Skip to main content
Top
Published in: Sports Medicine - Open 1/2015

Open Access 01-12-2015 | Original Research Article

Effects of High-Intensity Training on Anaerobic and Aerobic Contributions to Total Energy Release During Repeated Supramaximal Exercise in Obese Adults

Authors: Georges Jabbour, Horia-Daniel Iancu, Anne Paulin

Published in: Sports Medicine - Open | Issue 1/2015

Login to get access

Abstract

Background

Studying relative anaerobic and aerobic metabolism contributions to total energy release during exercise may be valuable in understanding exercise energetic demands and the energetic adaptations that occur in response to acute or chronic exercise in obese adults. The aim of the present study is to evaluate the effects of 6 weeks of high-intensity training (HIT) on relative anaerobic and aerobic contributions to total energy release and on peak power output during repeated supramaximal cycling exercises (SCE) in obese adults.

Methods

Twenty-four obese adults (body mass index = ± 33 kg.m−2) were randomized into a control group (n = 12) and an HIT group (n = 12). Accumulated oxygen deficits (ml.min−1) and anaerobic and aerobic contributions (%) were measured in all groups before and after training via repeated SCE. In addition, the peak power output performed during SCE was determined using the force-velocity test.

Results

Before HIT, anaerobic contributions to repeated SCE did not differ between the groups and decreased significantly during the third and fourth repetitions. After HIT, anaerobic contributions increased significantly in the HIT group (+11 %, p < 0.01) and were significantly higher than those of the control group (p < 0.01). Moreover, the peak power obtained during SCE increased significantly in the HIT group (+110 W.kg−1, p < 0.01) and correlated positively with increases in anaerobic contributions (r = 0.9, p < 0.01).

Conclusions

In obese adults, HIT increased anaerobic contributions to energy release which were associated with peak power enhancement in response to repeated SCE. Consequently, HIT may be an appropriate approach for improving energy contributions and muscle power among obese adults.
Literature
1.
go back to reference Spencer MR, Gastin PB. Energy system contribution during 200- to 1500-m running in highly trained athletes. Med Sci Sports Exerc. 2001;33:157–62.CrossRefPubMed Spencer MR, Gastin PB. Energy system contribution during 200- to 1500-m running in highly trained athletes. Med Sci Sports Exerc. 2001;33:157–62.CrossRefPubMed
2.
go back to reference Zouhal H, Jabbour G, Jacob C, Duvigneau D, Botcazou M, Ben Abderrahaman A, et al. Anaerobic and aerobic energy system contribution to 400-m flat and 400-m hurdles track running. J Strength Cond Res. 2010;24(9):2309–2315.CrossRefPubMed Zouhal H, Jabbour G, Jacob C, Duvigneau D, Botcazou M, Ben Abderrahaman A, et al. Anaerobic and aerobic energy system contribution to 400-m flat and 400-m hurdles track running. J Strength Cond Res. 2010;24(9):2309–2315.CrossRefPubMed
3.
go back to reference Vettor R, Macor C, Rossi E, Piemonte G, Federspil G. Impaired counterregulatory hormonal and metabolic response to exhaustive exercise in obese subjects. Acta Diabetol. 1997;34(2):61–6.CrossRefPubMed Vettor R, Macor C, Rossi E, Piemonte G, Federspil G. Impaired counterregulatory hormonal and metabolic response to exhaustive exercise in obese subjects. Acta Diabetol. 1997;34(2):61–6.CrossRefPubMed
4.
go back to reference Zouhal H, Lemoine-Morel S, Mathieu ME, Casazza GA, Jabbour G. Catecholamines and obesity: effects of exercise and training. Sports Med. 2013;43(7):591–600.CrossRefPubMed Zouhal H, Lemoine-Morel S, Mathieu ME, Casazza GA, Jabbour G. Catecholamines and obesity: effects of exercise and training. Sports Med. 2013;43(7):591–600.CrossRefPubMed
5.
go back to reference Lazzer S, Boirie Y, Bitar A, Petit I, Meyer M, Vermorel M. Relationship between percentage of VO2max and type of physical activity in obese and non-obese adolescents. J Sports Med Phys Fitness. 2005;45(1):13–9.PubMed Lazzer S, Boirie Y, Bitar A, Petit I, Meyer M, Vermorel M. Relationship between percentage of VO2max and type of physical activity in obese and non-obese adolescents. J Sports Med Phys Fitness. 2005;45(1):13–9.PubMed
6.
go back to reference Anderssen SA, Cooper AR, Sardinha LB, Harro M, Brage S, Andersen LB. Cardiorespiratory fitness is a strong predictor for clustering of cardiovascular disease risk factors in children independent of country, age and sex. Eur J Cardiovasc Dis Prev Rehabil. 2007;14:526–31.CrossRef Anderssen SA, Cooper AR, Sardinha LB, Harro M, Brage S, Andersen LB. Cardiorespiratory fitness is a strong predictor for clustering of cardiovascular disease risk factors in children independent of country, age and sex. Eur J Cardiovasc Dis Prev Rehabil. 2007;14:526–31.CrossRef
7.
go back to reference Duché P, Ducher G, Lazzer S, Doré E, Tailhardat M, Bedu M. Peak power in obese and nonobese adolescents: effects of gender and braking force. Med Sci Sports Exerc. 2002;34(12):2072–8.CrossRefPubMed Duché P, Ducher G, Lazzer S, Doré E, Tailhardat M, Bedu M. Peak power in obese and nonobese adolescents: effects of gender and braking force. Med Sci Sports Exerc. 2002;34(12):2072–8.CrossRefPubMed
8.
go back to reference Blimkie CJ, Sale DG, Bar-Or O. Voluntary strength, evoked twitch contractile properties and motor unit activation of knee extensors in obese and non-obese adolescent males. Eur J Appl Physiol Occup Physiol. 1990;61(3–4):313–8.CrossRefPubMed Blimkie CJ, Sale DG, Bar-Or O. Voluntary strength, evoked twitch contractile properties and motor unit activation of knee extensors in obese and non-obese adolescent males. Eur J Appl Physiol Occup Physiol. 1990;61(3–4):313–8.CrossRefPubMed
9.
go back to reference Babraj JA, Vollard NBJ, Keast C, Guppy FM, Cottrell G, Timmons JA. Extremely short duration high intensity training substantially improves insulin action in young sedentary males. BMC Endocr Disord. 2009;9:3.PubMedCentralCrossRefPubMed Babraj JA, Vollard NBJ, Keast C, Guppy FM, Cottrell G, Timmons JA. Extremely short duration high intensity training substantially improves insulin action in young sedentary males. BMC Endocr Disord. 2009;9:3.PubMedCentralCrossRefPubMed
10.
go back to reference Whyte LJ, Gill JM, Cathcart AJ. Effect of 2 weeks of sprint interval training on health-related outcomes in sedentary overweight/obese men. Metabolism. 2010;59(10):1421–8.CrossRefPubMed Whyte LJ, Gill JM, Cathcart AJ. Effect of 2 weeks of sprint interval training on health-related outcomes in sedentary overweight/obese men. Metabolism. 2010;59(10):1421–8.CrossRefPubMed
11.
go back to reference Medbo JI, Mohn AC, Tabata I, Bahr R, Vaage O, Sejersted OM. Anaerobic capacity determined by maximal accumulated O2 deficit. J Appl Physiol. 1988;64:50–60.PubMed Medbo JI, Mohn AC, Tabata I, Bahr R, Vaage O, Sejersted OM. Anaerobic capacity determined by maximal accumulated O2 deficit. J Appl Physiol. 1988;64:50–60.PubMed
12.
go back to reference Adami A, Capelli C. Oxygen deficit during supramaximal cycling exercise in humans: a new estimation method. J Sports Med Phys Fitness. 2013;53(1):17–26.PubMed Adami A, Capelli C. Oxygen deficit during supramaximal cycling exercise in humans: a new estimation method. J Sports Med Phys Fitness. 2013;53(1):17–26.PubMed
13.
go back to reference Hirvonen J, Rehumen S, Rusko M, Harkönen M. Breakdown of high energy phosphate compounds and lactate accumulation during short supramaximal exercise. Eur J Appl Physiol. 1987;56:253–59.CrossRef Hirvonen J, Rehumen S, Rusko M, Harkönen M. Breakdown of high energy phosphate compounds and lactate accumulation during short supramaximal exercise. Eur J Appl Physiol. 1987;56:253–59.CrossRef
14.
go back to reference Craig CL, Marshall AL, Sjostrom M, Bauman AE, Booth ML, Ainsworth BE, et al. International physical activity questionnaire: 12- country reliability and validity. Med Sci Sports Exerc. 2003; 35: 1381–95.CrossRefPubMed Craig CL, Marshall AL, Sjostrom M, Bauman AE, Booth ML, Ainsworth BE, et al. International physical activity questionnaire: 12- country reliability and validity. Med Sci Sports Exerc. 2003; 35: 1381–95.CrossRefPubMed
15.
go back to reference Jabbour G, Lemoine-Morel S, Casazza GA, Hala Y, Moussa E, Zouhal H. Catecholamine response to exercise in obese, overweight, and lean adolescent boys. Med Sci Sports Exerc. 2011;43(3):408–15.CrossRefPubMed Jabbour G, Lemoine-Morel S, Casazza GA, Hala Y, Moussa E, Zouhal H. Catecholamine response to exercise in obese, overweight, and lean adolescent boys. Med Sci Sports Exerc. 2011;43(3):408–15.CrossRefPubMed
18.
go back to reference Ramsbottom R, Nevill AM, Nevill ME, Newport S, Williams C. Accumulated oxygen deficit and short-distance running performance. J Sports Sci. 1994;12(5):447–53.CrossRefPubMed Ramsbottom R, Nevill AM, Nevill ME, Newport S, Williams C. Accumulated oxygen deficit and short-distance running performance. J Sports Sci. 1994;12(5):447–53.CrossRefPubMed
19.
go back to reference Woolford SM, Withers RT, Craig NP, Bourdon PC, Stanef T, McKenzie I. Effect of pedal cadence on the accumulated oxygen deficit, maximal aerobic power and blood lactate transition thresholds of high-performance junior endurance cyclists. Eur J Appl Physiol Occup Physiol. 1999;80(4):285–91.CrossRefPubMed Woolford SM, Withers RT, Craig NP, Bourdon PC, Stanef T, McKenzie I. Effect of pedal cadence on the accumulated oxygen deficit, maximal aerobic power and blood lactate transition thresholds of high-performance junior endurance cyclists. Eur J Appl Physiol Occup Physiol. 1999;80(4):285–91.CrossRefPubMed
20.
go back to reference Vandewalle HPG, Heller J, Monod H. Interests and limits of the speed-force relation in human. Sci Mov (in French). 1988;4:38–46. Vandewalle HPG, Heller J, Monod H. Interests and limits of the speed-force relation in human. Sci Mov (in French). 1988;4:38–46.
21.
go back to reference Tabata I, Nishimura K, Kouzaki M, Hirai Y, Ogita F, Miyachi M, et al. Effects ofmoderate-intensity endurance and high-intensity intermittent training on anaerobic capacity and VO 2max. Med Sci Sports Exerc. 1996;28(10):1327–30.CrossRefPubMed Tabata I, Nishimura K, Kouzaki M, Hirai Y, Ogita F, Miyachi M, et al. Effects ofmoderate-intensity endurance and high-intensity intermittent training on anaerobic capacity and VO 2max. Med Sci Sports Exerc. 1996;28(10):1327–30.CrossRefPubMed
22.
go back to reference Coyle EF. Very intense exercise-training is extremely potent and time efficient: a reminder. J Appl Physiol. 2005;98:1983–4.CrossRefPubMed Coyle EF. Very intense exercise-training is extremely potent and time efficient: a reminder. J Appl Physiol. 2005;98:1983–4.CrossRefPubMed
23.
go back to reference Gibala MJ. High-intensity interval training: a time-efficient strategy for health promotion? Curr Sports Med Rep. 2007;6:211–3.PubMed Gibala MJ. High-intensity interval training: a time-efficient strategy for health promotion? Curr Sports Med Rep. 2007;6:211–3.PubMed
24.
go back to reference Gastin PB, Costill DL, Lawson DL, Krzeminski K, McConell GK. Accumulated oxygen deficit during supramaximal all-out and constant intensity exercise. Med Sci Sports Exerc. 1995;27(2):255–63.CrossRefPubMed Gastin PB, Costill DL, Lawson DL, Krzeminski K, McConell GK. Accumulated oxygen deficit during supramaximal all-out and constant intensity exercise. Med Sci Sports Exerc. 1995;27(2):255–63.CrossRefPubMed
25.
go back to reference Dawson B, Fitzsimons M, Green S, Goodman C, Carey M, Cole K. Changes in performance, muscle metabolites, enzymes and fiber types after short sprint training. Eur J Appl Physiol Occup Physiol. 1998;78:163–9.CrossRefPubMed Dawson B, Fitzsimons M, Green S, Goodman C, Carey M, Cole K. Changes in performance, muscle metabolites, enzymes and fiber types after short sprint training. Eur J Appl Physiol Occup Physiol. 1998;78:163–9.CrossRefPubMed
26.
go back to reference Bogdanis GC, Nevill ME, Boobis LH, Lakomy HK. Contribution of phosphocreatine and aerobic metabolism to energy supply during repeated sprint exercise. J Appl Physiol. 1996;80(3):876–84.PubMed Bogdanis GC, Nevill ME, Boobis LH, Lakomy HK. Contribution of phosphocreatine and aerobic metabolism to energy supply during repeated sprint exercise. J Appl Physiol. 1996;80(3):876–84.PubMed
27.
go back to reference Bogdanis GC, Nevill ME, Boobis LH, Lakomy HK, Spencer M, Bishop D, et al. Physiological and metabolic responses of repeated-sprint activities: specific to field-based team sports. Sports Med. 2005;35(12):1025–44.CrossRef Bogdanis GC, Nevill ME, Boobis LH, Lakomy HK, Spencer M, Bishop D, et al. Physiological and metabolic responses of repeated-sprint activities: specific to field-based team sports. Sports Med. 2005;35(12):1025–44.CrossRef
28.
go back to reference Greenhaff PL, Campbell-O’Sullivan SP, Constantin-Teodosiu D, Poucher SM, Roberts PA, Timmons JA. An acetyl group deficit limits mitochondrial ATP production at the onset of exercise. Biochem Soc Trans. 2002;30(2):275–80.CrossRefPubMed Greenhaff PL, Campbell-O’Sullivan SP, Constantin-Teodosiu D, Poucher SM, Roberts PA, Timmons JA. An acetyl group deficit limits mitochondrial ATP production at the onset of exercise. Biochem Soc Trans. 2002;30(2):275–80.CrossRefPubMed
29.
go back to reference Fox EL, Mathews DK. Interval training: conditioning for sports and general fitness. Philadelphia: W. B. Saunders; 1974. Fox EL, Mathews DK. Interval training: conditioning for sports and general fitness. Philadelphia: W. B. Saunders; 1974.
30.
go back to reference Gaitanos GC, Williams C C, Boobis LH, Brooks S. Human muscle metabolism during intermittent maximal exercise. J Appl Physiol. 1993;75:712–19.PubMed Gaitanos GC, Williams C C, Boobis LH, Brooks S. Human muscle metabolism during intermittent maximal exercise. J Appl Physiol. 1993;75:712–19.PubMed
31.
go back to reference Wasserman K, Hansen JE, Sue DY, Whipp BJ, Casaburi R. Principles of exercise testing and interpretation. Philadelphia: Lea & Febiger; 1994. Wasserman K, Hansen JE, Sue DY, Whipp BJ, Casaburi R. Principles of exercise testing and interpretation. Philadelphia: Lea & Febiger; 1994.
32.
go back to reference Medbo JI, Burgers S. Effect of training on the anaerobic capacity. Med Sci Sports Exerc. 1990;22(4):501–7.PubMed Medbo JI, Burgers S. Effect of training on the anaerobic capacity. Med Sci Sports Exerc. 1990;22(4):501–7.PubMed
33.
go back to reference Ziemann E, Grzywacz T, Łuszczyk M, Laskowski R, Olek RA, Gibson AL. Aerobic and anaerobic changes with high-intensity interval training in active college-aged men. J Strength Cond Res. 2011;25(4):1104–12.CrossRefPubMed Ziemann E, Grzywacz T, Łuszczyk M, Laskowski R, Olek RA, Gibson AL. Aerobic and anaerobic changes with high-intensity interval training in active college-aged men. J Strength Cond Res. 2011;25(4):1104–12.CrossRefPubMed
34.
go back to reference Nevill ME, Holmyard DJ, Hall GM, et al. Growth hormone responses to treadmill sprinting in sprint- and endurance-trained athletes. Eur J Appl Physiol Occup Physiol. 1996;72(5–6):460–7.CrossRefPubMed Nevill ME, Holmyard DJ, Hall GM, et al. Growth hormone responses to treadmill sprinting in sprint- and endurance-trained athletes. Eur J Appl Physiol Occup Physiol. 1996;72(5–6):460–7.CrossRefPubMed
35.
go back to reference D'Hondt E, Deforche B, Vaeyens R, Vandorpe B, Vandendriessche J, Pion J, et al. Gross motor coordination in relation to weight status and age in 5- to 12-year-old boys and girls: a cross-sectional study. Int J Pediatr Obes. 2011;6:556–64.CrossRef D'Hondt E, Deforche B, Vaeyens R, Vandorpe B, Vandendriessche J, Pion J, et al. Gross motor coordination in relation to weight status and age in 5- to 12-year-old boys and girls: a cross-sectional study. Int J Pediatr Obes. 2011;6:556–64.CrossRef
36.
go back to reference Maffiuletti NA, Ratel S, Sartorio A, Vincent M. The impact of obesity on in vivo human skeletal muscle function. Curr Obes Rep. 2013;2:251–60.CrossRef Maffiuletti NA, Ratel S, Sartorio A, Vincent M. The impact of obesity on in vivo human skeletal muscle function. Curr Obes Rep. 2013;2:251–60.CrossRef
Metadata
Title
Effects of High-Intensity Training on Anaerobic and Aerobic Contributions to Total Energy Release During Repeated Supramaximal Exercise in Obese Adults
Authors
Georges Jabbour
Horia-Daniel Iancu
Anne Paulin
Publication date
01-12-2015
Publisher
Springer International Publishing
Published in
Sports Medicine - Open / Issue 1/2015
Print ISSN: 2199-1170
Electronic ISSN: 2198-9761
DOI
https://doi.org/10.1186/s40798-015-0035-7

Other articles of this Issue 1/2015

Sports Medicine - Open 1/2015 Go to the issue