Skip to main content
Top
Published in: Annals of Surgical Oncology 12/2010

01-12-2010 | Translational Research and Biomarkers

Knockdown of Thrombomodulin Enhances HCC Cell Migration through Increase of ZEB1 and Decrease of E-cadherin Gene Expression

Authors: Ming-Te Huang, MD, Po-Li Wei, PhD, Jun-Jen Liu, PhD, Der-Zen Liu, PhD, Huang Huey-Chun, PhD, Jane An, BS, Cheng-Chia Wu, BS, Chih-Hsiung Wu, PhD, Yuan-Soon Ho, PhD, Yi-Yuan Yang, PhD, Yu-Jia Chang, PhD

Published in: Annals of Surgical Oncology | Issue 12/2010

Login to get access

Abstract

Background

Thrombomodulin (TM) is a key molecule mediating circulation homeostasis through its binding to thrombin. The TM–thrombin complex can activate protein C and thrombin-activatable fibrinolysis inhibitor to form a tight clot. In many cancer tissues, decrease of TM expression may correlate with cancer metastasis. However, the role of TM in hepatocellular carcinoma (HCC) progression is still unclear.

Methods

We characterized TM expression in HCC cells (HepJ5 and skHep-1 cells) using real-time polymerase chain reaction (PCR) and Western blotting. We then manipulated TM expression using both TM-specific short hairpin RNA (shRNA) and overexpressing it in HCC cells. Transwell migration assay was performed to monitor the migratory ability of HCC cells under different levels of TM expression.

Results

We found that TM was ectopically highly expressed in skHep-1 at both transcriptional and translational levels. After silencing TM expression in skHep-1 cells, we found that metastatic capability was dramatically increased. Conversely, overexpression of TM in HepJ5 cells decreased metastatic ability. We investigated the possible mechanism and found that decreased TM-mediated enhancement of cell migration was dependent on upregulation of ZEB1, a repressor of E-cadherin.

Conclusions

TM may be a modulator of cancer metastasis in HCC. Downregulation of TM expression may increase ZEB1 and decrease E-cadherin levels.
Literature
1.
go back to reference Bosch FX, Ribes J, Borras J. Epidemiology of primary liver cancer. Semin Liver Dis. 1999;19(3):271–85.CrossRefPubMed Bosch FX, Ribes J, Borras J. Epidemiology of primary liver cancer. Semin Liver Dis. 1999;19(3):271–85.CrossRefPubMed
3.
go back to reference Parkin DM, Pisani P, Ferlay J. Global cancer statistics. CA Cancer J Clin. 1999;49(1):33–64, 1. Parkin DM, Pisani P, Ferlay J. Global cancer statistics. CA Cancer J Clin. 1999;49(1):33–64, 1.
4.
5.
go back to reference Kudo M, Okanoue T. Management of hepatocellular carcinoma in Japan: consensus-based clinical practice manual proposed by the Japan Society of Hepatology. Oncology. 2007;72(Suppl 1):2–15.CrossRefPubMed Kudo M, Okanoue T. Management of hepatocellular carcinoma in Japan: consensus-based clinical practice manual proposed by the Japan Society of Hepatology. Oncology. 2007;72(Suppl 1):2–15.CrossRefPubMed
6.
go back to reference Nakakura EK, Choti MA. Management of hepatocellular carcinoma. Oncology (Williston Park). 2000;14(7):1085–98; discussion 1098–102. Nakakura EK, Choti MA. Management of hepatocellular carcinoma. Oncology (Williston Park). 2000;14(7):1085–98; discussion 1098–102.
7.
go back to reference Eccles SA, Welch DR. Metastasis: recent discoveries and novel treatment strategies. Lancet. 2007;369(9574):1742–57.CrossRefPubMed Eccles SA, Welch DR. Metastasis: recent discoveries and novel treatment strategies. Lancet. 2007;369(9574):1742–57.CrossRefPubMed
8.
go back to reference Thiery JP. Epithelial-mesenchymal transitions in development and pathologies. Curr Opin Cell Biol. 2003;15(6):740–6.CrossRefPubMed Thiery JP. Epithelial-mesenchymal transitions in development and pathologies. Curr Opin Cell Biol. 2003;15(6):740–6.CrossRefPubMed
9.
go back to reference Zajchowski DA, Bartholdi MF, Gong Y, et al. Identification of gene expression profiles that predict the aggressive behavior of breast cancer cells. Cancer Res. 2001;61(13):5168–78.PubMed Zajchowski DA, Bartholdi MF, Gong Y, et al. Identification of gene expression profiles that predict the aggressive behavior of breast cancer cells. Cancer Res. 2001;61(13):5168–78.PubMed
10.
go back to reference Bates RC, Mercurio AM. The epithelial-mesenchymal transition (EMT) and colorectal cancer progression. Cancer Biol Ther. 2005;4(4):365–70.CrossRefPubMed Bates RC, Mercurio AM. The epithelial-mesenchymal transition (EMT) and colorectal cancer progression. Cancer Biol Ther. 2005;4(4):365–70.CrossRefPubMed
11.
go back to reference Xue C, Plieth D, Venkov C, et al. The gatekeeper effect of epithelial-mesenchymal transition regulates the frequency of breast cancer metastasis. Cancer Res. 2003;63(12):3386–94.PubMed Xue C, Plieth D, Venkov C, et al. The gatekeeper effect of epithelial-mesenchymal transition regulates the frequency of breast cancer metastasis. Cancer Res. 2003;63(12):3386–94.PubMed
12.
go back to reference Thiery JP, Sleeman JP. Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol. 2006;7(2):131–42.CrossRefPubMed Thiery JP, Sleeman JP. Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol. 2006;7(2):131–42.CrossRefPubMed
13.
go back to reference Huber MA, Kraut N, Beug H. Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr Opin Cell Biol. 2005;17(5):548–58.CrossRefPubMed Huber MA, Kraut N, Beug H. Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr Opin Cell Biol. 2005;17(5):548–58.CrossRefPubMed
14.
go back to reference Thiery JP. Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer. 2002;2(6):442–54.CrossRefPubMed Thiery JP. Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer. 2002;2(6):442–54.CrossRefPubMed
15.
go back to reference Yook JI, Li XY, Ota I, et al. Wnt-dependent regulation of the E-cadherin repressor snail. J Biol Chem. 2005;280(12):11740–8.CrossRefPubMed Yook JI, Li XY, Ota I, et al. Wnt-dependent regulation of the E-cadherin repressor snail. J Biol Chem. 2005;280(12):11740–8.CrossRefPubMed
16.
go back to reference Zhou BP, Deng J, Xia W, et al. Dual regulation of Snail by GSK-3beta-mediated phosphorylation in control of epithelial-mesenchymal transition. Nat Cell Biol. 2004;6(10):931–40.CrossRefPubMed Zhou BP, Deng J, Xia W, et al. Dual regulation of Snail by GSK-3beta-mediated phosphorylation in control of epithelial-mesenchymal transition. Nat Cell Biol. 2004;6(10):931–40.CrossRefPubMed
17.
go back to reference Esmon CT. The roles of protein C and thrombomodulin in the regulation of blood coagulation. J Biol Chem. 1989;264(9):4743–6.PubMed Esmon CT. The roles of protein C and thrombomodulin in the regulation of blood coagulation. J Biol Chem. 1989;264(9):4743–6.PubMed
18.
go back to reference Imada S, Yamaguchi H, Nagumo M, et al. Identification of fetomodulin, a surface marker protein of fetal development, as thrombomodulin by gene cloning and functional assays. Dev Biol. 1990;140(1):113–22.CrossRefPubMed Imada S, Yamaguchi H, Nagumo M, et al. Identification of fetomodulin, a surface marker protein of fetal development, as thrombomodulin by gene cloning and functional assays. Dev Biol. 1990;140(1):113–22.CrossRefPubMed
19.
go back to reference Hanly AM, Winter DC. The role of thrombomodulin in malignancy. Semin Thromb Hemost. 2007;33(7):673–9.CrossRefPubMed Hanly AM, Winter DC. The role of thrombomodulin in malignancy. Semin Thromb Hemost. 2007;33(7):673–9.CrossRefPubMed
20.
go back to reference Shi CS, Shi GY, Hsiao SM, et al. Lectin-like domain of thrombomodulin binds to its specific ligand Lewis Y antigen and neutralizes lipopolysaccharide-induced inflammatory response. Blood. 2008;112(9):3661–70.CrossRefPubMed Shi CS, Shi GY, Hsiao SM, et al. Lectin-like domain of thrombomodulin binds to its specific ligand Lewis Y antigen and neutralizes lipopolysaccharide-induced inflammatory response. Blood. 2008;112(9):3661–70.CrossRefPubMed
21.
go back to reference Suehiro T, Shimada M, Matsumata T, et al. Thrombomodulin inhibits intrahepatic spread in human hepatocellular carcinoma. Hepatology. 1995;21(5):1285–90.CrossRefPubMed Suehiro T, Shimada M, Matsumata T, et al. Thrombomodulin inhibits intrahepatic spread in human hepatocellular carcinoma. Hepatology. 1995;21(5):1285–90.CrossRefPubMed
22.
go back to reference Hanly AM, Redmond M, Winter DC, et al. Thrombomodulin expression in colorectal carcinoma is protective and correlates with survival. Br J Cancer. 2006;94(9):1320–5.CrossRefPubMed Hanly AM, Redmond M, Winter DC, et al. Thrombomodulin expression in colorectal carcinoma is protective and correlates with survival. Br J Cancer. 2006;94(9):1320–5.CrossRefPubMed
23.
go back to reference Jackson DE, Mitchell CA, Bird P, et al. Immunohistochemical localization of thrombomodulin in normal human skin and skin tumours. J Pathol. 1995;175(4):421–32.CrossRefPubMed Jackson DE, Mitchell CA, Bird P, et al. Immunohistochemical localization of thrombomodulin in normal human skin and skin tumours. J Pathol. 1995;175(4):421–32.CrossRefPubMed
24.
go back to reference Yonezawa S, Maruyama I, Tanaka S, et al. Immunohistochemical localization of thrombomodulin in chorionic diseases of the uterus and choriocarcinoma of the stomach A comparative study with the distribution of human chorionic gonadotropin. Cancer. 1988;62(3):569–76.CrossRefPubMed Yonezawa S, Maruyama I, Tanaka S, et al. Immunohistochemical localization of thrombomodulin in chorionic diseases of the uterus and choriocarcinoma of the stomach A comparative study with the distribution of human chorionic gonadotropin. Cancer. 1988;62(3):569–76.CrossRefPubMed
25.
go back to reference Ogawa H, Yonezawa S, Maruyama I, et al. Expression of thrombomodulin in squamous cell carcinoma of the lung: its relationship to lymph node metastasis and prognosis of the patients. Cancer Lett. 2000;149(1–2):95–103.CrossRefPubMed Ogawa H, Yonezawa S, Maruyama I, et al. Expression of thrombomodulin in squamous cell carcinoma of the lung: its relationship to lymph node metastasis and prognosis of the patients. Cancer Lett. 2000;149(1–2):95–103.CrossRefPubMed
26.
go back to reference Hamada H, Ishii H, Sakyo K, et al. The epidermal growth factor-like domain of recombinant human thrombomodulin exhibits mitogenic activity for Swiss 3T3 cells. Blood. 1995;86(1):225–33.PubMed Hamada H, Ishii H, Sakyo K, et al. The epidermal growth factor-like domain of recombinant human thrombomodulin exhibits mitogenic activity for Swiss 3T3 cells. Blood. 1995;86(1):225–33.PubMed
27.
go back to reference Zhang Y, Weiler-Guettler H, Chen J, et al. Thrombomodulin modulates growth of tumor cells independent of its anticoagulant activity. J Clin Invest. 1998;101(7):1301–9.CrossRefPubMed Zhang Y, Weiler-Guettler H, Chen J, et al. Thrombomodulin modulates growth of tumor cells independent of its anticoagulant activity. J Clin Invest. 1998;101(7):1301–9.CrossRefPubMed
28.
go back to reference Fujiwara M, Jin E, Ghazizadeh M, Kawanami O. Antisense oligodeoxynucleotides against thrombomodulin suppress the cell growth of lung adenocarcinoma cell line A549. Pathol Int. 2002;52(3):204–13.CrossRefPubMed Fujiwara M, Jin E, Ghazizadeh M, Kawanami O. Antisense oligodeoxynucleotides against thrombomodulin suppress the cell growth of lung adenocarcinoma cell line A549. Pathol Int. 2002;52(3):204–13.CrossRefPubMed
29.
go back to reference Matsumoto M, Natsugoe S, Nakashima S, et al. Biological evaluation of undifferentiated carcinoma of the esophagus. Ann Surg Oncol. 2000;7(3):204–9.CrossRefPubMed Matsumoto M, Natsugoe S, Nakashima S, et al. Biological evaluation of undifferentiated carcinoma of the esophagus. Ann Surg Oncol. 2000;7(3):204–9.CrossRefPubMed
30.
go back to reference Niimi S, Harashima M, Takayama K, et al. Thrombomodulin enhances the invasive activity of mouse mammary tumor cells. J Biochem. 2005;137(5):579–86.CrossRefPubMed Niimi S, Harashima M, Takayama K, et al. Thrombomodulin enhances the invasive activity of mouse mammary tumor cells. J Biochem. 2005;137(5):579–86.CrossRefPubMed
31.
go back to reference Wei PL, Chang YJ, Ho YS, et al. Tobacco-specific carcinogen enhances colon cancer cell migration through alpha7-nicotinic acetylcholine receptor. Ann Surg. 2009;249(6):978–85.CrossRefPubMed Wei PL, Chang YJ, Ho YS, et al. Tobacco-specific carcinogen enhances colon cancer cell migration through alpha7-nicotinic acetylcholine receptor. Ann Surg. 2009;249(6):978–85.CrossRefPubMed
32.
go back to reference Dong D, Ni M, Li J, et al. Critical role of the stress chaperone GRP78/BiP in tumor proliferation, survival, and tumor angiogenesis in transgene-induced mammary tumor development. Cancer Res. 2008;68(2):498–505.CrossRefPubMed Dong D, Ni M, Li J, et al. Critical role of the stress chaperone GRP78/BiP in tumor proliferation, survival, and tumor angiogenesis in transgene-induced mammary tumor development. Cancer Res. 2008;68(2):498–505.CrossRefPubMed
33.
go back to reference Sowinski S, Jolly C, Berninghausen O, et al. Membrane nanotubes physically connect T cells over long distances presenting a novel route for HIV-1 transmission. Nat Cell Biol. 2008;10(2):211–9.CrossRefPubMed Sowinski S, Jolly C, Berninghausen O, et al. Membrane nanotubes physically connect T cells over long distances presenting a novel route for HIV-1 transmission. Nat Cell Biol. 2008;10(2):211–9.CrossRefPubMed
34.
go back to reference Kaufmann R, Rahn S, Pollrich K, et al. Thrombin-mediated hepatocellular carcinoma cell migration: cooperative action via proteinase-activated receptors 1 and 4. J Cell Physiol. 2007;211(3):699–707.CrossRefPubMed Kaufmann R, Rahn S, Pollrich K, et al. Thrombin-mediated hepatocellular carcinoma cell migration: cooperative action via proteinase-activated receptors 1 and 4. J Cell Physiol. 2007;211(3):699–707.CrossRefPubMed
35.
go back to reference Tezuka Y, Yonezawa S, Maruyama I, et al. Expression of thrombomodulin in esophageal squamous cell carcinoma and its relationship to lymph node metastasis. Cancer Res. 1995;55(18):4196–200.PubMed Tezuka Y, Yonezawa S, Maruyama I, et al. Expression of thrombomodulin in esophageal squamous cell carcinoma and its relationship to lymph node metastasis. Cancer Res. 1995;55(18):4196–200.PubMed
36.
go back to reference Huang HC, Shi GY, Jiang SJ, et al. Thrombomodulin-mediated cell adhesion: involvement of its lectin-like domain. J Biol Chem. 2003;278(47):46750–9.CrossRefPubMed Huang HC, Shi GY, Jiang SJ, et al. Thrombomodulin-mediated cell adhesion: involvement of its lectin-like domain. J Biol Chem. 2003;278(47):46750–9.CrossRefPubMed
37.
go back to reference Markuljak I, Ivankova J, Kubisz P. Thrombomodulin and von Willebrand factor in smokers and during smoking. Nouv Rev Fr Hematol. 1995;37(2):137–9.PubMed Markuljak I, Ivankova J, Kubisz P. Thrombomodulin and von Willebrand factor in smokers and during smoking. Nouv Rev Fr Hematol. 1995;37(2):137–9.PubMed
38.
go back to reference Hosaka Y, Higuchi T, Tsumagari M, Ishii H. Inhibition of invasion and experimental metastasis of murine melanoma cells by human soluble thrombomodulin. Cancer Lett. 2000;161(2):231–40.CrossRefPubMed Hosaka Y, Higuchi T, Tsumagari M, Ishii H. Inhibition of invasion and experimental metastasis of murine melanoma cells by human soluble thrombomodulin. Cancer Lett. 2000;161(2):231–40.CrossRefPubMed
39.
go back to reference Conacci-Sorrell M, Zhurinsky J, Ben-Ze’ev A. The cadherin-catenin adhesion system in signaling and cancer. J Clin Invest. 2002;109(8):987–91.PubMed Conacci-Sorrell M, Zhurinsky J, Ben-Ze’ev A. The cadherin-catenin adhesion system in signaling and cancer. J Clin Invest. 2002;109(8):987–91.PubMed
40.
go back to reference Heffelfinger SC, Hawkins HH, Barrish J, et al. SK HEP-1: a human cell line of endothelial origin. In Vitro Cell Dev Biol. 1992;28A(2):136–42.CrossRefPubMed Heffelfinger SC, Hawkins HH, Barrish J, et al. SK HEP-1: a human cell line of endothelial origin. In Vitro Cell Dev Biol. 1992;28A(2):136–42.CrossRefPubMed
Metadata
Title
Knockdown of Thrombomodulin Enhances HCC Cell Migration through Increase of ZEB1 and Decrease of E-cadherin Gene Expression
Authors
Ming-Te Huang, MD
Po-Li Wei, PhD
Jun-Jen Liu, PhD
Der-Zen Liu, PhD
Huang Huey-Chun, PhD
Jane An, BS
Cheng-Chia Wu, BS
Chih-Hsiung Wu, PhD
Yuan-Soon Ho, PhD
Yi-Yuan Yang, PhD
Yu-Jia Chang, PhD
Publication date
01-12-2010
Publisher
Springer-Verlag
Published in
Annals of Surgical Oncology / Issue 12/2010
Print ISSN: 1068-9265
Electronic ISSN: 1534-4681
DOI
https://doi.org/10.1245/s10434-010-1163-4

Other articles of this Issue 12/2010

Annals of Surgical Oncology 12/2010 Go to the issue