic glutamate receptors. Curr Opin Neurobiol 2001; 11(3): 357–62PubMedCrossRef
200.
go back to reference Pisani A, Bernardi G, Bonsi P, et al. Cell-type specificity of mGluR activation in striatal neuronal subtypes. Amino Acids 2000; 19(1): 119–29PubMedCrossRef Pisani A, Bernardi G, Bonsi P, et al. Cell-type specificity of mGluR activation in striatal neuronal subtypes. Amino Acids 2000; 19(1): 119–29PubMedCrossRef
201.
go back to reference Calabresi P, Centonze D, Pisani A, et al. Metabotropic glutamate receptors and cell-type-specific vulnerability in the striatum: implication for ischemia and Huntington’s disease. Exp Neurol 1999; 158(1): 97–108PubMedCrossRef Calabresi P, Centonze D, Pisani A, et al. Metabotropic glutamate receptors and cell-type-specific vulnerability in the striatum: implication for ischemia and Huntington’s disease. Exp Neurol 1999; 158(1): 97–108PubMedCrossRef
202.
go back to reference Sacaan AI, Monn JA, Schoepp DD. Intrastriatal injection of a selective metabotropic excitatory amino acid receptor agonist induces contralateral turning in the rat. J Pharmacol Exp Ther 1991; 259(3): 1366–70PubMed Sacaan AI, Monn JA, Schoepp DD. Intrastriatal injection of a selective metabotropic excitatory amino acid receptor agonist induces contralateral turning in the rat. J Pharmacol Exp Ther 1991; 259(3): 1366–70PubMed
203.
go back to reference Sacaan AI, Bymaster FP, Schoepp DD. Metabotropic glutamate receptor activation produces extrapyramidal motor system activation that is mediated by striatal dopamine. J Neurochem 1992; 59(1): 245–51PubMedCrossRef Sacaan AI, Bymaster FP, Schoepp DD. Metabotropic glutamate receptor activation produces extrapyramidal motor system activation that is mediated by striatal dopamine. J Neurochem 1992; 59(1): 245–51PubMedCrossRef
204.
go back to reference Kearney JA, Frey KA, Albin RL. Metabotropic glutamate agonist-induced rotation: a pharmacological, FOS immunohistochemical, and [14C]-2-deoxyglucose autoradiographic study. J Neurosci 1997; 17(11): 4415–25PubMed Kearney JA, Frey KA, Albin RL. Metabotropic glutamate agonist-induced rotation: a pharmacological, FOS immunohistochemical, and [14C]-2-deoxyglucose autoradiographic study. J Neurosci 1997; 17(11): 4415–25PubMed
205.
go back to reference Kaatz KW, Albin RL. Intrastriatal and intrasubthalamic stimulation of metabotropic glutamate receptors: a behavioral and Fos immunohistochemical study. Neuroscience 1995; 66(1): 55–65PubMedCrossRef Kaatz KW, Albin RL. Intrastriatal and intrasubthalamic stimulation of metabotropic glutamate receptors: a behavioral and Fos immunohistochemical study. Neuroscience 1995; 66(1): 55–65PubMedCrossRef
206.
go back to reference Calabresi P, Mercuri NB, Bernardi G. Activation of quisqualate metabotropic receptors reduces glutamate and GABA-mediated synaptic potentials in the rat striatum. Neurosci Lett 1992; 139(1): 41–4PubMedCrossRef Calabresi P, Mercuri NB, Bernardi G. Activation of quisqualate metabotropic receptors reduces glutamate and GABA-mediated synaptic potentials in the rat striatum. Neurosci Lett 1992; 139(1): 41–4PubMedCrossRef
207.
go back to reference East SJ, Hill MP, Brotchie JM. Metabotropic glutamate receptor agonists inhibit endogenous glutamate release from rat striatal synaptosomes. Eur J Pharmacol 1995; 277(1): 117–21PubMedCrossRef East SJ, Hill MP, Brotchie JM. Metabotropic glutamate receptor agonists inhibit endogenous glutamate release from rat striatal synaptosomes. Eur J Pharmacol 1995; 277(1): 117–21PubMedCrossRef
208.
go back to reference Lovinger DM, McCool BA. Metabotropic glutamate receptormediated presynaptic depression at corticostriatal synapses involves mGLuR2 or 3. J Neurophysiol 1995; 73(3): 1076–83PubMed Lovinger DM, McCool BA. Metabotropic glutamate receptormediated presynaptic depression at corticostriatal synapses involves mGLuR2 or 3. J Neurophysiol 1995; 73(3): 1076–83PubMed
209.
go back to reference Lombardi G, Alesiani M, Leonardi P, et al. Pharmacological characterization of the metabotropic glutamate receptor inhibiting D-[3H]-aspartate output in rat striatum. Br J Pharmacol 1993; 110(4): 1407–12PubMedCrossRef Lombardi G, Alesiani M, Leonardi P, et al. Pharmacological characterization of the metabotropic glutamate receptor inhibiting D-[3H]-aspartate output in rat striatum. Br J Pharmacol 1993; 110(4): 1407–12PubMedCrossRef
210.
go back to reference Pisani A, Calabresi P, Centonze D, et al. Activation of group III metabotropic glutamate receptors depresses glutamatergic transmission at corticostriatal synapse. Neuropharmacology 1997; 36(6): 845–51PubMedCrossRef Pisani A, Calabresi P, Centonze D, et al. Activation of group III metabotropic glutamate receptors depresses glutamatergic transmission at corticostriatal synapse. Neuropharmacology 1997; 36(6): 845–51PubMedCrossRef
211.
go back to reference Stefani A, Pisani A, Mercuri NB, et al. Activation of metabotropic glutamate receptors inhibits calcium currents and GABA-mediated synaptic potentials in striatal neurons. J Neurosci 1994; 14 (11 Pt 1): 6734–43PubMed Stefani A, Pisani A, Mercuri NB, et al. Activation of metabotropic glutamate receptors inhibits calcium currents and GABA-mediated synaptic potentials in striatal neurons. J Neurosci 1994; 14 (11 Pt 1): 6734–43PubMed
212.
go back to reference Poisik OV, Mannaioni G, Traynelis S, et al. Distinct functional roles of the metabolic glutamate receptors 1 and 5 in the rat globus pallidus. J Neurosci 2003; 23(1): 122–30PubMed Poisik OV, Mannaioni G, Traynelis S, et al. Distinct functional roles of the metabolic glutamate receptors 1 and 5 in the rat globus pallidus. J Neurosci 2003; 23(1): 122–30PubMed
213.
go back to reference Beurrier C, Congar P, Bioulac B, et al. Subthalamic nucleus neurons switch from single-spike activity to burst-firing mode. J Neurosci 1999; 19(2): 599–609PubMed Beurrier C, Congar P, Bioulac B, et al. Subthalamic nucleus neurons switch from single-spike activity to burst-firing mode. J Neurosci 1999; 19(2): 599–609PubMed
214.
go back to reference Awad-Granko H, Conn PJ. Activation of groups I or III metabotropic glutamate receptors inhibits excitatory transmission in the rat subthalamic nucleus. Neuropharmacology 2001; 41(1): 32–41PubMedCrossRef Awad-Granko H, Conn PJ. Activation of groups I or III metabotropic glutamate receptors inhibits excitatory transmission in the rat subthalamic nucleus. Neuropharmacology 2001; 41(1): 32–41PubMedCrossRef
215.
go back to reference Kearney JA, Albin RL. Intrasubthalamic nucleus metabotropic glutamate receptor activation: a behavioral, Fos immunohistochemical and [14C]2-deoxyglucose autoradiographic study. Neuroscience 2000; 95(2): 409–16PubMedCrossRef Kearney JA, Albin RL. Intrasubthalamic nucleus metabotropic glutamate receptor activation: a behavioral, Fos immunohistochemical and [14C]2-deoxyglucose autoradiographic study. Neuroscience 2000; 95(2): 409–16PubMedCrossRef
216.
go back to reference Bradley SR, Marino MJ, Wittmann M, et al. Activation of group II metabotropic glutamate receptors inhibits synaptic excitation of the substantia nigra pars reticulata. J Neurosci 2000; 20(9): 3085–94PubMed Bradley SR, Marino MJ, Wittmann M, et al. Activation of group II metabotropic glutamate receptors inhibits synaptic excitation of the substantia nigra pars reticulata. J Neurosci 2000; 20(9): 3085–94PubMed
217.
go back to reference Wittmann M, Marino MJ, Bradley SR, et al. Activation of group III mGluRs inhibits GABAergic and glutamatergic transmission in the substantia nigra pars reticulata. J Neurophysiol 2001; 85(5): 1960–8PubMed Wittmann M, Marino MJ, Bradley SR, et al. Activation of group III mGluRs inhibits GABAergic and glutamatergic transmission in the substantia nigra pars reticulata. J Neurophysiol 2001; 85(5): 1960–8PubMed
218.
go back to reference Marino MJ, Wittman M, Bradley SR, et al. Activation of group I metabotropic glutamate receptors produces a direct excitation and disinhibition of GABAergic projection neurons in the substantia nigra pars reticulata. J Neurosci 2001; 21(18): 7001–12PubMed Marino MJ, Wittman M, Bradley SR, et al. Activation of group I metabotropic glutamate receptors produces a direct excitation and disinhibition of GABAergic projection neurons in the substantia nigra pars reticulata. J Neurosci 2001; 21(18): 7001–12PubMed
219.
go back to reference Hubert GW, Paquet M, Smith Y. Differential subcellular localization of mGluRla and mGluR5 in the rat and monkey substantia nigra. J Neurosci 2001; 21(6): 1838–47PubMed Hubert GW, Paquet M, Smith Y. Differential subcellular localization of mGluRla and mGluR5 in the rat and monkey substantia nigra. J Neurosci 2001; 21(6): 1838–47PubMed
220.
go back to reference Magill PJ, Bolam JP, Bevan MD. Relationship of activity in the subthalamic nucleus-globus pallidus network to cortical electroencephalogram. J Neurosci 2000; 20(2): 820–33PubMed Magill PJ, Bolam JP, Bevan MD. Relationship of activity in the subthalamic nucleus-globus pallidus network to cortical electroencephalogram. J Neurosci 2000; 20(2): 820–33PubMed
221.
go back to reference Spooren WP, Gasparini F, Bergmann R, et al. Effects of the prototypical mGlu (5) receptor antagonist 2-methyl-6-(phenylethynyl)-pyridine on rotarod, locomotor activity and rotational responses in unilateral 6-OHDA-lesioned rats. Eur J Pharmacol 2000; 406(3): 403–10PubMedCrossRef Spooren WP, Gasparini F, Bergmann R, et al. Effects of the prototypical mGlu (5) receptor antagonist 2-methyl-6-(phenylethynyl)-pyridine on rotarod, locomotor activity and rotational responses in unilateral 6-OHDA-lesioned rats. Eur J Pharmacol 2000; 406(3): 403–10PubMedCrossRef
222.
go back to reference Ossowska K, Konieczny J, Wolfarth S, et al. Blockade of the metabotropic glutamate receptor subtype 5 (mGluR5) produces antiparkinsonian-like effects in rats. Neuropharmacology 2001; 41(4): 413–20PubMedCrossRef Ossowska K, Konieczny J, Wolfarth S, et al. Blockade of the metabotropic glutamate receptor subtype 5 (mGluR5) produces antiparkinsonian-like effects in rats. Neuropharmacology 2001; 41(4): 413–20PubMedCrossRef
223.
go back to reference Breysse N, Baunez C, Spooren W, et al. Chronic but not acute treatment with a metabotropic glutamate 5 receptor antagonist reverses the akinetic deficits in a rat model of parkinsonism. J Neurosci 2002; 22(13): 5669–78PubMed Breysse N, Baunez C, Spooren W, et al. Chronic but not acute treatment with a metabotropic glutamate 5 receptor antagonist reverses the akinetic deficits in a rat model of parkinsonism. J Neurosci 2002; 22(13): 5669–78PubMed
224.
go back to reference Hill MP, McGuire SG, Crossman AR, et al. The mGluR5 receptor antagonist SIB-1830 reduces levodopa-induced dyskinesia in the MPTP-lesioned primate model of Parkinson’s disease [abstract]. Soc Neurosci 2001; 25(16): 200 Hill MP, McGuire SG, Crossman AR, et al. The mGluR5 receptor antagonist SIB-1830 reduces levodopa-induced dyskinesia in the MPTP-lesioned primate model of Parkinson’s disease [abstract]. Soc Neurosci 2001; 25(16): 200
225.
go back to reference Testa CM, Standaert DG, Young AB, et al. Metabotropic glutamate receptor mRNA expression in the basal ganglia of the rat. J Neurosci 1994; 14 (5 Pt 2): 3005–18PubMed Testa CM, Standaert DG, Young AB, et al. Metabotropic glutamate receptor mRNA expression in the basal ganglia of the rat. J Neurosci 1994; 14 (5 Pt 2): 3005–18PubMed
226.
go back to reference Konieczny J, Ossowska K, Wolfarth S, et al. LY354740, a group II metabotropic glutamate receptor agonist with potential antiparkinsonian properties in rats. Naunyn Schmiedebergs Arch Pharmacol 1998; 358(4): 500–2PubMedCrossRef Konieczny J, Ossowska K, Wolfarth S, et al. LY354740, a group II metabotropic glutamate receptor agonist with potential antiparkinsonian properties in rats. Naunyn Schmiedebergs Arch Pharmacol 1998; 358(4): 500–2PubMedCrossRef
227.
go back to reference Dawson L, Chadha A, Megalou M, et al. The group II metabotropic glutamate receptor agonist, DCG-IV, alleviates akinesia following intranigral or intraventricular administration in the reserpine-treated rat. Br J Pharmacol 2000; 129(3): 541–6PubMedCrossRef Dawson L, Chadha A, Megalou M, et al. The group II metabotropic glutamate receptor agonist, DCG-IV, alleviates akinesia following intranigral or intraventricular administration in the reserpine-treated rat. Br J Pharmacol 2000; 129(3): 541–6PubMedCrossRef
Metadata
Title
Glutamate Receptors and Parkinson’s Disease
Opportunities for Intervention
Authors
Michael J. Marino
Ornella Valenti
Dr P. Jeffrey Conn
Publication date
01-04-2003
Publisher
Springer International Publishing
Published in
Drugs & Aging / Issue 5/2003
Print ISSN: 1170-229X
Electronic ISSN: 1179-1969
DOI
https://doi.org/10.2165/00002512-200320050-00006

Other articles of this Issue 5/2003

Drugs & Aging 5/2003 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.