Skip to main content
Top
Published in: Annals of Surgical Oncology 12/2012

01-11-2012 | Head and Neck Oncology

Use of Panitumumab-IRDye800 to Image Microscopic Head and Neck Cancer in an Orthotopic Surgical Model

Authors: C. Hope Heath, MD, MS, Nicholas L. Deep, BS, Larissa Sweeny, MD, Kurt R. Zinn, PhD, DVM, Eben L. Rosenthal, MD

Published in: Annals of Surgical Oncology | Issue 12/2012

Login to get access

Abstract

Background

Fluorescence imaging hardware (SPY) has recently been developed for intraoperative assessment of blood flow via detection of probes emitting in the near-infrared (NIR) spectrum. This study sought to determine if this imaging system was capable of detecting micrometastatic head and neck squamous cell carcinoma (HNSCC) in preclinical models.

Methods

A NIR fluorescent probe (IRDye800CW) was covalently linked to a monoclonal antibody targeting epidermal growth factor receptor (EGFR; panitumumab) or nonspecific IgG. HNSCC flank (SCC-1) and orthotopic (FADU and OSC19) xenografts were imaged 48–96 h after systemic injection of labeled panitumumab or IgG. The primary tumor and regional lymph nodes were dissected using fluorescence guidance with the SPY system and grossly assessed with a charge-coupled NIR system (Pearl). Histologic slides were also imaged with a NIR charged-coupled device (Odyssey) and fluorescence intensity was correlated with pathologic confirmation of disease.

Results

Orthotopic tongue tumors were clearly delineated from normal tissue with tumor-to-background ratios of 2.9 (Pearl) and 2.3 (SPY). Disease detection was significantly improved with panitumumab-IRDye compared to IgG-IRDye800 (P < 0.05). Tissue biopsy samples (average size 3.7 mm) positive for fluorescence were confirmed for pathologic disease by histology and immunohistochemistry (n = 25 of 25). Biopsy samples of nonfluorescent tissue were proven to be negative for malignancy (n = 28 of 28). The SPY was able to detect regional lymph node metastasis (<1.0 mm) and microscopic areas of disease. Standard histological assessment in both frozen and paraffin-embedded histologic specimens was augmented using the Odyssey.

Conclusions

Panitumumab-IRDye800 may have clinical utility in detection and removal of microscopic HNSCC using existing intraoperative optical imaging hardware and may augment analysis of frozen and permanent pathology.
Appendix
Available only for authorised users
Literature
1.
go back to reference Spaulding DC, Spaulding BO. Epidermal growth factor receptor expression and measurement in solid tumors. Semin Oncol. 2002;29:45–54.PubMed Spaulding DC, Spaulding BO. Epidermal growth factor receptor expression and measurement in solid tumors. Semin Oncol. 2002;29:45–54.PubMed
2.
go back to reference Terwisscha van Scheltinga AG, van Dam GM, Nagengast WB, et al. (2011) Intraoperative near-infrared fluorescence tumor imaging with vascular endothelial growth factor and human epidermal growth factor receptor 2 targeting antibodies. J Nucl Med. 52:1778–85.CrossRefPubMed Terwisscha van Scheltinga AG, van Dam GM, Nagengast WB, et al. (2011) Intraoperative near-infrared fluorescence tumor imaging with vascular endothelial growth factor and human epidermal growth factor receptor 2 targeting antibodies. J Nucl Med. 52:1778–85.CrossRefPubMed
3.
go back to reference Themelis G, Yoo JS, Soh KS, et al. Real-time intraoperative fluorescence imaging system using light-absorption correction. J Biomed Opt. 2009;14:064012.CrossRefPubMed Themelis G, Yoo JS, Soh KS, et al. Real-time intraoperative fluorescence imaging system using light-absorption correction. J Biomed Opt. 2009;14:064012.CrossRefPubMed
4.
go back to reference Keereweer S, Kerrebijn JD, van Driel PB, et al. Optical image-guided surgery—where do we stand? Mol Imaging Biol. 2011;13:199–207.CrossRefPubMed Keereweer S, Kerrebijn JD, van Driel PB, et al. Optical image-guided surgery—where do we stand? Mol Imaging Biol. 2011;13:199–207.CrossRefPubMed
5.
go back to reference Keereweer S, Kerrebijn JD, Mol IM, et al. Optical imaging of oral squamous cell carcinoma and cervical lymph node metastasis. Head Neck. 2011. doi:10.1002/hed.21861. Keereweer S, Kerrebijn JD, Mol IM, et al. Optical imaging of oral squamous cell carcinoma and cervical lymph node metastasis. Head Neck. 2011. doi:10.​1002/​hed.​21861.
6.
go back to reference Biosciences L-C. 2007IRDye(R) 800CW protein labeling kit—high MW. Lincoln, NE: Li-Cor Biosciences; 2007. p. 1–9. Biosciences L-C. 2007IRDye(R) 800CW protein labeling kit—high MW. Lincoln, NE: Li-Cor Biosciences; 2007. p. 1–9.
7.
go back to reference Reuthebuch O, Haussler A, Genoni M, et al. Novadaq SPY: intraoperative quality assessment in off-pump coronary artery bypass grafting. Chest. 2004;125:418–24.CrossRefPubMed Reuthebuch O, Haussler A, Genoni M, et al. Novadaq SPY: intraoperative quality assessment in off-pump coronary artery bypass grafting. Chest. 2004;125:418–24.CrossRefPubMed
8.
go back to reference Gleysteen JP, Newman JR, Chhieng D, et al. Fluorescent labeled anti-EGFR antibody for identification of regional and distant metastasis in a preclinical xenograft model. Head Neck. 2008;30:782–9.CrossRefPubMed Gleysteen JP, Newman JR, Chhieng D, et al. Fluorescent labeled anti-EGFR antibody for identification of regional and distant metastasis in a preclinical xenograft model. Head Neck. 2008;30:782–9.CrossRefPubMed
9.
go back to reference van Dam GM, Themelis G, Crane LM, et al. Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-alpha targeting: first in-human results. Nat Med. 2011;17:1315–9.CrossRefPubMed van Dam GM, Themelis G, Crane LM, et al. Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-alpha targeting: first in-human results. Nat Med. 2011;17:1315–9.CrossRefPubMed
10.
go back to reference Pleijhuis RG, Graafland M, de Vries J, et al. Obtaining adequate surgical margins in breast-conserving therapy for patients with early-stage breast cancer: current modalities and future directions. Ann Surg Oncol. 2009;16:2717–30.CrossRefPubMed Pleijhuis RG, Graafland M, de Vries J, et al. Obtaining adequate surgical margins in breast-conserving therapy for patients with early-stage breast cancer: current modalities and future directions. Ann Surg Oncol. 2009;16:2717–30.CrossRefPubMed
11.
go back to reference Rosenthal EL, Kulbersh BD, Duncan RD, et al. In vivo detection of head and neck cancer orthotopic xenografts by immunofluorescence. Laryngoscope. 2006;116:1636–41.CrossRefPubMed Rosenthal EL, Kulbersh BD, Duncan RD, et al. In vivo detection of head and neck cancer orthotopic xenografts by immunofluorescence. Laryngoscope. 2006;116:1636–41.CrossRefPubMed
12.
go back to reference Gleysteen JP, Duncan RD, Magnuson JS, et al. Fluorescently labeled cetuximab to evaluate head and neck cancer response to treatment. Cancer Biol Ther. 2007;6:1181–5.PubMed Gleysteen JP, Duncan RD, Magnuson JS, et al. Fluorescently labeled cetuximab to evaluate head and neck cancer response to treatment. Cancer Biol Ther. 2007;6:1181–5.PubMed
13.
go back to reference Kulbersh BD, Duncan RD, Magnuson JS, et al. Sensitivity and specificity of fluorescent immunoguided neoplasm detection in head and neck cancer xenografts. Arch Otolaryngol Head Neck Surg. 2007;133:511–5.CrossRefPubMed Kulbersh BD, Duncan RD, Magnuson JS, et al. Sensitivity and specificity of fluorescent immunoguided neoplasm detection in head and neck cancer xenografts. Arch Otolaryngol Head Neck Surg. 2007;133:511–5.CrossRefPubMed
14.
go back to reference Marshall MV, Draney D, Sevick-Muraca EM, Olive DM. Single-dose intravenous toxicity study of IRDye 800CW in Sprague-Dawley rats. Mol Imaging Biol. 2010;12:583–94.CrossRefPubMed Marshall MV, Draney D, Sevick-Muraca EM, Olive DM. Single-dose intravenous toxicity study of IRDye 800CW in Sprague-Dawley rats. Mol Imaging Biol. 2010;12:583–94.CrossRefPubMed
15.
go back to reference Adams KE, Ke S, Kwon S, et al. Comparison of visible and near-infrared wavelength-excitable fluorescent dyes for molecular imaging of cancer. J Biomed Opt. 2007;12:024017.CrossRefPubMed Adams KE, Ke S, Kwon S, et al. Comparison of visible and near-infrared wavelength-excitable fluorescent dyes for molecular imaging of cancer. J Biomed Opt. 2007;12:024017.CrossRefPubMed
16.
go back to reference Pomerantz RG, Grandis JR. The epidermal growth factor receptor signaling network in head and neck carcinogenesis and implications for targeted therapy. Semin Oncol. 2004;31:734–43.CrossRefPubMed Pomerantz RG, Grandis JR. The epidermal growth factor receptor signaling network in head and neck carcinogenesis and implications for targeted therapy. Semin Oncol. 2004;31:734–43.CrossRefPubMed
17.
go back to reference Withrow KP, Gleysteen JP, Safavy A, et al. Assessment of indocyanine green–labeled cetuximab to detect xenografted head and neck cancer cell lines. Otolaryngol Head Neck Surg. 2007;137:729–34.CrossRefPubMed Withrow KP, Gleysteen JP, Safavy A, et al. Assessment of indocyanine green–labeled cetuximab to detect xenografted head and neck cancer cell lines. Otolaryngol Head Neck Surg. 2007;137:729–34.CrossRefPubMed
18.
go back to reference Remsen KA, Lucente FE, Biller HF. Reliability of frozen section diagnosis in head and neck neoplasms. Laryngoscope. 1984;94:519–24.CrossRefPubMed Remsen KA, Lucente FE, Biller HF. Reliability of frozen section diagnosis in head and neck neoplasms. Laryngoscope. 1984;94:519–24.CrossRefPubMed
19.
go back to reference Gandour-Edwards RF, Donald PJ, Lie JT. Clinical utility of intraoperative frozen section diagnosis in head and neck surgery: a quality assurance perspective. Head Neck. 1993;15:373–6.CrossRefPubMed Gandour-Edwards RF, Donald PJ, Lie JT. Clinical utility of intraoperative frozen section diagnosis in head and neck surgery: a quality assurance perspective. Head Neck. 1993;15:373–6.CrossRefPubMed
20.
go back to reference Keereweer S, Sterenborg HJ, Kerrebijn JD, et al. Image-guided surgery in head and neck cancer: current practice and future directions of optical imaging. Head Neck. 2012;34:120–6.CrossRefPubMed Keereweer S, Sterenborg HJ, Kerrebijn JD, et al. Image-guided surgery in head and neck cancer: current practice and future directions of optical imaging. Head Neck. 2012;34:120–6.CrossRefPubMed
21.
go back to reference Zijlstra A, Mellor R, Panzarella G, et al. A quantitative analysis of rate-limiting steps in the metastatic cascade using human-specific real-time polymerase chain reaction. Cancer Res. 2002;62:7083–92.PubMed Zijlstra A, Mellor R, Panzarella G, et al. A quantitative analysis of rate-limiting steps in the metastatic cascade using human-specific real-time polymerase chain reaction. Cancer Res. 2002;62:7083–92.PubMed
Metadata
Title
Use of Panitumumab-IRDye800 to Image Microscopic Head and Neck Cancer in an Orthotopic Surgical Model
Authors
C. Hope Heath, MD, MS
Nicholas L. Deep, BS
Larissa Sweeny, MD
Kurt R. Zinn, PhD, DVM
Eben L. Rosenthal, MD
Publication date
01-11-2012
Publisher
Springer-Verlag
Published in
Annals of Surgical Oncology / Issue 12/2012
Print ISSN: 1068-9265
Electronic ISSN: 1534-4681
DOI
https://doi.org/10.1245/s10434-012-2435-y

Other articles of this Issue 12/2012

Annals of Surgical Oncology 12/2012 Go to the issue

Translational Research and Biomarkers

Clinical Cancer Genome and Precision Medicine