Skip to main content
Top
Published in: Drug Safety 2/2008

01-02-2008 | Review Article

If Inhibition with Ivabradine

Electrophysiological Effects and Safety

Authors: Irina Savelieva, Professor A. John Camm

Published in: Drug Safety | Issue 2/2008

Login to get access

Abstract

Ivabradine belongs to a new class of specific heart rate reducing agents that inhibit spontaneous pacemaker activity of the sinus node by selectively and specifically inhibiting the If current; thus, allowing heart rate reduction without affecting myocardial contractility, relaxation and peripheral vascular resistance.
In clinical studies involving >3500 patients and 800 healthy volunteers, ivabradine demonstrated a good safety profile during its clinical development. The most common adverse events were visual symptoms in 16.4% (n = 270) and sinus bradycardia ≤55 beats per minute in 3.2% (n = 53) of all patients treated with recommended doses of 5 mg and 7.5 mg twice daily. However, because the heart rate reducing effect of ivabradine is proportional to the resting heart rate and is associated with a clear trend to a plateau-dose effect, severe sinus bradycardia is uncommon. Less than 1% of patients withdrew from therapy because of untoward sinus bradycardia. The QT interval is prolonged in accordance with the reduction in heart rate; however, after appropriate correction for heart rate and in direct comparisons of the QT interval when the influence of the heart rate was controlled by atrial pacing, no significant effect of ivabradine on ventricular repolarization duration was demonstrated. Consequently, ivabradine has no direct torsadogenic potential. Because ivabradine also inhibits h-channels, which carry the Ihh current in the eye, it may cause luminous phenomena (phosphenes). Visual symptoms are transient, do not interfere with quality of life and have led to few withdrawals (<1%; 24 of 2545 patients); symptoms resolved during treatment in 77.5% (383 of 491) of patients. Since constitutionally active If and Ih currents are confined to the sinus node, retina and CNS neurons (ivabradine does not cross blood-brain barrier), ivabradine does not affect other tissues. The safety of ivabradine will be further assessed by postmarketing surveillance and during on-going clinical trials.
Literature
1.
go back to reference DiFrancesco D, Camm JA. Heart rate lowering by specific and selective If current inhibition with ivabradine: a new therapeutic perspective in cardiovascular disease. Drugs 2004; 64: 1757–65PubMedCrossRef DiFrancesco D, Camm JA. Heart rate lowering by specific and selective If current inhibition with ivabradine: a new therapeutic perspective in cardiovascular disease. Drugs 2004; 64: 1757–65PubMedCrossRef
2.
go back to reference Tardif JC. Clinical results of I(f) current inhibition by ivabradine. Drugs 2007; 67 Suppl. 2: 35–41PubMedCrossRef Tardif JC. Clinical results of I(f) current inhibition by ivabradine. Drugs 2007; 67 Suppl. 2: 35–41PubMedCrossRef
3.
go back to reference European Medicines Agency: Committee for Medicinal Products for Human European Public Assessment Report (EPAR), Procoralan [online]. Available from URL: http://www.emea.eu.int [Accessed 2008 Jan 14] European Medicines Agency: Committee for Medicinal Products for Human European Public Assessment Report (EPAR), Procoralan [online]. Available from URL: http://​www.​emea.​eu.​int [Accessed 2008 Jan 14]
4.
go back to reference Bucchi A, Baruscotti M, DiFrancesco D. Current-dependent block of rabbit sino-atrial node If channels by ivabradine. J Gen Physiol 2002; 120: 1–13PubMedCrossRef Bucchi A, Baruscotti M, DiFrancesco D. Current-dependent block of rabbit sino-atrial node If channels by ivabradine. J Gen Physiol 2002; 120: 1–13PubMedCrossRef
5.
go back to reference Baruscotti M, Bucchi A, Difrancesco D. Physiology and pharmacology of the cardiac pacemaker (“funny”) current. Pharmacol Ther 2005; 107: 59–79PubMedCrossRef Baruscotti M, Bucchi A, Difrancesco D. Physiology and pharmacology of the cardiac pacemaker (“funny”) current. Pharmacol Ther 2005; 107: 59–79PubMedCrossRef
6.
go back to reference Bois P, Bescond J, Renaudon B, et al. Mode of action of bradycardic agent, S 16257, on ionic currents of rabbit sinoatrial node cells. Br J Pharmacol 1996; 118: 1051–7PubMedCrossRef Bois P, Bescond J, Renaudon B, et al. Mode of action of bradycardic agent, S 16257, on ionic currents of rabbit sinoatrial node cells. Br J Pharmacol 1996; 118: 1051–7PubMedCrossRef
7.
go back to reference Robinson RB, Siegelbaum SA. Hyperpolarization-activated cation currents: from molecules to physiological function. Annu Rev Physiol 2003; 65: 453–80PubMedCrossRef Robinson RB, Siegelbaum SA. Hyperpolarization-activated cation currents: from molecules to physiological function. Annu Rev Physiol 2003; 65: 453–80PubMedCrossRef
8.
go back to reference Robinson RB, DiFrancesco D. Sinoatrial node and impulse initiation. In: Spooner PM, Rosen MR, editors. Foundations of cardiac arrhythmias: basic concepts and clinical approaches. New York: Marcel Dekker, 2001: 151–70 Robinson RB, DiFrancesco D. Sinoatrial node and impulse initiation. In: Spooner PM, Rosen MR, editors. Foundations of cardiac arrhythmias: basic concepts and clinical approaches. New York: Marcel Dekker, 2001: 151–70
9.
go back to reference Thollon C, Bedut S, Villeneuve N, et al. Use-dependent inhibition of hHCN4 by ivabradine and relationship with reduction in pacemaker activity. Br J Pharmacol 2007; 150: 37–46PubMedCrossRef Thollon C, Bedut S, Villeneuve N, et al. Use-dependent inhibition of hHCN4 by ivabradine and relationship with reduction in pacemaker activity. Br J Pharmacol 2007; 150: 37–46PubMedCrossRef
10.
go back to reference Savelieva I, Borer JS, Camm AJ. Heart rate lowering action of ivabradine depends on baseline heart rate: mechanism of low incidence of excessive bradycardia during therapy with ivabradine [abstract]. Heart 2007; 93 Suppl. 1: A45CrossRef Savelieva I, Borer JS, Camm AJ. Heart rate lowering action of ivabradine depends on baseline heart rate: mechanism of low incidence of excessive bradycardia during therapy with ivabradine [abstract]. Heart 2007; 93 Suppl. 1: A45CrossRef
11.
go back to reference Ruzyllo W, Tendera M, Ford I, et al. Antianginal efficacy and safety of ivabradine compared with amlodipine in patients with stable effort angina pectoris: a 3-month randomised, double-blind, multicentre, noninferiority trial. Drugs 2007; 67: 393–405PubMedCrossRef Ruzyllo W, Tendera M, Ford I, et al. Antianginal efficacy and safety of ivabradine compared with amlodipine in patients with stable effort angina pectoris: a 3-month randomised, double-blind, multicentre, noninferiority trial. Drugs 2007; 67: 393–405PubMedCrossRef
12.
go back to reference Camm AJ, Le Heuzey JY, Jern S, et al. Heart rate variability is significantly increased by ivabradine compared with amlodipine in patients with coronary artery disease: a prospective randomised, double-blind, controlled study [abstract]. J Am Coll Cardiol 2007; 49 Suppl. A: 26A Camm AJ, Le Heuzey JY, Jern S, et al. Heart rate variability is significantly increased by ivabradine compared with amlodipine in patients with coronary artery disease: a prospective randomised, double-blind, controlled study [abstract]. J Am Coll Cardiol 2007; 49 Suppl. A: 26A
13.
go back to reference Savelieva I, Camm AJ. Novel If current inhibitor ivabradine: safety considerations. In: Camm AJ, Tendera M, editors. Advances in cardiology. Heart rate slowing by pharmacological If current inhibition: role in cardiovascular disease. Basel: Karger AG, 2006; 43: 79–96 Savelieva I, Camm AJ. Novel If current inhibitor ivabradine: safety considerations. In: Camm AJ, Tendera M, editors. Advances in cardiology. Heart rate slowing by pharmacological If current inhibition: role in cardiovascular disease. Basel: Karger AG, 2006; 43: 79–96
14.
go back to reference Camm AJ, Lau CP. Electrophysiological effects of a single intravenous administration of ivabradine (S 16257) in adult patients with normal baseline electrophysiology. Drugs RD 2003; 4(2): 83–9CrossRef Camm AJ, Lau CP. Electrophysiological effects of a single intravenous administration of ivabradine (S 16257) in adult patients with normal baseline electrophysiology. Drugs RD 2003; 4(2): 83–9CrossRef
15.
go back to reference Leoni AL, Marionneau C, Demolombe S, et al. Chronic heart rate reduction remodels ion channel transcripts in the mouse sinoatrial node but not in the ventricle. Physiol Genomics 2005; 24: 4–12PubMedCrossRef Leoni AL, Marionneau C, Demolombe S, et al. Chronic heart rate reduction remodels ion channel transcripts in the mouse sinoatrial node but not in the ventricle. Physiol Genomics 2005; 24: 4–12PubMedCrossRef
16.
go back to reference Tardif JC, Ford I, Tendera M, et al. INITIATIVE Investigators. Efficacy of ivabradine, a new selective I(f) inhibitor, compared with atenolol in patients with chronic stable angina. Eur Heart J 2005; 26: 2529–36PubMedCrossRef Tardif JC, Ford I, Tendera M, et al. INITIATIVE Investigators. Efficacy of ivabradine, a new selective I(f) inhibitor, compared with atenolol in patients with chronic stable angina. Eur Heart J 2005; 26: 2529–36PubMedCrossRef
17.
go back to reference Savelieva I, Jones S, Dougal K, et al. Non-invasive Electrophysiological Study of Ivabradine (NESI) in patients with dual chamber pacemakers: effects on ventricular repolarization [abstract]. J Am Coll Cardiol 2006; 47 Suppl. A: 27A Savelieva I, Jones S, Dougal K, et al. Non-invasive Electrophysiological Study of Ivabradine (NESI) in patients with dual chamber pacemakers: effects on ventricular repolarization [abstract]. J Am Coll Cardiol 2006; 47 Suppl. A: 27A
18.
go back to reference Thollon C, Cambarrat C, Vian J, et al. Electrophysiological effects of S 16257, a novel sino-atrial node modulator, on rabbit and guinea-pig cardiac preparations: comparison with UL-FS 49. Br J Pharmacol 1994; 112: 37–42PubMedCrossRef Thollon C, Cambarrat C, Vian J, et al. Electrophysiological effects of S 16257, a novel sino-atrial node modulator, on rabbit and guinea-pig cardiac preparations: comparison with UL-FS 49. Br J Pharmacol 1994; 112: 37–42PubMedCrossRef
19.
go back to reference Savelieva I, Camm AJ. Comparison of the effects of a selective If current inhibitor ivabradine and atenolol on the QT interval in patients with coronary artery disease [abstract]. Heart Rhythm 2005; 2: S145–6CrossRef Savelieva I, Camm AJ. Comparison of the effects of a selective If current inhibitor ivabradine and atenolol on the QT interval in patients with coronary artery disease [abstract]. Heart Rhythm 2005; 2: S145–6CrossRef
20.
go back to reference International Conference on Harmonisation; guidance on E14 clinical evaluation of QT/QTc interval prolongation and proarrhythmic potential for non-antiarrhythmic drugs. Fed Regist 2005; 70: 61134–5 International Conference on Harmonisation; guidance on E14 clinical evaluation of QT/QTc interval prolongation and proarrhythmic potential for non-antiarrhythmic drugs. Fed Regist 2005; 70: 61134–5
21.
go back to reference Hoppe UC, Jansen E, Sudkamp M, et al. Hyperpolarization-activated inward current in ventricular myocytes from normal and failing human hearts. Circulation 1998; 97: 55–65PubMedCrossRef Hoppe UC, Jansen E, Sudkamp M, et al. Hyperpolarization-activated inward current in ventricular myocytes from normal and failing human hearts. Circulation 1998; 97: 55–65PubMedCrossRef
22.
go back to reference Cerbai E, Sartiani L, DePaoli P, et al. The properties of the pacemaker current I(f) in human ventricular myocytes are modulated by cardiac disease. J Mol Cell Cardiol 2001; 33: 441–8PubMedCrossRef Cerbai E, Sartiani L, DePaoli P, et al. The properties of the pacemaker current I(f) in human ventricular myocytes are modulated by cardiac disease. J Mol Cell Cardiol 2001; 33: 441–8PubMedCrossRef
23.
go back to reference Han W, Zhang L, Schram G, et al. Properties of potassium currents in Purkinje cells of failing human hearts. Am J Physiol Heart Circ Physiol 2002; 283: H2495–503PubMed Han W, Zhang L, Schram G, et al. Properties of potassium currents in Purkinje cells of failing human hearts. Am J Physiol Heart Circ Physiol 2002; 283: H2495–503PubMed
24.
go back to reference Michels G, Er F, Khan I, et al. Single-channel properties support a potential contribution of hyperpolarization-activated cyclic nucleotide-gated channels and If to cardiac arrhythmias. Circulation 2005; 111: 399–404PubMedCrossRef Michels G, Er F, Khan I, et al. Single-channel properties support a potential contribution of hyperpolarization-activated cyclic nucleotide-gated channels and If to cardiac arrhythmias. Circulation 2005; 111: 399–404PubMedCrossRef
25.
go back to reference Porciatti F, Pelzmann B, Cerbai E, et al. The pacemaker current I(f) in single human atrial myocytes and the effect of beta-adrenoceptor and A1-adenosine receptor stimulation. Br J Pharmacol 1997; 122: 963–9PubMedCrossRef Porciatti F, Pelzmann B, Cerbai E, et al. The pacemaker current I(f) in single human atrial myocytes and the effect of beta-adrenoceptor and A1-adenosine receptor stimulation. Br J Pharmacol 1997; 122: 963–9PubMedCrossRef
26.
go back to reference Zicha S, Fernandez-Velasco M, Lonardo G, et al. Sinus node dysfunction and hyperpolarization-activated (HCN) channel subunit remodeling in a canine heart failure model. Cardiovasc Res 2005; 66: 472–81PubMedCrossRef Zicha S, Fernandez-Velasco M, Lonardo G, et al. Sinus node dysfunction and hyperpolarization-activated (HCN) channel subunit remodeling in a canine heart failure model. Cardiovasc Res 2005; 66: 472–81PubMedCrossRef
27.
go back to reference Lai LP, Su MJ, Lin JL, et al. Measurement of funny current (I(f)) channel mRNA in human atrial tissue: correlation with left atrial filling pressure and atrial fibrillation. J Cardiovasc Electrophysiol 1999; 10: 947–53PubMedCrossRef Lai LP, Su MJ, Lin JL, et al. Measurement of funny current (I(f)) channel mRNA in human atrial tissue: correlation with left atrial filling pressure and atrial fibrillation. J Cardiovasc Electrophysiol 1999; 10: 947–53PubMedCrossRef
28.
go back to reference Hoppe UC, Beuckelmann DJ. Characterization of the hyperpolarization-activated inward current in isolated human atrial myocytes. Cardiovasc Res 1998; 38: 788–801PubMedCrossRef Hoppe UC, Beuckelmann DJ. Characterization of the hyperpolarization-activated inward current in isolated human atrial myocytes. Cardiovasc Res 1998; 38: 788–801PubMedCrossRef
29.
go back to reference Hoppe UC, Beuckelmann DJ. Modulation of the hyperpolarization-activated inward current (If) by antiarrhythmic agents in isolated human atrial myocytes. Naunyn Schmiedebergs Arch Pharmacol 1998; 358: 635–40PubMedCrossRef Hoppe UC, Beuckelmann DJ. Modulation of the hyperpolarization-activated inward current (If) by antiarrhythmic agents in isolated human atrial myocytes. Naunyn Schmiedebergs Arch Pharmacol 1998; 358: 635–40PubMedCrossRef
30.
go back to reference El Chemaly A, Magaud C, Patri S, et al. The heart rate-lowering agent ivabradine inhibits the pacemaker current If in human atrial myocytes. J Cardiovasc Electrophysiol 2007; 18: 1190–6PubMedCrossRef El Chemaly A, Magaud C, Patri S, et al. The heart rate-lowering agent ivabradine inhibits the pacemaker current If in human atrial myocytes. J Cardiovasc Electrophysiol 2007; 18: 1190–6PubMedCrossRef
31.
go back to reference Delpón E, Valenzuela C, Pérez O, et al. Mechanism of block of a human cloned potassium channel by the enantiomers of a new bradycardic agent: S-16257-2 and S-16260-2. Br J Pharmacol 1996; 117: 1293–301PubMedCrossRef Delpón E, Valenzuela C, Pérez O, et al. Mechanism of block of a human cloned potassium channel by the enantiomers of a new bradycardic agent: S-16257-2 and S-16260-2. Br J Pharmacol 1996; 117: 1293–301PubMedCrossRef
32.
go back to reference Mulder P, Barbier S, Chagraoui A, et al. Long-term heart rate reduction induced by the selective I(f) current inhibitor ivabradine improves left ventricular function and intrinsic myocardial structure in congestive heart failure. Circulation 2004; 109: 1674–9PubMedCrossRef Mulder P, Barbier S, Chagraoui A, et al. Long-term heart rate reduction induced by the selective I(f) current inhibitor ivabradine improves left ventricular function and intrinsic myocardial structure in congestive heart failure. Circulation 2004; 109: 1674–9PubMedCrossRef
33.
go back to reference Simon L, Ghaleh B, Puybasset L, et al. Coronary and hemody-namic effects of S 16257, a new bradycardic agent, in resting and exercising conscious dogs. J Pharmacol Exp Ther 1995; 275: 659–66PubMed Simon L, Ghaleh B, Puybasset L, et al. Coronary and hemody-namic effects of S 16257, a new bradycardic agent, in resting and exercising conscious dogs. J Pharmacol Exp Ther 1995; 275: 659–66PubMed
34.
go back to reference Albaladejo P, Carusi A, Apartian A, et al. Effect of chronic heart rate reduction with ivabradine on carotid and aortic structure and function in normotensive and hypertensive rats. J Vasc Res 2003; 40: 320–8PubMedCrossRef Albaladejo P, Carusi A, Apartian A, et al. Effect of chronic heart rate reduction with ivabradine on carotid and aortic structure and function in normotensive and hypertensive rats. J Vasc Res 2003; 40: 320–8PubMedCrossRef
35.
go back to reference Monnet X, Colin P, Ghaleh B, et al. Heart rate reduction during exercise-induced myocardial ischaemia and stunning. Eur Heart J 2004; 25: 579–86PubMedCrossRef Monnet X, Colin P, Ghaleh B, et al. Heart rate reduction during exercise-induced myocardial ischaemia and stunning. Eur Heart J 2004; 25: 579–86PubMedCrossRef
36.
go back to reference Manz M, Reuter M, Lauck G, et al. A single intravenous dose of ivabradine, a novel I(f) inhibitor, lowers heart rate but does not depress left ventricular function in patients with left ventricular dysfunction. Cardiology 2003; 100: 149–55PubMedCrossRef Manz M, Reuter M, Lauck G, et al. A single intravenous dose of ivabradine, a novel I(f) inhibitor, lowers heart rate but does not depress left ventricular function in patients with left ventricular dysfunction. Cardiology 2003; 100: 149–55PubMedCrossRef
37.
go back to reference De Ferrari GM, Mazzuero A, Agnesina L, et al. Ivabradine infusion in patients with severe heart failure is safe, reduces heart rate and increases left ventricular stroke volume and systolic work [abstract]. Eur Heart J 2006; 27: 330 De Ferrari GM, Mazzuero A, Agnesina L, et al. Ivabradine infusion in patients with severe heart failure is safe, reduces heart rate and increases left ventricular stroke volume and systolic work [abstract]. Eur Heart J 2006; 27: 330
38.
go back to reference Jondeau G, Korewicki Y, Vasiliauskas D. Effect of ivabradine in patients with left ventricular systolic dysfunction and coronary artery disease [abstract]. Eur Heart J 2004; 25 (Suppl.): 491 Jondeau G, Korewicki Y, Vasiliauskas D. Effect of ivabradine in patients with left ventricular systolic dysfunction and coronary artery disease [abstract]. Eur Heart J 2004; 25 (Suppl.): 491
39.
go back to reference Fox K, Ferrari R, Tendera M, et al. BEAUTIFUL Steering Committee. Rationale and design of a randomized, double-blind, placebo-controlled trial of ivabradine in patients with stable coronary artery disease and left ventricular systolic dysfunction: the morBidity-mortality EvAlUaTion of the I(f) inhibitor ivabradine in patients with coronary disease and left ventricULar dysfunction (BEAUTIFUL) study. Am Heart J 2006; 152: 860–6PubMedCrossRef Fox K, Ferrari R, Tendera M, et al. BEAUTIFUL Steering Committee. Rationale and design of a randomized, double-blind, placebo-controlled trial of ivabradine in patients with stable coronary artery disease and left ventricular systolic dysfunction: the morBidity-mortality EvAlUaTion of the I(f) inhibitor ivabradine in patients with coronary disease and left ventricULar dysfunction (BEAUTIFUL) study. Am Heart J 2006; 152: 860–6PubMedCrossRef
40.
go back to reference Demontis GC, Longoni B, Barcaro U, et al. Properties and functional roles of hyperpolarization-gated currents in guineapig retinal rods. J Physiol 1999; 515: 813–28PubMedCrossRef Demontis GC, Longoni B, Barcaro U, et al. Properties and functional roles of hyperpolarization-gated currents in guineapig retinal rods. J Physiol 1999; 515: 813–28PubMedCrossRef
41.
go back to reference Gargini C, Demontis GC, Bisti S, et al. Effects of blocking the hyperpolarization-activated current (Ih) on the cat electroretinogram. Vision Res 1999; 39: 1767–74PubMedCrossRef Gargini C, Demontis GC, Bisti S, et al. Effects of blocking the hyperpolarization-activated current (Ih) on the cat electroretinogram. Vision Res 1999; 39: 1767–74PubMedCrossRef
42.
go back to reference Monteggia LM, Eisch AJ, Tang MD, et al. Cloning and localization of the hyperpolarization-activated cyclic nucleotide-gated channel family in rat brain. Brain Res Mol Brain Res 2000; 81: 129–39PubMedCrossRef Monteggia LM, Eisch AJ, Tang MD, et al. Cloning and localization of the hyperpolarization-activated cyclic nucleotide-gated channel family in rat brain. Brain Res Mol Brain Res 2000; 81: 129–39PubMedCrossRef
43.
go back to reference Yusuf S, Camm AJ. Sinus tachyarrhythmias and the specific bradycardic agents: a marriage made in heaven? J Cardiovasc Pharmacol Ther 2003; 8: 89–105PubMedCrossRef Yusuf S, Camm AJ. Sinus tachyarrhythmias and the specific bradycardic agents: a marriage made in heaven? J Cardiovasc Pharmacol Ther 2003; 8: 89–105PubMedCrossRef
Metadata
Title
If Inhibition with Ivabradine
Electrophysiological Effects and Safety
Authors
Irina Savelieva
Professor A. John Camm
Publication date
01-02-2008
Publisher
Springer International Publishing
Published in
Drug Safety / Issue 2/2008
Print ISSN: 0114-5916
Electronic ISSN: 1179-1942
DOI
https://doi.org/10.2165/00002018-200831020-00001

Other articles of this Issue 2/2008

Drug Safety 2/2008 Go to the issue

Correspondence

The Author’s Reply