Skip to main content
Top
Published in: Annals of Surgical Oncology 2/2017

01-02-2017 | Translational Research and Biomarkers

Methylation of the Tumor Suppressor Genes HIC1 and RassF1A Clusters Independently From the Methylation of Polycomb Target Genes in Colon Cancer

Authors: Hong-Chang Chen, MD, Hsuan-Yuan Huang, MD, Yao-Li Chen, MD, Kuan-Der Lee, MD, PhD, Yi-Ru Chu, MS, Ping-Yi Lin, PhD, Chia-Chen Hsu, PhD, Pei-Yi Chu, MD, PhD, Tim H.-M. Huang, PhD, Shu-Huei Hsiao, PhD, Yu-Wei Leu, PhD

Published in: Annals of Surgical Oncology | Issue 2/2017

Login to get access

Abstract

Background

Methylation changes within tumor suppressor (TS) genes or polycomb group target (PcG) genes alter cell fates. Chromatin associated with PcG targets is bivalent in stem cells, while TS genes are not normally bivalent. PcG target methylation changes have been identified in tumor stem cells, and abnormal methylation is found in TS genes in cancers. If the epigenetic states of genes influence DNA methylation, then methylation of PcG targets and TS genes may evolve differently during cancer development. More importantly, methylation changes may be part of a sequence in tumorigenesis.

Methods

Chromatin and methylation states of 4 PcG targets and 2 TS genes were determined in colon cancer cells. The methylation states were also detected in 100 pairs of colon cancer samples. Principle component analysis (PCA) was used to reveal whether TS methylation or PcG methylation was the main methylation change associated with colon cancers.

Results

Chromatin and methylation states differ in colon cancer cell lines. The methylation states within PcG targets clustered independently from the methylation states in TS genes, a finding we previously reported in liver cancers. PCA in colon cancers revealed the strongest association with methylation changes in 2 TS genes, HIC1 and RassF1A. Loss of HIC1 methylation correlated with decreased tumor migration.

Conclusions

PcG and TS methylation states cluster independently from each other. The deduced principle component correlated better with TS methylation than PcG methylation in colon cancer. Abnormal methylation changes may represent a sequential biomarker profile to identify developing colon cancer.
Appendix
Available only for authorised users
Literature
1.
go back to reference Allan RS, Zueva E, Cammas F, Schreiber HA, Masson V, Belz GT, et al. An epigenetic silencing pathway controlling T helper 2 cell lineage commitment. Nature. 2012;487:249–53.CrossRefPubMed Allan RS, Zueva E, Cammas F, Schreiber HA, Masson V, Belz GT, et al. An epigenetic silencing pathway controlling T helper 2 cell lineage commitment. Nature. 2012;487:249–53.CrossRefPubMed
2.
go back to reference Bibikova M, Chudin E, Wu B, Zhou L, Garcia EW, Liu Y, et al. Human embryonic stem cells have a unique epigenetic signature. Genome Res. 2006;16:1075–83.CrossRefPubMedPubMedCentral Bibikova M, Chudin E, Wu B, Zhou L, Garcia EW, Liu Y, et al. Human embryonic stem cells have a unique epigenetic signature. Genome Res. 2006;16:1075–83.CrossRefPubMedPubMedCentral
3.
go back to reference Youn JI, Kumar V, Collazo M, Nefedova Y, Condamine T, Cheng P, et al. Epigenetic silencing of retinoblastoma gene regulates pathologic differentiation of myeloid cells in cancer. Nat Immunol. 2013;14:211–20.CrossRefPubMedPubMedCentral Youn JI, Kumar V, Collazo M, Nefedova Y, Condamine T, Cheng P, et al. Epigenetic silencing of retinoblastoma gene regulates pathologic differentiation of myeloid cells in cancer. Nat Immunol. 2013;14:211–20.CrossRefPubMedPubMedCentral
4.
go back to reference Yusa A, Miyazaki K, Kimura N, Izawa M, Kannagi R. Epigenetic silencing of the sulfate transporter gene DTDST induces sialyl Lewisx expression and accelerates proliferation of colon cancer cells. Cancer Res. 2010;70:4064–73.CrossRefPubMed Yusa A, Miyazaki K, Kimura N, Izawa M, Kannagi R. Epigenetic silencing of the sulfate transporter gene DTDST induces sialyl Lewisx expression and accelerates proliferation of colon cancer cells. Cancer Res. 2010;70:4064–73.CrossRefPubMed
5.
go back to reference Baylin SB, Ohm JE. Epigenetic gene silencing in cancer: a mechanism for early oncogenic pathway addiction? Nat Rev Cancer. 2006;6:107–16.CrossRefPubMed Baylin SB, Ohm JE. Epigenetic gene silencing in cancer: a mechanism for early oncogenic pathway addiction? Nat Rev Cancer. 2006;6:107–16.CrossRefPubMed
6.
go back to reference Hsiao SH, Huang TH, Leu YW. Excavating relics of DNA methylation changes during the development of neoplasia. Semin Cancer Biol. 2009;19:198–208.CrossRefPubMed Hsiao SH, Huang TH, Leu YW. Excavating relics of DNA methylation changes during the development of neoplasia. Semin Cancer Biol. 2009;19:198–208.CrossRefPubMed
7.
go back to reference Leu YW, Huang TH, Hsiao SH. Epigenetic reprogramming of mesenchymal stem cells. Adv Exp Med Biol. 2013;754:195–211.CrossRefPubMed Leu YW, Huang TH, Hsiao SH. Epigenetic reprogramming of mesenchymal stem cells. Adv Exp Med Biol. 2013;754:195–211.CrossRefPubMed
8.
go back to reference Baylin SB. Stem cells, cancer, and epigenetics. In: StemBook. Cambridge: Harvard Stem Cell Institute; 2008. Baylin SB. Stem cells, cancer, and epigenetics. In: StemBook. Cambridge: Harvard Stem Cell Institute; 2008.
9.
go back to reference Hsiao SH, Lee KD, Hsu CC, Tseng MJ, Jin VX, Sun WS, et al. DNA methylation of the Trip10 promoter accelerates mesenchymal stem cell lineage determination. Biochem Biophys Res Commun. 2010;400:305–12.CrossRefPubMed Hsiao SH, Lee KD, Hsu CC, Tseng MJ, Jin VX, Sun WS, et al. DNA methylation of the Trip10 promoter accelerates mesenchymal stem cell lineage determination. Biochem Biophys Res Commun. 2010;400:305–12.CrossRefPubMed
10.
go back to reference Laurent L, Wong E, Li G, Huynh T, Tsirigos A, Ong CT, et al. Dynamic changes in the human methylome during differentiation. Genome Res. 2010;20:320–31.CrossRefPubMedPubMedCentral Laurent L, Wong E, Li G, Huynh T, Tsirigos A, Ong CT, et al. Dynamic changes in the human methylome during differentiation. Genome Res. 2010;20:320–31.CrossRefPubMedPubMedCentral
11.
go back to reference Wamstad JA, Alexander JM, Truty RM, Shrikumar A, Li F, Eilertson KE, et al. Dynamic and coordinated epigenetic regulation of developmental transitions in the cardiac lineage. Cell. 2012;151:206–20.CrossRefPubMedPubMedCentral Wamstad JA, Alexander JM, Truty RM, Shrikumar A, Li F, Eilertson KE, et al. Dynamic and coordinated epigenetic regulation of developmental transitions in the cardiac lineage. Cell. 2012;151:206–20.CrossRefPubMedPubMedCentral
12.
13.
go back to reference Valk-Lingbeek ME, Bruggeman SW, van Lohuizen M. Stem cells and cancer; the polycomb connection. Cell. 2004;118:409–18.CrossRefPubMed Valk-Lingbeek ME, Bruggeman SW, van Lohuizen M. Stem cells and cancer; the polycomb connection. Cell. 2004;118:409–18.CrossRefPubMed
14.
go back to reference Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J, et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell. 2006;125:315–26.CrossRefPubMed Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J, et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell. 2006;125:315–26.CrossRefPubMed
15.
go back to reference Surface LE, Thornton SR, Boyer LA. Polycomb group proteins set the stage for early lineage commitment. Cell Stem Cell. 2010;7:288–98.CrossRefPubMed Surface LE, Thornton SR, Boyer LA. Polycomb group proteins set the stage for early lineage commitment. Cell Stem Cell. 2010;7:288–98.CrossRefPubMed
16.
go back to reference Agger K, Cloos PA, Christensen J, Pasini D, Rose S, Rappsilber J, et al. UTX and JMJD3 are histone H3K27 demethylases involved in HOX gene regulation and development. Nature. 2007;449:731–4.CrossRefPubMed Agger K, Cloos PA, Christensen J, Pasini D, Rose S, Rappsilber J, et al. UTX and JMJD3 are histone H3K27 demethylases involved in HOX gene regulation and development. Nature. 2007;449:731–4.CrossRefPubMed
17.
go back to reference Lan F, Bayliss PE, Rinn JL, Whetstine JR, Wang JK, Chen S, et al. A histone H3 lysine 27 demethylase regulates animal posterior development. Nature. 2007;449:689–94.CrossRefPubMed Lan F, Bayliss PE, Rinn JL, Whetstine JR, Wang JK, Chen S, et al. A histone H3 lysine 27 demethylase regulates animal posterior development. Nature. 2007;449:689–94.CrossRefPubMed
18.
go back to reference Vastenhouw NL, Zhang Y, Woods IG, Imam F, Regev A, Liu XS, et al. Chromatin signature of embryonic pluripotency is established during genome activation. Nature. 2010;464:922–6.CrossRefPubMedPubMedCentral Vastenhouw NL, Zhang Y, Woods IG, Imam F, Regev A, Liu XS, et al. Chromatin signature of embryonic pluripotency is established during genome activation. Nature. 2010;464:922–6.CrossRefPubMedPubMedCentral
20.
go back to reference Balch C, Nephew KP, Huang TH, Bapat SA. Epigenetic “bivalently marked” process of cancer stem cell-driven tumorigenesis. Bioessays. 2007;29:842–5.CrossRefPubMed Balch C, Nephew KP, Huang TH, Bapat SA. Epigenetic “bivalently marked” process of cancer stem cell-driven tumorigenesis. Bioessays. 2007;29:842–5.CrossRefPubMed
21.
go back to reference Ohm JE, McGarvey KM, Yu X, Cheng L, Schuebel KE, Cope L, et al. A stem cell-like chromatin pattern may predispose tumor suppressor genes to DNA hypermethylation and heritable silencing. Nat Genet. 2007;39:237–42.CrossRefPubMedPubMedCentral Ohm JE, McGarvey KM, Yu X, Cheng L, Schuebel KE, Cope L, et al. A stem cell-like chromatin pattern may predispose tumor suppressor genes to DNA hypermethylation and heritable silencing. Nat Genet. 2007;39:237–42.CrossRefPubMedPubMedCentral
22.
go back to reference Irizarry RA, Ladd-Acosta C, Wen B, Wu Z, Montano C, Onyango P, et al. The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat Genet. 2009;41:178–86.CrossRefPubMedPubMedCentral Irizarry RA, Ladd-Acosta C, Wen B, Wu Z, Montano C, Onyango P, et al. The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat Genet. 2009;41:178–86.CrossRefPubMedPubMedCentral
23.
go back to reference Gebhard C, Schwarzfischer L, Pham TH, Schilling E, Klug M, Andreesen R, Rehli M. Genome-wide profiling of CpG methylation identifies novel targets of aberrant hypermethylation in myeloid leukemia. Cancer Res. 2006;66:6118–28.CrossRefPubMed Gebhard C, Schwarzfischer L, Pham TH, Schilling E, Klug M, Andreesen R, Rehli M. Genome-wide profiling of CpG methylation identifies novel targets of aberrant hypermethylation in myeloid leukemia. Cancer Res. 2006;66:6118–28.CrossRefPubMed
24.
go back to reference Yegnasubramanian S, Haffner MC, Zhang Y, Gurel B, Cornish TC, Wu Z, et al. DNA hypomethylation arises later in prostate cancer progression than CpG island hypermethylation and contributes to metastatic tumor heterogeneity. Cancer Res. 2008;68:8954–67.CrossRefPubMedPubMedCentral Yegnasubramanian S, Haffner MC, Zhang Y, Gurel B, Cornish TC, Wu Z, et al. DNA hypomethylation arises later in prostate cancer progression than CpG island hypermethylation and contributes to metastatic tumor heterogeneity. Cancer Res. 2008;68:8954–67.CrossRefPubMedPubMedCentral
25.
go back to reference Gaudet F, Hodgson JG, Eden A, Jackson-Grusby L, Dausman J, Gray JW, et al. Induction of tumors in mice by genomic hypomethylation. Science. 2003;300:489–92.CrossRefPubMed Gaudet F, Hodgson JG, Eden A, Jackson-Grusby L, Dausman J, Gray JW, et al. Induction of tumors in mice by genomic hypomethylation. Science. 2003;300:489–92.CrossRefPubMed
26.
go back to reference Teng IW, Hou PC, Lee KD, Chu PY, Yeh KT, Jin VX, et al. Targeted methylation of two tumor suppressor genes is sufficient to transform mesenchymal stem cells into cancer stem/initiating cells. Cancer Res. 2011;71:4653–63.CrossRefPubMed Teng IW, Hou PC, Lee KD, Chu PY, Yeh KT, Jin VX, et al. Targeted methylation of two tumor suppressor genes is sufficient to transform mesenchymal stem cells into cancer stem/initiating cells. Cancer Res. 2011;71:4653–63.CrossRefPubMed
27.
go back to reference Eggers H, Steffens S, Grosshennig A, Becker JU, Hennenlotter J, Stenzl A, et al. Prognostic and diagnostic relevance of hypermethylated in cancer 1 (HIC1) CpG island methylation in renal cell carcinoma. Int J Oncol. 2012;40:1650–8.PubMed Eggers H, Steffens S, Grosshennig A, Becker JU, Hennenlotter J, Stenzl A, et al. Prognostic and diagnostic relevance of hypermethylated in cancer 1 (HIC1) CpG island methylation in renal cell carcinoma. Int J Oncol. 2012;40:1650–8.PubMed
28.
go back to reference Pehlivan S, Artac M, Sever T, Bozcuk H, Kilincarslan C, Pehlivan M. Gene methylation of SFRP2, P16, DAPK1, HIC1, and MGMT and KRAS mutations in sporadic colorectal cancer. Cancer Genet Cytogenet. 2010;201:128–32.CrossRefPubMed Pehlivan S, Artac M, Sever T, Bozcuk H, Kilincarslan C, Pehlivan M. Gene methylation of SFRP2, P16, DAPK1, HIC1, and MGMT and KRAS mutations in sporadic colorectal cancer. Cancer Genet Cytogenet. 2010;201:128–32.CrossRefPubMed
29.
go back to reference Pan J, Chen J, Zhang B, Chen X, Huang B, Zhuang J, et al. Association between RASSF1A promoter methylation and prostate cancer: a systematic review and meta-analysis. PLoS One. 2013;8:e75283.CrossRefPubMedPubMedCentral Pan J, Chen J, Zhang B, Chen X, Huang B, Zhuang J, et al. Association between RASSF1A promoter methylation and prostate cancer: a systematic review and meta-analysis. PLoS One. 2013;8:e75283.CrossRefPubMedPubMedCentral
31.
go back to reference Chen SP, Wu CC, Huang SY, Kang JC, Chiu SC, Yang KL, Pang CY. beta-catenin and K-ras mutations and RASSF1A promoter methylation in Taiwanese colorectal cancer patients. Genet Test Mol Biomark. 2012;16:1277–81.CrossRef Chen SP, Wu CC, Huang SY, Kang JC, Chiu SC, Yang KL, Pang CY. beta-catenin and K-ras mutations and RASSF1A promoter methylation in Taiwanese colorectal cancer patients. Genet Test Mol Biomark. 2012;16:1277–81.CrossRef
32.
go back to reference Lee KD, Pai MY, Hsu CC, Chen CC, Chen YL, Chu PY, et al. Targeted Casp8AP2 methylation increases drug resistance in mesenchymal stem cells and cancer cells. Biochem Biophys Res Commun. 2012;422:578–85.CrossRefPubMed Lee KD, Pai MY, Hsu CC, Chen CC, Chen YL, Chu PY, et al. Targeted Casp8AP2 methylation increases drug resistance in mesenchymal stem cells and cancer cells. Biochem Biophys Res Commun. 2012;422:578–85.CrossRefPubMed
33.
go back to reference Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D. Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet. 2006;38:904–9.CrossRefPubMed Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D. Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet. 2006;38:904–9.CrossRefPubMed
34.
go back to reference Yeung KY, Ruzzo WL. Principal component analysis for clustering gene expression data. Bioinformatics. 2001;17:763–74.CrossRefPubMed Yeung KY, Ruzzo WL. Principal component analysis for clustering gene expression data. Bioinformatics. 2001;17:763–74.CrossRefPubMed
35.
go back to reference Chuang JC, Yoo CB, Kwan JM, Li TW, Liang G, Yang AS, Jones PA. Comparison of biological effects of non-nucleoside DNA methylation inhibitors versus 5-aza-2′-deoxycytidine. Mol Cancer Ther. 2005;4:1515–20.CrossRefPubMed Chuang JC, Yoo CB, Kwan JM, Li TW, Liang G, Yang AS, Jones PA. Comparison of biological effects of non-nucleoside DNA methylation inhibitors versus 5-aza-2′-deoxycytidine. Mol Cancer Ther. 2005;4:1515–20.CrossRefPubMed
36.
go back to reference Leu YW, Rahmatpanah F, Shi H, Wei SH, Liu JC, Yan PS, Huang TH. Double RNA interference of DNMT3b and DNMT1 enhances DNA demethylation and gene reactivation. Cancer Res. 2003;63:6110–5.PubMed Leu YW, Rahmatpanah F, Shi H, Wei SH, Liu JC, Yan PS, Huang TH. Double RNA interference of DNMT3b and DNMT1 enhances DNA demethylation and gene reactivation. Cancer Res. 2003;63:6110–5.PubMed
37.
go back to reference Yan PS, Venkataramu C, Ibrahim A, Liu JC, Shen RZ, Diaz NM, et al. Mapping geographic zones of cancer risk with epigenetic biomarkers in normal breast tissue. Clin Cancer Res. 2006;12:6626–36.CrossRefPubMed Yan PS, Venkataramu C, Ibrahim A, Liu JC, Shen RZ, Diaz NM, et al. Mapping geographic zones of cancer risk with epigenetic biomarkers in normal breast tissue. Clin Cancer Res. 2006;12:6626–36.CrossRefPubMed
38.
go back to reference Eisen MB, Spellman PT, Brown PO, Botstein D. Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA. 1998;95:14863–8.CrossRefPubMedPubMedCentral Eisen MB, Spellman PT, Brown PO, Botstein D. Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA. 1998;95:14863–8.CrossRefPubMedPubMedCentral
39.
go back to reference Taylor JM. Kendall’s and Spearman’s correlation coefficients in the presence of a blocking variable. Biometrics. 1987;43:409–16.CrossRefPubMed Taylor JM. Kendall’s and Spearman’s correlation coefficients in the presence of a blocking variable. Biometrics. 1987;43:409–16.CrossRefPubMed
40.
go back to reference Zurita M, Lara PC, del Moral R, Torres B, Linares-Fernández JL, Arrabal SR, et al. Hypermethylated 14-3-3-sigma and ESR1 gene promoters in serum as candidate biomarkers for the diagnosis and treatment efficacy of breast cancer metastasis. BMC Cancer. 2010;10:217.CrossRefPubMedPubMedCentral Zurita M, Lara PC, del Moral R, Torres B, Linares-Fernández JL, Arrabal SR, et al. Hypermethylated 14-3-3-sigma and ESR1 gene promoters in serum as candidate biomarkers for the diagnosis and treatment efficacy of breast cancer metastasis. BMC Cancer. 2010;10:217.CrossRefPubMedPubMedCentral
41.
go back to reference Pedersen PA, Kristensen FB. [The Danish Medical Statistics and Danish practical research]. Ugeskr Laeger. 1990;152:828–9.PubMed Pedersen PA, Kristensen FB. [The Danish Medical Statistics and Danish practical research]. Ugeskr Laeger. 1990;152:828–9.PubMed
42.
43.
go back to reference Malinge S, Chlon T, Dore LC, Ketterling RP, Tallman MS, Paietta E, et al. Development of acute megakaryoblastic leukemia in Down syndrome is associated with sequential epigenetic changes. Blood. 2013;122:e33–43.CrossRefPubMedPubMedCentral Malinge S, Chlon T, Dore LC, Ketterling RP, Tallman MS, Paietta E, et al. Development of acute megakaryoblastic leukemia in Down syndrome is associated with sequential epigenetic changes. Blood. 2013;122:e33–43.CrossRefPubMedPubMedCentral
44.
go back to reference Sandhu R, Roll JD, Rivenbark AG, Coleman WB. Dysregulation of the epigenome in human breast cancer: contributions of gene-specific DNA hypermethylation to breast cancer pathobiology and targeting the breast cancer methylome for improved therapy. Am J Pathol. 2015;185:282–92.CrossRefPubMed Sandhu R, Roll JD, Rivenbark AG, Coleman WB. Dysregulation of the epigenome in human breast cancer: contributions of gene-specific DNA hypermethylation to breast cancer pathobiology and targeting the breast cancer methylome for improved therapy. Am J Pathol. 2015;185:282–92.CrossRefPubMed
45.
go back to reference Zhang X, Wallace AD, Du P, Kibbe WA, Jafari N, Xie H, et al. DNA methylation alterations in response to pesticide exposure in vitro. Environ Mol Mutagen. 2012;53:542–9.CrossRefPubMedPubMedCentral Zhang X, Wallace AD, Du P, Kibbe WA, Jafari N, Xie H, et al. DNA methylation alterations in response to pesticide exposure in vitro. Environ Mol Mutagen. 2012;53:542–9.CrossRefPubMedPubMedCentral
Metadata
Title
Methylation of the Tumor Suppressor Genes HIC1 and RassF1A Clusters Independently From the Methylation of Polycomb Target Genes in Colon Cancer
Authors
Hong-Chang Chen, MD
Hsuan-Yuan Huang, MD
Yao-Li Chen, MD
Kuan-Der Lee, MD, PhD
Yi-Ru Chu, MS
Ping-Yi Lin, PhD
Chia-Chen Hsu, PhD
Pei-Yi Chu, MD, PhD
Tim H.-M. Huang, PhD
Shu-Huei Hsiao, PhD
Yu-Wei Leu, PhD
Publication date
01-02-2017
Publisher
Springer International Publishing
Published in
Annals of Surgical Oncology / Issue 2/2017
Print ISSN: 1068-9265
Electronic ISSN: 1534-4681
DOI
https://doi.org/10.1245/s10434-015-5024-z

Other articles of this Issue 2/2017

Annals of Surgical Oncology 2/2017 Go to the issue