Skip to main content
Top
Published in: Annals of Surgical Oncology 2/2021

Open Access 01-02-2021 | Metastasis | Melanoma

Quantitative and Spatial Analysis of CD8+/PD-1 Tumor-Infiltrating Lymphocytes as a Predictive Biomarker for Clinical Response of Melanoma In-Transit Metastases to Topical Immunotherapy

Authors: Sophia Haywood, MB, BS, Jennifer Garioch, MD, FRCP, Arjun Ramaiya, FRCPath, Marc Moncrieff, MD, FRCS(Plast)

Published in: Annals of Surgical Oncology | Issue 2/2021

Login to get access

Abstract

Background

Melanoma in-transit metastases (ITMs) are a challenge to treat and associated with systemic disease and poor prognosis. Topical diphencyprone (DPCP), a potent contact sensitizer, is an established treatment for melanoma ITMs. This exploratory study investigated the utility of BRAF mutation status, CD8, PD-1, PD-L1, and TILs distribution as biomarkers for response of ITMs to topical immunotherapy (DPCP).

Methods

The ITM deposits of 40 patients treated with DPCP were subjected to biomarker analysis for BRAF status, CD8 and PD-1 expression on tumor-infiltrating lymphocytes (TILs), and tumor PD-L1 expression. Response to DPCP and overall survival (OS) were compared by biomarker status.

Results

After 12 weeks, 10 patients (25%) had a complete response, 12 patients (30%) had a partial response, and 18 patients (45%) had no response. No significant association was found between any individual biomarker and response to DPCP or OS. The BRAF mutation rate was 25% (10/40). All the patients with a complete response had BRAF wild-type tumor. Peritumoral CD8+ T-cells were associated with complete response (P = 0.041). Both CD8+ and PD-1 expressions were highly correlated (P < 0.0001), and the highest levels of PD-1 expression were detected at the peritumoral interface (P = 0.0004). Only two cases were PD-L1-positive, and both had a complete response to DPCP (P = 0.043).

Conclusion

Patients who have BRAF wild-type tumor are more likely to experience a complete response to DPCP. Peritumoral TILs and PD-1 expressions may predict a better response to DPCP. Expression of PD-L1 may be associated with a complete response to DPCP. A larger prospective study is required.
Literature
1.
go back to reference Read RL, Haydu L, Saw RPM, et al. In-transit melanoma metastases: incidence, prognosis, and the role of lymphadenectomy. Ann Surg Oncol. 2015;22:475–81.CrossRef Read RL, Haydu L, Saw RPM, et al. In-transit melanoma metastases: incidence, prognosis, and the role of lymphadenectomy. Ann Surg Oncol. 2015;22:475–81.CrossRef
2.
go back to reference Testori A, Ribero S, Bataille V. Diagnosis and treatment of in-transit melanoma metastases. Eur J Surg Oncol. 2017;43:544–60.CrossRef Testori A, Ribero S, Bataille V. Diagnosis and treatment of in-transit melanoma metastases. Eur J Surg Oncol. 2017;43:544–60.CrossRef
3.
go back to reference Gershenwald JE, Scolyer RA, Hess KR, et al. Melanoma staging: evidence-based changes in the American Joint Committee on Cancer eighth edition cancer staging manual. CA Cancer J Clin. 2017;67:472–92. Gershenwald JE, Scolyer RA, Hess KR, et al. Melanoma staging: evidence-based changes in the American Joint Committee on Cancer eighth edition cancer staging manual. CA Cancer J Clin. 2017;67:472–92.
4.
go back to reference Kroon HM, Moncrieff M, Kam PCA, Thompson JF. Outcomes following isolated limb infusion for melanoma: a 14-year experience. Ann Surg Oncol. 2008;15:3003–13.CrossRef Kroon HM, Moncrieff M, Kam PCA, Thompson JF. Outcomes following isolated limb infusion for melanoma: a 14-year experience. Ann Surg Oncol. 2008;15:3003–13.CrossRef
5.
go back to reference Damian DL, Saw RPM, Thompson JF. Topical immunotherapy with diphencyprone for in-transit and cutaneously metastatic melanoma: DPCP for melanoma. J Surg Oncol. 2014;109:308–13.CrossRef Damian DL, Saw RPM, Thompson JF. Topical immunotherapy with diphencyprone for in-transit and cutaneously metastatic melanoma: DPCP for melanoma. J Surg Oncol. 2014;109:308–13.CrossRef
6.
go back to reference Read T, Webber S, Tan J, et al. Diphenylcyclopropenone for the treatment of cutaneous in-transit melanoma metastases: results of a prospective, non-randomized, single-centre study. J Eur Acad Dermatol Venereol. 2017;31:2030–7.CrossRef Read T, Webber S, Tan J, et al. Diphenylcyclopropenone for the treatment of cutaneous in-transit melanoma metastases: results of a prospective, non-randomized, single-centre study. J Eur Acad Dermatol Venereol. 2017;31:2030–7.CrossRef
7.
go back to reference Moncrieff M, Fadhil M, Garrioch J. Topical diphencyprone for the treatment of locoregional intralymphatic melanoma metastases (LIMMs) of the skin: the 5-Year Norwich experience. Br J Dermatol. 2016;174:1141–2.CrossRef Moncrieff M, Fadhil M, Garrioch J. Topical diphencyprone for the treatment of locoregional intralymphatic melanoma metastases (LIMMs) of the skin: the 5-Year Norwich experience. Br J Dermatol. 2016;174:1141–2.CrossRef
9.
go back to reference Gulati N, Suárez-Fariñas M, Fuentes-Duculan J, et al. Molecular characterization of human skin response to diphencyprone at peak and resolution phases: therapeutic insights. J Invest Dermatol. 2014;134:2531–40.CrossRef Gulati N, Suárez-Fariñas M, Fuentes-Duculan J, et al. Molecular characterization of human skin response to diphencyprone at peak and resolution phases: therapeutic insights. J Invest Dermatol. 2014;134:2531–40.CrossRef
10.
go back to reference Van der Steen PH, Happle R. Topical immunotherapy of alopecia areata. Dermatol Clin. 1993;11:619–22.CrossRef Van der Steen PH, Happle R. Topical immunotherapy of alopecia areata. Dermatol Clin. 1993;11:619–22.CrossRef
11.
go back to reference Damian DL, Thompson JF. Treatment of extensive cutaneous metastatic melanoma with topical diphencyprone. J Am Acad Dermatol. 2007;56:869–71.CrossRef Damian DL, Thompson JF. Treatment of extensive cutaneous metastatic melanoma with topical diphencyprone. J Am Acad Dermatol. 2007;56:869–71.CrossRef
12.
go back to reference Lee J-H, Choi J-W, Kim Y-S. Frequencies of BRAF and NRAS mutations are different in histological types and sites of origin of cutaneous melanoma: a meta-analysis. Br J Dermatol. 2011;164:776–84.CrossRef Lee J-H, Choi J-W, Kim Y-S. Frequencies of BRAF and NRAS mutations are different in histological types and sites of origin of cutaneous melanoma: a meta-analysis. Br J Dermatol. 2011;164:776–84.CrossRef
13.
go back to reference Davies H, Bignell GR, Cox C, et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417:949–54.CrossRef Davies H, Bignell GR, Cox C, et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417:949–54.CrossRef
14.
go back to reference Long GV, Menzies AM, Nagrial AM, et al. Prognostic and clinicopathologic associations of oncogenic BRAF in metastatic melanoma. J Clin Oncol. 2011;29:1239–46.CrossRef Long GV, Menzies AM, Nagrial AM, et al. Prognostic and clinicopathologic associations of oncogenic BRAF in metastatic melanoma. J Clin Oncol. 2011;29:1239–46.CrossRef
15.
go back to reference Flaherty KT, Puzanov I, Kim KB, et al. Inhibition of mutated, activated BRAF in metastatic melanoma. N Engl J Med. 2010;363:809–19.CrossRef Flaherty KT, Puzanov I, Kim KB, et al. Inhibition of mutated, activated BRAF in metastatic melanoma. N Engl J Med. 2010;363:809–19.CrossRef
16.
go back to reference Robert C, Grob JJ, Stroyakovskiy D, et al. Five-year outcomes with dabrafenib plus trametinib in metastatic melanoma. N Engl J Med. 2019;381:626–36.CrossRef Robert C, Grob JJ, Stroyakovskiy D, et al. Five-year outcomes with dabrafenib plus trametinib in metastatic melanoma. N Engl J Med. 2019;381:626–36.CrossRef
17.
go back to reference Hadrup S, Donia M, Thor Straten P. Effector CD4 and CD8 T cells and their role in the tumor microenvironment. Cancer Microenviron. 2013;6:123–33.CrossRef Hadrup S, Donia M, Thor Straten P. Effector CD4 and CD8 T cells and their role in the tumor microenvironment. Cancer Microenviron. 2013;6:123–33.CrossRef
18.
go back to reference Gooden MJM, de Bock GH, Leffers N, Daemen T, Nijman HW. The prognostic influence of tumour-infiltrating lymphocytes in cancer: a systematic review with meta-analysis. Br J Cancer. 2011;105:93–103.CrossRef Gooden MJM, de Bock GH, Leffers N, Daemen T, Nijman HW. The prognostic influence of tumour-infiltrating lymphocytes in cancer: a systematic review with meta-analysis. Br J Cancer. 2011;105:93–103.CrossRef
19.
go back to reference Okazaki T, Honjo T. PD-1 and PD-1 ligands: from discovery to clinical application. Int Immunol. 2007;19:813–24.CrossRef Okazaki T, Honjo T. PD-1 and PD-1 ligands: from discovery to clinical application. Int Immunol. 2007;19:813–24.CrossRef
20.
go back to reference Obeid JM, Erdag G, Smolkin ME, et al. PD-L1, PD-L2, and PD-1 expression in metastatic melanoma: correlation with tumor-infiltrating immune cells and clinical outcome. Oncoimmunology. 2016;5:e1235107.CrossRef Obeid JM, Erdag G, Smolkin ME, et al. PD-L1, PD-L2, and PD-1 expression in metastatic melanoma: correlation with tumor-infiltrating immune cells and clinical outcome. Oncoimmunology. 2016;5:e1235107.CrossRef
21.
go back to reference Robert C, Ribas A, Schachter J, et al. Pembrolizumab versus ipilimumab in advanced melanoma (KEYNOTE-006): post hoc 5-year results from an open-label, multicentre, randomised, controlled, phase 3 study. Lancet Oncol. 2019;20:1239–51.CrossRef Robert C, Ribas A, Schachter J, et al. Pembrolizumab versus ipilimumab in advanced melanoma (KEYNOTE-006): post hoc 5-year results from an open-label, multicentre, randomised, controlled, phase 3 study. Lancet Oncol. 2019;20:1239–51.CrossRef
22.
go back to reference Ascierto PA, Long GV, Robert C, et al. Survival outcomes in patients with previously untreated BRAF wild-type advanced melanoma treated with nivolumab therapy: three-year follow-up of a randomized phase 3 trial. JAMA Oncol. 2019;5:187–94.CrossRef Ascierto PA, Long GV, Robert C, et al. Survival outcomes in patients with previously untreated BRAF wild-type advanced melanoma treated with nivolumab therapy: three-year follow-up of a randomized phase 3 trial. JAMA Oncol. 2019;5:187–94.CrossRef
23.
go back to reference Lo MCI, Paterson A, Maraka J, et al. A UK feasibility and validation study of the VE1 monoclonal antibody immunohistochemistry stain for BRAF-V600E mutations in metastatic melanoma. Br J Cancer. 2016;115:223–7.CrossRef Lo MCI, Paterson A, Maraka J, et al. A UK feasibility and validation study of the VE1 monoclonal antibody immunohistochemistry stain for BRAF-V600E mutations in metastatic melanoma. Br J Cancer. 2016;115:223–7.CrossRef
24.
go back to reference Rubinstein JC, Sznol M, Pavlick AC, et al. Incidence of the V600K mutation among melanoma patients with BRAF mutations, and potential therapeutic response to the specific BRAF inhibitor PLX4032. J Transl Med. 2010;8:67.CrossRef Rubinstein JC, Sznol M, Pavlick AC, et al. Incidence of the V600K mutation among melanoma patients with BRAF mutations, and potential therapeutic response to the specific BRAF inhibitor PLX4032. J Transl Med. 2010;8:67.CrossRef
25.
go back to reference Gibbons IL, Sonagli M, Bertolli E, Macedo MP, de Pinto CAL, Duprat Neto JP. Diphencyprone as a therapeutic option in cutaneous metastasis of melanoma. a single-institution experience. An Bras Dermatol. 2018;93:299–301. Gibbons IL, Sonagli M, Bertolli E, Macedo MP, de Pinto CAL, Duprat Neto JP. Diphencyprone as a therapeutic option in cutaneous metastasis of melanoma. a single-institution experience. An Bras Dermatol. 2018;93:299–301.
26.
go back to reference Adler NR, Wolfe R, Kelly JW, et al. Tumour mutation status and sites of metastasis in patients with cutaneous melanoma. Br J Cancer. 2017;117:1026–35.CrossRef Adler NR, Wolfe R, Kelly JW, et al. Tumour mutation status and sites of metastasis in patients with cutaneous melanoma. Br J Cancer. 2017;117:1026–35.CrossRef
27.
go back to reference Moreau S, Saiag P, Aegerter P, et al. Prognostic value of BRAF(V600) mutations in melanoma patients after resection of metastatic lymph nodes. Ann Surg Oncol. 2012;19:4314–21.CrossRef Moreau S, Saiag P, Aegerter P, et al. Prognostic value of BRAF(V600) mutations in melanoma patients after resection of metastatic lymph nodes. Ann Surg Oncol. 2012;19:4314–21.CrossRef
28.
go back to reference Picard M, Pham Dang N, D’Incan M, et al. Is BRAF a prognostic factor in stage III skin melanoma? A retrospective study of 72 patients after positive sentinel lymph node dissection. Br J Dermatol. 2014;171:108–14.CrossRef Picard M, Pham Dang N, D’Incan M, et al. Is BRAF a prognostic factor in stage III skin melanoma? A retrospective study of 72 patients after positive sentinel lymph node dissection. Br J Dermatol. 2014;171:108–14.CrossRef
29.
go back to reference Barbour AP, Tang YH, Armour N, et al. BRAF mutation status is an independent prognostic factor for resected stage IIIB and IIIC melanoma: implications for melanoma staging and adjuvant therapy. Eur J Cancer. 2014;50:2668–76.CrossRef Barbour AP, Tang YH, Armour N, et al. BRAF mutation status is an independent prognostic factor for resected stage IIIB and IIIC melanoma: implications for melanoma staging and adjuvant therapy. Eur J Cancer. 2014;50:2668–76.CrossRef
30.
go back to reference Fu Q, Chen N, Ge C, et al. Prognostic value of tumor-infiltrating lymphocytes in melanoma: a systematic review and meta-analysis. Oncoimmunology. 2019;8:1593806.CrossRef Fu Q, Chen N, Ge C, et al. Prognostic value of tumor-infiltrating lymphocytes in melanoma: a systematic review and meta-analysis. Oncoimmunology. 2019;8:1593806.CrossRef
31.
go back to reference Jiang Y, Li Y, Zhu B. T-cell exhaustion in the tumor microenvironment. Cell Death Dis. 2015;6:e1792.CrossRef Jiang Y, Li Y, Zhu B. T-cell exhaustion in the tumor microenvironment. Cell Death Dis. 2015;6:e1792.CrossRef
32.
go back to reference Ahn E, Araki K, Hashimoto M, et al. Role of PD-1 during effector CD8 T cell differentiation. Proc Natl Acad Sci U S A. 2018;115:49–4754.CrossRef Ahn E, Araki K, Hashimoto M, et al. Role of PD-1 during effector CD8 T cell differentiation. Proc Natl Acad Sci U S A. 2018;115:49–4754.CrossRef
33.
go back to reference Kalish RS, Askenase PW. Molecular mechanisms of CD8+ T cell-mediated delayed hypersensitivity: implications for allergies, asthma, and autoimmunity. J Allergy Clin Immunol. 1999;103(2 Pt 1):192–9.CrossRef Kalish RS, Askenase PW. Molecular mechanisms of CD8+ T cell-mediated delayed hypersensitivity: implications for allergies, asthma, and autoimmunity. J Allergy Clin Immunol. 1999;103(2 Pt 1):192–9.CrossRef
34.
go back to reference Kaunitz GJ, Cottrell TR, Lilo M, et al. Melanoma subtypes demonstrate distinct PD-L1 expression profiles. Lab Invest. 2017;97:1063–71.CrossRef Kaunitz GJ, Cottrell TR, Lilo M, et al. Melanoma subtypes demonstrate distinct PD-L1 expression profiles. Lab Invest. 2017;97:1063–71.CrossRef
35.
go back to reference Taube JM, Anders RA, Young GD, et al. Co-localization of inflammatory response with B7-h1 expression in human melanocytic lesions supports an adaptive resistance mechanism of immune escape. Sci Transl Med. 2012;4:127ra37. Taube JM, Anders RA, Young GD, et al. Co-localization of inflammatory response with B7-h1 expression in human melanocytic lesions supports an adaptive resistance mechanism of immune escape. Sci Transl Med. 2012;4:127ra37.
36.
go back to reference Wang Q, Liu F, Liu L. Prognostic significance of PD-L1 in solid tumor: an updated meta-analysis. Medicine. 2017;96:e6369.CrossRef Wang Q, Liu F, Liu L. Prognostic significance of PD-L1 in solid tumor: an updated meta-analysis. Medicine. 2017;96:e6369.CrossRef
37.
go back to reference Squires MH III, Delman KA. Current treatment of locoregional recurrence of melanoma. Curr Oncol Rep. 2013;15:465–72.CrossRef Squires MH III, Delman KA. Current treatment of locoregional recurrence of melanoma. Curr Oncol Rep. 2013;15:465–72.CrossRef
38.
go back to reference Louie RJ, Perez MC, Jajja MR, et al. Real-world outcomes of talimogene laherparepvec therapy: a multi-institutional experience. J Am Coll Surg. 2019;228:644–9.CrossRef Louie RJ, Perez MC, Jajja MR, et al. Real-world outcomes of talimogene laherparepvec therapy: a multi-institutional experience. J Am Coll Surg. 2019;228:644–9.CrossRef
Metadata
Title
Quantitative and Spatial Analysis of CD8+/PD-1 Tumor-Infiltrating Lymphocytes as a Predictive Biomarker for Clinical Response of Melanoma In-Transit Metastases to Topical Immunotherapy
Authors
Sophia Haywood, MB, BS
Jennifer Garioch, MD, FRCP
Arjun Ramaiya, FRCPath
Marc Moncrieff, MD, FRCS(Plast)
Publication date
01-02-2021
Publisher
Springer International Publishing
Published in
Annals of Surgical Oncology / Issue 2/2021
Print ISSN: 1068-9265
Electronic ISSN: 1534-4681
DOI
https://doi.org/10.1245/s10434-020-08713-1

Other articles of this Issue 2/2021

Annals of Surgical Oncology 2/2021 Go to the issue

Health Services Research and Global Oncology

2020 SSO Presidential Address: Surgical Oncology Moonshot