Skip to main content
Top
Published in: Annals of Surgical Oncology 12/2014

01-11-2014 | Hepatobiliary Tumors

Genomic Profiling of Intrahepatic Cholangiocarcinoma: Refining Prognosis and Identifying Therapeutic Targets

Authors: Andrew X. Zhu, MD, Darrell R. Borger, MD, Yuhree Kim, MD, David Cosgrove, MD, Aslam Ejaz, MD, Sorin Alexandrescu, MD, Ryan Thomas Groeschl, MD, Vikram Deshpande, MD, James M. Lindberg, MD, Cristina Ferrone, MD, Christine Sempoux, MD, Thomas Yau, MD, Ronnie Poon, MD, Irinel Popescu, MD, Todd W. Bauer, MD, T. Clark Gamblin, MD, Jean Francois Gigot, MD, Robert A. Anders, MD, Timothy M. Pawlik, MD, MPH, PhD

Published in: Annals of Surgical Oncology | Issue 12/2014

Login to get access

Abstract

Background

The molecular alterations that drive tumorigenesis in intrahepatic cholangiocarcinoma (ICC) remain poorly defined. We sought to determine the incidence and prognostic significance of mutations associated with ICC among patients undergoing surgical resection.

Methods

Multiplexed mutational profiling was performed using nucleic acids that were extracted from 200 resected ICC tumor specimens from 7 centers. The frequency of mutations was ascertained and the effect on outcome was determined.

Results

The majority of patients (61.5 %) had no genetic mutation identified. Among the 77 patients (38.5 %) with a genetic mutation, only a small number of gene mutations were identified with a frequency of >5 %: IDH1 (15.5 %) and KRAS (8.6 %). Other genetic mutations were identified in very low frequency: BRAF (4.9 %), IDH2 (4.5 %), PIK3CA (4.3 %), NRAS (3.1 %), TP53 (2.5 %), MAP2K1 (1.9 %), CTNNB1 (0.6 %), and PTEN (0.6 %). Among patients with an IDH1-mutant tumor, approximately 7 % were associated with a concurrent PIK3CA gene mutation or a mutation in MAP2K1 (4 %). No concurrent mutations in IDH1 and KRAS were noted. Compared with ICC tumors that had no identified mutation, IDH1-mutant tumors were more often bilateral (odds ratio 2.75), while KRAS-mutant tumors were more likely to be associated with R1 margin (odds ratio 6.51) (both P < 0.05). Although clinicopathological features such as tumor number and nodal status were associated with survival, no specific mutation was associated with prognosis.

Conclusions

Most somatic mutations in resected ICC tissue are found at low frequency, supporting a need for broad-based mutational profiling in these patients. IDH1 and KRAS were the most common mutations noted. Although certain mutations were associated with ICC clinicopathological features, mutational status did not seemingly affect long-term prognosis.
Appendix
Available only for authorised users
Literature
1.
go back to reference Shaib YH, Davila JA, McGlynn K, et al. Rising incidence of intrahepatic cholangiocarcinoma in the United States: a true increase? J Hepatol. 2004;40:472–7.PubMedCrossRef Shaib YH, Davila JA, McGlynn K, et al. Rising incidence of intrahepatic cholangiocarcinoma in the United States: a true increase? J Hepatol. 2004;40:472–7.PubMedCrossRef
2.
go back to reference Poultsides GA, Zhu AX, Choti MA, et al. Intrahepatic cholangiocarcinoma. Surg Clin North Am. 2010;90:817–37.PubMedCrossRef Poultsides GA, Zhu AX, Choti MA, et al. Intrahepatic cholangiocarcinoma. Surg Clin North Am. 2010;90:817–37.PubMedCrossRef
3.
go back to reference Valle J, Wasan H, Palmer DH, et al. Cisplatin plus gemcitabine versus gemcitabine for biliary tract cancer. N Engl J Med. 2010;362:1273–81.PubMedCrossRef Valle J, Wasan H, Palmer DH, et al. Cisplatin plus gemcitabine versus gemcitabine for biliary tract cancer. N Engl J Med. 2010;362:1273–81.PubMedCrossRef
5.
6.
go back to reference Borger DR, Tanabe KK, Fan KC, et al. Frequent mutation of isocitrate dehydrogenase (IDH)1 and IDH2 in cholangiocarcinoma identified through broad-based tumor genotyping. Oncologist. 2012;17:72–9.PubMedCrossRefPubMedCentral Borger DR, Tanabe KK, Fan KC, et al. Frequent mutation of isocitrate dehydrogenase (IDH)1 and IDH2 in cholangiocarcinoma identified through broad-based tumor genotyping. Oncologist. 2012;17:72–9.PubMedCrossRefPubMedCentral
7.
go back to reference Tannapfel A, Sommerer F, Benicke M, et al. Genetic and epigenetic alterations of the INK4a-ARF pathway in cholangiocarcinoma. J Pathol. 2002;197:624–31.PubMedCrossRef Tannapfel A, Sommerer F, Benicke M, et al. Genetic and epigenetic alterations of the INK4a-ARF pathway in cholangiocarcinoma. J Pathol. 2002;197:624–31.PubMedCrossRef
8.
go back to reference Voss JS, Holtegaard LM, Kerr SE, et al. Molecular profiling of cholangiocarcinoma shows potential for targeted therapy treatment decisions. Hum Pathol. 2013;44:1216–22.PubMedCrossRef Voss JS, Holtegaard LM, Kerr SE, et al. Molecular profiling of cholangiocarcinoma shows potential for targeted therapy treatment decisions. Hum Pathol. 2013;44:1216–22.PubMedCrossRef
9.
go back to reference Xu RF, Sun JP, Zhang SR, et al. KRAS and PIK3CA but not BRAF genes are frequently mutated in Chinese cholangiocarcinoma patients. Biomed Pharmacother. 2011;65:22–6.PubMedCrossRef Xu RF, Sun JP, Zhang SR, et al. KRAS and PIK3CA but not BRAF genes are frequently mutated in Chinese cholangiocarcinoma patients. Biomed Pharmacother. 2011;65:22–6.PubMedCrossRef
10.
go back to reference Jiao Y, Pawlik TM, Anders RA, et al. Exome sequencing identifies frequent inactivating mutations in BAP1, ARID1A and PBRM1 in intrahepatic cholangiocarcinomas. Nat Genet. 2013;45:1470–3.PubMedCrossRefPubMedCentral Jiao Y, Pawlik TM, Anders RA, et al. Exome sequencing identifies frequent inactivating mutations in BAP1, ARID1A and PBRM1 in intrahepatic cholangiocarcinomas. Nat Genet. 2013;45:1470–3.PubMedCrossRefPubMedCentral
11.
go back to reference Wang P, Dong Q, Zhang C, et al. Mutations in isocitrate dehydrogenase 1 and 2 occur frequently in intrahepatic cholangiocarcinomas and share hypermethylation targets with glioblastomas. Oncogene. 2013;32:3091–100.PubMedCrossRefPubMedCentral Wang P, Dong Q, Zhang C, et al. Mutations in isocitrate dehydrogenase 1 and 2 occur frequently in intrahepatic cholangiocarcinomas and share hypermethylation targets with glioblastomas. Oncogene. 2013;32:3091–100.PubMedCrossRefPubMedCentral
12.
go back to reference Andersen JB, Spee B, Blechacz BR, et al. Genomic and genetic characterization of cholangiocarcinoma identifies therapeutic targets for tyrosine kinase inhibitors. Gastroenterology. 2012;142:1021–31.e15.CrossRef Andersen JB, Spee B, Blechacz BR, et al. Genomic and genetic characterization of cholangiocarcinoma identifies therapeutic targets for tyrosine kinase inhibitors. Gastroenterology. 2012;142:1021–31.e15.CrossRef
13.
go back to reference Dias-Santagata D, Akhavanfard S, David SS, et al. Rapid targeted mutational analysis of human tumours: a clinical platform to guide personalized cancer medicine. EMBO Mol Med. 2010;2:146–58.PubMedCrossRefPubMedCentral Dias-Santagata D, Akhavanfard S, David SS, et al. Rapid targeted mutational analysis of human tumours: a clinical platform to guide personalized cancer medicine. EMBO Mol Med. 2010;2:146–58.PubMedCrossRefPubMedCentral
14.
go back to reference Karagkounis G, Torbenson MS, Daniel HD, et al. Incidence and prognostic impact of KRAS and BRAF mutation in patients undergoing liver surgery for colorectal metastases. Cancer. 2013;119:4137–44.PubMedCrossRefPubMedCentral Karagkounis G, Torbenson MS, Daniel HD, et al. Incidence and prognostic impact of KRAS and BRAF mutation in patients undergoing liver surgery for colorectal metastases. Cancer. 2013;119:4137–44.PubMedCrossRefPubMedCentral
15.
go back to reference Bazan V, Agnese V, Corsale S, et al. Specific TP53 and/or Ki-ras mutations as independent predictors of clinical outcome in sporadic colorectal adenocarcinomas: results of a 5-year Gruppo Oncologico dell’Italia Meridionale (GOIM) prospective study. Ann Oncol. 2005;16(Suppl 4):iv50–5. Bazan V, Agnese V, Corsale S, et al. Specific TP53 and/or Ki-ras mutations as independent predictors of clinical outcome in sporadic colorectal adenocarcinomas: results of a 5-year Gruppo Oncologico dell’Italia Meridionale (GOIM) prospective study. Ann Oncol. 2005;16(Suppl 4):iv50–5.
16.
go back to reference Andreyev HJ, Norman AR, Cunningham D, et al. Kirsten ras mutations in patients with colorectal cancer: the “RASCAL II” study. Br J Cancer. 2001;85:692–6.PubMedCrossRefPubMedCentral Andreyev HJ, Norman AR, Cunningham D, et al. Kirsten ras mutations in patients with colorectal cancer: the “RASCAL II” study. Br J Cancer. 2001;85:692–6.PubMedCrossRefPubMedCentral
19.
go back to reference Minguez B, Tovar V, Chiang D, et al. Pathogenesis of hepatocellular carcinoma and molecular therapies. Curr Opin Gastroenterol. 2009;25:186–94.PubMedCrossRef Minguez B, Tovar V, Chiang D, et al. Pathogenesis of hepatocellular carcinoma and molecular therapies. Curr Opin Gastroenterol. 2009;25:186–94.PubMedCrossRef
20.
go back to reference Khan SA, Toledano MB, Taylor-Robinson SD. Epidemiology, risk factors, and pathogenesis of cholangiocarcinoma. HPB (Oxford). 2008;10:77–82.CrossRef Khan SA, Toledano MB, Taylor-Robinson SD. Epidemiology, risk factors, and pathogenesis of cholangiocarcinoma. HPB (Oxford). 2008;10:77–82.CrossRef
21.
go back to reference Robertson S, Hyder O, Dodson R, et al. The frequency of KRAS and BRAF mutations in intrahepatic cholangiocarcinomas and their correlation with clinical outcome. Hum Pathol. 2013;44:2768–73.PubMedCrossRef Robertson S, Hyder O, Dodson R, et al. The frequency of KRAS and BRAF mutations in intrahepatic cholangiocarcinomas and their correlation with clinical outcome. Hum Pathol. 2013;44:2768–73.PubMedCrossRef
22.
go back to reference Tannapfel A, Benicke M, Katalinic A, et al. Frequency of p16(INK4A) alterations and K-ras mutations in intrahepatic cholangiocarcinoma of the liver. Gut. 2000;47:721–7.PubMedCrossRefPubMedCentral Tannapfel A, Benicke M, Katalinic A, et al. Frequency of p16(INK4A) alterations and K-ras mutations in intrahepatic cholangiocarcinoma of the liver. Gut. 2000;47:721–7.PubMedCrossRefPubMedCentral
23.
go back to reference Sia D, Hoshida Y, Villanueva A, et al. Integrative molecular analysis of intrahepatic cholangiocarcinoma reveals 2 classes that have different outcomes. Gastroenterology. 2013;144:829–40.PubMedCrossRefPubMedCentral Sia D, Hoshida Y, Villanueva A, et al. Integrative molecular analysis of intrahepatic cholangiocarcinoma reveals 2 classes that have different outcomes. Gastroenterology. 2013;144:829–40.PubMedCrossRefPubMedCentral
24.
26.
go back to reference Ward PS, Patel J, Wise DR, et al. The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate. Cancer Cell. 2010;17:225–34.PubMedCrossRefPubMedCentral Ward PS, Patel J, Wise DR, et al. The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate. Cancer Cell. 2010;17:225–34.PubMedCrossRefPubMedCentral
27.
go back to reference Losman JA, Looper RE, Koivunen P, et al. (R)-2-hydroxyglutarate is sufficient to promote leukemogenesis and its effects are reversible. Science. 2013;339:1621–5.PubMedCrossRef Losman JA, Looper RE, Koivunen P, et al. (R)-2-hydroxyglutarate is sufficient to promote leukemogenesis and its effects are reversible. Science. 2013;339:1621–5.PubMedCrossRef
28.
go back to reference Kipp BR, Voss JS, Kerr SE, et al. Isocitrate dehydrogenase 1 and 2 mutations in cholangiocarcinoma. Hum Pathol. 2012;43:1552–8.PubMedCrossRef Kipp BR, Voss JS, Kerr SE, et al. Isocitrate dehydrogenase 1 and 2 mutations in cholangiocarcinoma. Hum Pathol. 2012;43:1552–8.PubMedCrossRef
29.
go back to reference Chan-On W, Nairismagi ML, Ong CK, et al. Exome sequencing identifies distinct mutational patterns in liver fluke-related and non-infection-related bile duct cancers. Nat Genet. 2013;45:1474–8.PubMedCrossRef Chan-On W, Nairismagi ML, Ong CK, et al. Exome sequencing identifies distinct mutational patterns in liver fluke-related and non-infection-related bile duct cancers. Nat Genet. 2013;45:1474–8.PubMedCrossRef
30.
go back to reference Ong CK, Subimerb C, Pairojkul C, et al. Exome sequencing of liver fluke–associated cholangiocarcinoma. Nat Genet. 2012;44:690–3.PubMedCrossRef Ong CK, Subimerb C, Pairojkul C, et al. Exome sequencing of liver fluke–associated cholangiocarcinoma. Nat Genet. 2012;44:690–3.PubMedCrossRef
33.
go back to reference Riener MO, Bawohl M, Clavien PA, et al. Rare PIK3CA hotspot mutations in carcinomas of the biliary tract. Genes Chromosomes Cancer. 2008;47:363–7.PubMedCrossRef Riener MO, Bawohl M, Clavien PA, et al. Rare PIK3CA hotspot mutations in carcinomas of the biliary tract. Genes Chromosomes Cancer. 2008;47:363–7.PubMedCrossRef
34.
go back to reference Ross JS, Wang J, Gay L, et al. New routes to targeted therapy of intrahepatic cholangiocarcinoma revealed by next-generation sequencing. Oncologist. 2014;19:235–42.PubMedCrossRefPubMedCentral Ross JS, Wang J, Gay L, et al. New routes to targeted therapy of intrahepatic cholangiocarcinoma revealed by next-generation sequencing. Oncologist. 2014;19:235–42.PubMedCrossRefPubMedCentral
Metadata
Title
Genomic Profiling of Intrahepatic Cholangiocarcinoma: Refining Prognosis and Identifying Therapeutic Targets
Authors
Andrew X. Zhu, MD
Darrell R. Borger, MD
Yuhree Kim, MD
David Cosgrove, MD
Aslam Ejaz, MD
Sorin Alexandrescu, MD
Ryan Thomas Groeschl, MD
Vikram Deshpande, MD
James M. Lindberg, MD
Cristina Ferrone, MD
Christine Sempoux, MD
Thomas Yau, MD
Ronnie Poon, MD
Irinel Popescu, MD
Todd W. Bauer, MD
T. Clark Gamblin, MD
Jean Francois Gigot, MD
Robert A. Anders, MD
Timothy M. Pawlik, MD, MPH, PhD
Publication date
01-11-2014
Publisher
Springer US
Published in
Annals of Surgical Oncology / Issue 12/2014
Print ISSN: 1068-9265
Electronic ISSN: 1534-4681
DOI
https://doi.org/10.1245/s10434-014-3828-x

Other articles of this Issue 12/2014

Annals of Surgical Oncology 12/2014 Go to the issue