Skip to main content
Top
Published in: Molecular Imaging and Biology 2/2011

Open Access 01-04-2011 | Review Article

Optical Image-guided Surgery—Where Do We Stand?

Authors: Stijn Keereweer, Jeroen D. F. Kerrebijn, Pieter B. A. A. van Driel, Bangwen Xie, Eric L. Kaijzel, Thomas J. A. Snoeks, Ivo Que, Merlijn Hutteman, Joost R. van der Vorst, J. Sven D. Mieog, Alexander L. Vahrmeijer, Cornelis J. H. van de Velde, Robert J. Baatenburg de Jong, Clemens W. G. M. Löwik

Published in: Molecular Imaging and Biology | Issue 2/2011

Login to get access

Abstract

In cancer surgery, intra-operative assessment of the tumor-free margin, which is critical for the prognosis of the patient, relies on the visual appearance and palpation of the tumor. Optical imaging techniques provide real-time visualization of the tumor, warranting intra-operative image-guided surgery. Within this field, imaging in the near-infrared light spectrum offers two essential advantages: increased tissue penetration of light and an increased signal-to-background-ratio of contrast agents. In this article, we review the various techniques, contrast agents, and camera systems that are currently used for image-guided surgery. Furthermore, we provide an overview of the wide range of molecular contrast agents targeting specific hallmarks of cancer and we describe perspectives on its future use in cancer surgery.
Literature
1.
3.
go back to reference Semenza GL, Artemov D, Bedi A et al (2001) 'The metabolism of tumours': 70 years later. Novartis Found Symp 240:251–260PubMedCrossRef Semenza GL, Artemov D, Bedi A et al (2001) 'The metabolism of tumours': 70 years later. Novartis Found Symp 240:251–260PubMedCrossRef
4.
go back to reference Kelloff GJ, Hoffman JM, Johnson B et al (2005) Progress and promise of FDG-PET imaging for cancer patient management and oncologic drug development. Clin Cancer Res 11:2785–2808PubMedCrossRef Kelloff GJ, Hoffman JM, Johnson B et al (2005) Progress and promise of FDG-PET imaging for cancer patient management and oncologic drug development. Clin Cancer Res 11:2785–2808PubMedCrossRef
5.
go back to reference Strong VE, Humm J, Russo P et al (2008) A novel method to localize antibody-targeted cancer deposits intraoperatively using handheld PET beta and gamma probes. Surg Endosc 22:386–391PubMedCrossRef Strong VE, Humm J, Russo P et al (2008) A novel method to localize antibody-targeted cancer deposits intraoperatively using handheld PET beta and gamma probes. Surg Endosc 22:386–391PubMedCrossRef
6.
go back to reference de Jong BW, Schut TC, Maquelin K et al (2006) Discrimination between nontumor bladder tissue and tumor by Raman spectroscopy. Anal Chem 78:7761–7769PubMedCrossRef de Jong BW, Schut TC, Maquelin K et al (2006) Discrimination between nontumor bladder tissue and tumor by Raman spectroscopy. Anal Chem 78:7761–7769PubMedCrossRef
7.
go back to reference Shetty G, Kendall C, Shepherd N, Stone N, Barr H (2006) Raman spectroscopy: elucidation of biochemical changes in carcinogenesis of oesophagus. Br J Cancer 94:1460–1464PubMedCrossRef Shetty G, Kendall C, Shepherd N, Stone N, Barr H (2006) Raman spectroscopy: elucidation of biochemical changes in carcinogenesis of oesophagus. Br J Cancer 94:1460–1464PubMedCrossRef
8.
go back to reference Stone N, Stavroulaki P, Kendall C, Birchall M, Barr H (2000) Raman spectroscopy for early detection of laryngeal malignancy: preliminary results. Laryngoscope 110:1756–1763PubMedCrossRef Stone N, Stavroulaki P, Kendall C, Birchall M, Barr H (2000) Raman spectroscopy for early detection of laryngeal malignancy: preliminary results. Laryngoscope 110:1756–1763PubMedCrossRef
9.
go back to reference Nijssen A, Koljenovic S, Bakker Schut TC, Caspers PJ, Puppels GJ (2009) Towards oncological application of Raman spectroscopy. J Biophotonics 2:29–36PubMedCrossRef Nijssen A, Koljenovic S, Bakker Schut TC, Caspers PJ, Puppels GJ (2009) Towards oncological application of Raman spectroscopy. J Biophotonics 2:29–36PubMedCrossRef
10.
go back to reference DaCosta RS, Andersson H, Wilson BC (2003) Molecular fluorescence excitation-emission matrices relevant to tissue spectroscopy. Photochem Photobiol 78:384–392PubMedCrossRef DaCosta RS, Andersson H, Wilson BC (2003) Molecular fluorescence excitation-emission matrices relevant to tissue spectroscopy. Photochem Photobiol 78:384–392PubMedCrossRef
11.
go back to reference Georgakoudi I, Jacobson BC, Muller MG et al (2002) NAD(P)H and collagen as in vivo quantitative fluorescent biomarkers of epithelial precancerous changes. Cancer Res 62:682–687PubMed Georgakoudi I, Jacobson BC, Muller MG et al (2002) NAD(P)H and collagen as in vivo quantitative fluorescent biomarkers of epithelial precancerous changes. Cancer Res 62:682–687PubMed
12.
go back to reference Lane PM, Gilhuly T, Whitehead P et al (2006) Simple device for the direct visualization of oral cavity tissue fluorescence. J Biomed Opt 11:024006PubMedCrossRef Lane PM, Gilhuly T, Whitehead P et al (2006) Simple device for the direct visualization of oral cavity tissue fluorescence. J Biomed Opt 11:024006PubMedCrossRef
13.
go back to reference Lee P, van den Berg RM, Lam S et al (2009) Color fluorescence ratio for detection of bronchial dysplasia and carcinoma In situ. Clin Cancer Res 15:4700–4705PubMedCrossRef Lee P, van den Berg RM, Lam S et al (2009) Color fluorescence ratio for detection of bronchial dysplasia and carcinoma In situ. Clin Cancer Res 15:4700–4705PubMedCrossRef
14.
go back to reference Roblyer D, Richards-Kortum R, Sokolov K et al (2008) Multispectral optical imaging device for in vivo detection of oral neoplasia. J Biomed Opt 13:024019PubMedCrossRef Roblyer D, Richards-Kortum R, Sokolov K et al (2008) Multispectral optical imaging device for in vivo detection of oral neoplasia. J Biomed Opt 13:024019PubMedCrossRef
15.
go back to reference Alexander S, Koehl GE, Hirschberg M, Geissler EK, Friedl P (2008) Dynamic imaging of cancer growth and invasion: a modified skin-fold chamber model. Histochem Cell Biol 130:1147–1154PubMedCrossRef Alexander S, Koehl GE, Hirschberg M, Geissler EK, Friedl P (2008) Dynamic imaging of cancer growth and invasion: a modified skin-fold chamber model. Histochem Cell Biol 130:1147–1154PubMedCrossRef
16.
go back to reference de Veld DC, Witjes MJ, Sterenborg HJ, Roodenburg JL (2005) The status of in vivo autofluorescence spectroscopy and imaging for oral oncology. Oral Oncol 41:117–131PubMedCrossRef de Veld DC, Witjes MJ, Sterenborg HJ, Roodenburg JL (2005) The status of in vivo autofluorescence spectroscopy and imaging for oral oncology. Oral Oncol 41:117–131PubMedCrossRef
17.
go back to reference Nioka S, Chance B (2005) NIR spectroscopic detection of breast cancer. Technol Cancer Res Treat 4:497–512PubMed Nioka S, Chance B (2005) NIR spectroscopic detection of breast cancer. Technol Cancer Res Treat 4:497–512PubMed
18.
go back to reference Choe R, Konecky SD, Corlu A et al (2009) Differentiation of benign and malignant breast tumors by in vivo three-dimensional parallel-plate diffuse optical tomography. J Biomed Opt 14:024020PubMedCrossRef Choe R, Konecky SD, Corlu A et al (2009) Differentiation of benign and malignant breast tumors by in vivo three-dimensional parallel-plate diffuse optical tomography. J Biomed Opt 14:024020PubMedCrossRef
19.
20.
go back to reference Pierce MC, Javier DJ, Richards-Kortum R (2008) Optical contrast agents and imaging systems for detection and diagnosis of cancer. Int J Cancer 123:1979–1990PubMedCrossRef Pierce MC, Javier DJ, Richards-Kortum R (2008) Optical contrast agents and imaging systems for detection and diagnosis of cancer. Int J Cancer 123:1979–1990PubMedCrossRef
21.
go back to reference Aoki T, Yasuda D, Shimizu Y et al (2008) Image-guided liver mapping using fluorescence navigation system with indocyanine green for anatomical hepatic resection. World J Surg 32:1763–1767PubMedCrossRef Aoki T, Yasuda D, Shimizu Y et al (2008) Image-guided liver mapping using fluorescence navigation system with indocyanine green for anatomical hepatic resection. World J Surg 32:1763–1767PubMedCrossRef
22.
go back to reference Ishizawa T, Fukushima N, Shibahara J et al (2009) Real-time identification of liver cancers by using indocyanine green fluorescent imaging. Cancer 115:2491–2504PubMedCrossRef Ishizawa T, Fukushima N, Shibahara J et al (2009) Real-time identification of liver cancers by using indocyanine green fluorescent imaging. Cancer 115:2491–2504PubMedCrossRef
23.
go back to reference Mahmood U, Weissleder R (2003) Near-infrared optical imaging of proteases in cancer. Mol Cancer Ther 2:489–496PubMed Mahmood U, Weissleder R (2003) Near-infrared optical imaging of proteases in cancer. Mol Cancer Ther 2:489–496PubMed
24.
go back to reference Wunderbaldinger P, Turetschek K, Bremer C (2003) Near-infrared fluorescence imaging of lymph nodes using a new enzyme sensing activatable macromolecular optical probe. Eur Radiol 13:2206–2211PubMedCrossRef Wunderbaldinger P, Turetschek K, Bremer C (2003) Near-infrared fluorescence imaging of lymph nodes using a new enzyme sensing activatable macromolecular optical probe. Eur Radiol 13:2206–2211PubMedCrossRef
25.
go back to reference Jiang T, Olson ES, Nguyen QT, Roy M, Jennings PA, Tsien RY (2004) Tumor imaging by means of proteolytic activation of cell-penetrating peptides. Proc Natl Acad Sci U S A 101:17867–17872PubMedCrossRef Jiang T, Olson ES, Nguyen QT, Roy M, Jennings PA, Tsien RY (2004) Tumor imaging by means of proteolytic activation of cell-penetrating peptides. Proc Natl Acad Sci U S A 101:17867–17872PubMedCrossRef
26.
go back to reference Wunder A, Straub RH, Gay S, Funk J, Muller-Ladner U (2005) Molecular imaging: novel tools in visualizing rheumatoid arthritis. Rheumatology (Oxford) 44:1341–1349CrossRef Wunder A, Straub RH, Gay S, Funk J, Muller-Ladner U (2005) Molecular imaging: novel tools in visualizing rheumatoid arthritis. Rheumatology (Oxford) 44:1341–1349CrossRef
27.
go back to reference Klohs J, Baeva N, Steinbrink J et al (2009) In vivo near-infrared fluorescence imaging of matrix metalloproteinase activity after cerebral ischemia. J Cereb Blood Flow Metab 29:1284–1292PubMedCrossRef Klohs J, Baeva N, Steinbrink J et al (2009) In vivo near-infrared fluorescence imaging of matrix metalloproteinase activity after cerebral ischemia. J Cereb Blood Flow Metab 29:1284–1292PubMedCrossRef
28.
go back to reference Gleysteen JP, Duncan RD, Magnuson JS, Skipper JB, Zinn K, Rosenthal EL (2007) Fluorescently labeled cetuximab to evaluate head and neck cancer response to treatment. Cancer Biol Ther 6:1181–1185PubMed Gleysteen JP, Duncan RD, Magnuson JS, Skipper JB, Zinn K, Rosenthal EL (2007) Fluorescently labeled cetuximab to evaluate head and neck cancer response to treatment. Cancer Biol Ther 6:1181–1185PubMed
29.
go back to reference Lee SB, Hassan M, Fisher R et al (2008) Affibody molecules for in vivo characterization of HER2-positive tumors by near-infrared imaging. Clin Cancer Res 14:3840–3849PubMedCrossRef Lee SB, Hassan M, Fisher R et al (2008) Affibody molecules for in vivo characterization of HER2-positive tumors by near-infrared imaging. Clin Cancer Res 14:3840–3849PubMedCrossRef
30.
go back to reference Withrow KP, Newman JR, Skipper JB et al (2008) Assessment of bevacizumab conjugated to Cy5.5 for detection of head and neck cancer xenografts. Technol Cancer Res Treat 7:61–66PubMed Withrow KP, Newman JR, Skipper JB et al (2008) Assessment of bevacizumab conjugated to Cy5.5 for detection of head and neck cancer xenografts. Technol Cancer Res Treat 7:61–66PubMed
31.
go back to reference Ogawa M, Kosaka N, Longmire MR, Urano Y, Choyke PL, Kobayashi H (2009) Fluorophore-quencher based activatable targeted optical probes for detecting in vivo cancer metastases. Mol Pharm 6(2):386-395 Ogawa M, Kosaka N, Longmire MR, Urano Y, Choyke PL, Kobayashi H (2009) Fluorophore-quencher based activatable targeted optical probes for detecting in vivo cancer metastases. Mol Pharm 6(2):386-395
32.
go back to reference Backer MV, Levashova Z, Patel V et al (2007) Molecular imaging of VEGF receptors in angiogenic vasculature with single-chain VEGF-based probes. Nat Med 13:504–509PubMedCrossRef Backer MV, Levashova Z, Patel V et al (2007) Molecular imaging of VEGF receptors in angiogenic vasculature with single-chain VEGF-based probes. Nat Med 13:504–509PubMedCrossRef
33.
go back to reference Kovar JL, Volcheck WM, Chen J, Simpson MA (2007) Purification method directly influences effectiveness of an epidermal growth factor-coupled targeting agent for noninvasive tumor detection in mice. Anal Biochem 361:47–54PubMedCrossRef Kovar JL, Volcheck WM, Chen J, Simpson MA (2007) Purification method directly influences effectiveness of an epidermal growth factor-coupled targeting agent for noninvasive tumor detection in mice. Anal Biochem 361:47–54PubMedCrossRef
34.
go back to reference Adams KE, Ke S, Kwon S et al (2007) Comparison of visible and near-infrared wavelength-excitable fluorescent dyes for molecular imaging of cancer. J Biomed Opt 12:024017PubMedCrossRef Adams KE, Ke S, Kwon S et al (2007) Comparison of visible and near-infrared wavelength-excitable fluorescent dyes for molecular imaging of cancer. J Biomed Opt 12:024017PubMedCrossRef
35.
go back to reference Chen K, Xie J, Chen X (2009) RGD-human serum albumin conjugates as efficient tumor targeting probes. Mol Imaging 8:65–73PubMed Chen K, Xie J, Chen X (2009) RGD-human serum albumin conjugates as efficient tumor targeting probes. Mol Imaging 8:65–73PubMed
36.
go back to reference Jin ZH, Razkin J, Josserand V et al (2007) In vivo noninvasive optical imaging of receptor-mediated RGD internalization using self-quenched Cy5-labeled RAFT-c(-RGDfK-)(4). Mol Imaging 6:43–55PubMed Jin ZH, Razkin J, Josserand V et al (2007) In vivo noninvasive optical imaging of receptor-mediated RGD internalization using self-quenched Cy5-labeled RAFT-c(-RGDfK-)(4). Mol Imaging 6:43–55PubMed
37.
go back to reference Kossodo S, Pickarski M, Lin SA et al (2009) Dual in vivo quantification of integrin-targeted and protease-activated agents in cancer using fluorescence molecular tomography (FMT). Mol Imaging Biol (in press) Kossodo S, Pickarski M, Lin SA et al (2009) Dual in vivo quantification of integrin-targeted and protease-activated agents in cancer using fluorescence molecular tomography (FMT). Mol Imaging Biol (in press)
38.
go back to reference Zhou H, Luby-Phelps K, Mickey BE, Habib AA, Mason RP, Zhao D (2009) Dynamic near-infrared optical imaging of 2-deoxyglucose uptake by intracranial glioma of athymic mice. PLoS ONE 4:e8051PubMedCrossRef Zhou H, Luby-Phelps K, Mickey BE, Habib AA, Mason RP, Zhao D (2009) Dynamic near-infrared optical imaging of 2-deoxyglucose uptake by intracranial glioma of athymic mice. PLoS ONE 4:e8051PubMedCrossRef
39.
go back to reference Mulder WJ, Castermans K, van Beijnum JR et al (2009) Molecular imaging of tumor angiogenesis using alphavbeta3-integrin targeted multimodal quantum dots. Angiogenesis 12:17–24PubMedCrossRef Mulder WJ, Castermans K, van Beijnum JR et al (2009) Molecular imaging of tumor angiogenesis using alphavbeta3-integrin targeted multimodal quantum dots. Angiogenesis 12:17–24PubMedCrossRef
40.
go back to reference Kirchner C, Liedl T, Kudera S et al (2005) Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. Nano Lett 5:331–338PubMedCrossRef Kirchner C, Liedl T, Kudera S et al (2005) Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. Nano Lett 5:331–338PubMedCrossRef
42.
go back to reference Choi J, Burns AA, Williams RM et al (2007) Core-shell silica nanoparticles as fluorescent labels for nanomedicine. J Biomed Opt 12:064007PubMedCrossRef Choi J, Burns AA, Williams RM et al (2007) Core-shell silica nanoparticles as fluorescent labels for nanomedicine. J Biomed Opt 12:064007PubMedCrossRef
43.
go back to reference Xie G, Sun J, Zhong G, Shi L, Zhang D (2009) Biodistribution and toxicity of intravenously administered silica nanoparticles in mice. Arch Toxicol 84(3):183–190CrossRef Xie G, Sun J, Zhong G, Shi L, Zhang D (2009) Biodistribution and toxicity of intravenously administered silica nanoparticles in mice. Arch Toxicol 84(3):183–190CrossRef
44.
go back to reference Oberdorster G, Oberdorster E, Oberdorster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839PubMedCrossRef Oberdorster G, Oberdorster E, Oberdorster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839PubMedCrossRef
45.
go back to reference De Grand AM, Frangioni JV (2003) An operational near-infrared fluorescence imaging system prototype for large animal surgery. Technol Cancer Res Treat 2:553–562PubMed De Grand AM, Frangioni JV (2003) An operational near-infrared fluorescence imaging system prototype for large animal surgery. Technol Cancer Res Treat 2:553–562PubMed
46.
go back to reference Stockdale A, Oketokoun R, Gioux S, Frangioni JV (2010) Mini-FLARE: a compact and ergonomic dual-channel near-infrared fluorescence image-guided surgery system (Abstract) Stockdale A, Oketokoun R, Gioux S, Frangioni JV (2010) Mini-FLARE: a compact and ergonomic dual-channel near-infrared fluorescence image-guided surgery system (Abstract)
47.
go back to reference Mansfield JR, Hoyt C, Levenson RM (2008) Visualization of microscopy-based spectral imaging data from multi-label tissue sections. Curr Protoc Mol Biol Chapter 14: Unit Mansfield JR, Hoyt C, Levenson RM (2008) Visualization of microscopy-based spectral imaging data from multi-label tissue sections. Curr Protoc Mol Biol Chapter 14: Unit
48.
go back to reference Mayes P, Dicker D, Liu Y, El-Deiry W (2008) Noninvasive vascular imaging in fluorescent tumors using multispectral unmixing. Biotechniques 45:459–464PubMedCrossRef Mayes P, Dicker D, Liu Y, El-Deiry W (2008) Noninvasive vascular imaging in fluorescent tumors using multispectral unmixing. Biotechniques 45:459–464PubMedCrossRef
49.
go back to reference Xu H, Rice BW (2009) In vivo fluorescence imaging with a multivariate curve resolution spectral unmixing technique. J Biomed Opt 14:064011PubMedCrossRef Xu H, Rice BW (2009) In vivo fluorescence imaging with a multivariate curve resolution spectral unmixing technique. J Biomed Opt 14:064011PubMedCrossRef
50.
go back to reference Themelis G, Yoo JS, Soh KS, Schulz R, Ntziachristos V (2009) Real-time intraoperative fluorescence imaging system using light-absorption correction. J Biomed Opt 14:064012PubMedCrossRef Themelis G, Yoo JS, Soh KS, Schulz R, Ntziachristos V (2009) Real-time intraoperative fluorescence imaging system using light-absorption correction. J Biomed Opt 14:064012PubMedCrossRef
51.
go back to reference Barrett T, Choyke PL, Kobayashi H (2006) Imaging of the lymphatic system: new horizons. Contrast Media Mol Imaging 1:230–245PubMedCrossRef Barrett T, Choyke PL, Kobayashi H (2006) Imaging of the lymphatic system: new horizons. Contrast Media Mol Imaging 1:230–245PubMedCrossRef
52.
go back to reference Troyan SL, Kianzad V, Gibbs-Strauss SL et al (2009) The FLARE intraoperative near-infrared fluorescence imaging system: a first-in-human clinical trial in breast cancer sentinel lymph node mapping. Ann Surg Oncol 16:2943–2952PubMedCrossRef Troyan SL, Kianzad V, Gibbs-Strauss SL et al (2009) The FLARE intraoperative near-infrared fluorescence imaging system: a first-in-human clinical trial in breast cancer sentinel lymph node mapping. Ann Surg Oncol 16:2943–2952PubMedCrossRef
53.
go back to reference Tagaya N, Yamazaki R, Nakagawa A et al (2008) Intraoperative identification of sentinel lymph nodes by near-infrared fluorescence imaging in patients with breast cancer. Am J Surg 195:850–853PubMedCrossRef Tagaya N, Yamazaki R, Nakagawa A et al (2008) Intraoperative identification of sentinel lymph nodes by near-infrared fluorescence imaging in patients with breast cancer. Am J Surg 195:850–853PubMedCrossRef
54.
go back to reference Figueiredo JL, Alencar H, Weissleder R, Mahmood U (2006) Near infrared thoracoscopy of tumoral protease activity for improved detection of peripheral lung cancer. Int J Cancer 118:2672–2677PubMedCrossRef Figueiredo JL, Alencar H, Weissleder R, Mahmood U (2006) Near infrared thoracoscopy of tumoral protease activity for improved detection of peripheral lung cancer. Int J Cancer 118:2672–2677PubMedCrossRef
55.
go back to reference Nabavi A, Thurm H, Zountsas B et al (2009) Five-aminolevulinic acid for fluorescence-guided resection of recurrent malignant gliomas: a phase II study. Neurosurgery 65:1070–1076PubMedCrossRef Nabavi A, Thurm H, Zountsas B et al (2009) Five-aminolevulinic acid for fluorescence-guided resection of recurrent malignant gliomas: a phase II study. Neurosurgery 65:1070–1076PubMedCrossRef
56.
go back to reference Min W, Lu S, Chong S, Roy R, Holtom GR, Xie XS (2009) Imaging chromophores with undetectable fluorescence by stimulated emission microscopy. Nature 461:1105–1109PubMedCrossRef Min W, Lu S, Chong S, Roy R, Holtom GR, Xie XS (2009) Imaging chromophores with undetectable fluorescence by stimulated emission microscopy. Nature 461:1105–1109PubMedCrossRef
Metadata
Title
Optical Image-guided Surgery—Where Do We Stand?
Authors
Stijn Keereweer
Jeroen D. F. Kerrebijn
Pieter B. A. A. van Driel
Bangwen Xie
Eric L. Kaijzel
Thomas J. A. Snoeks
Ivo Que
Merlijn Hutteman
Joost R. van der Vorst
J. Sven D. Mieog
Alexander L. Vahrmeijer
Cornelis J. H. van de Velde
Robert J. Baatenburg de Jong
Clemens W. G. M. Löwik
Publication date
01-04-2011
Publisher
Springer-Verlag
Published in
Molecular Imaging and Biology / Issue 2/2011
Print ISSN: 1536-1632
Electronic ISSN: 1860-2002
DOI
https://doi.org/10.1007/s11307-010-0373-2

Other articles of this Issue 2/2011

Molecular Imaging and Biology 2/2011 Go to the issue