Skip to main content
Top
Published in: Sports Medicine - Open 1/2015

Open Access 01-12-2015 | Review Article

A tutorial on oxidative stress and redox signaling with application to exercise and sedentariness

Authors: Robert Buresh, Kris Berg

Published in: Sports Medicine - Open | Issue 1/2015

Login to get access

Abstract

Oxidative stress has been shown to play a role in the etiology of several chronic diseases, including cardiovascular disease, diabetes mellitus, and cancer. Free radicals and, most prominently, the superoxide radical, result from oxidative metabolism and several enzyme-catalyzed reactions, and endogenous cellular antioxidants dismutate many reactive oxygen species (ROS). Under certain conditions, ROS production can outpace dismutation (e.g., long-term sedentariness and positive energy balance) and the result is oxidative stress, with proteins, lipids, and DNA the most common targets of radicals. However, the molecules that contribute to oxidative stress also appear to participate in vital cell signaling activity that supports health and stimulates favorable adaptations to exercise training, such that inhibiting ROS formation prevents common adaptations to training. Furthermore, researchers have recently suggested that some proteins are not as readily formed when the redox state of the cell is insufficiently oxidative. Exercise training appears to optimize the redox environment by dramatically enhancing the capacity of the cell to neutralize ROS while regularly creating oxidative environments in which membrane and secretory proteins can be synthesized. The role that exercise plays in enhancing management of ROS likely explains many of the associated health benefits.
Literature
2.
go back to reference Gutowski M, Kowalczyk S. A study of free radical chemistry: their role and pathophysiological significance. Acta Biochim Pol. 2013; 60(1):1–16.PubMed Gutowski M, Kowalczyk S. A study of free radical chemistry: their role and pathophysiological significance. Acta Biochim Pol. 2013; 60(1):1–16.PubMed
3.
go back to reference Pryor WA. Free radicals. New York: McGraw-Hill; 1966. Pryor WA. Free radicals. New York: McGraw-Hill; 1966.
4.
go back to reference Xu X, Arriaga EA. Qualitative determination of superoxide release at both sides of the mitochondrial inner membrane by capillary electrophoretic analysis of the oxidation products of triphenylphosphonium hydroethidine. Free Radic Biol Med. 2009; 46(7):905–13.CrossRefPubMedCentralPubMed Xu X, Arriaga EA. Qualitative determination of superoxide release at both sides of the mitochondrial inner membrane by capillary electrophoretic analysis of the oxidation products of triphenylphosphonium hydroethidine. Free Radic Biol Med. 2009; 46(7):905–13.CrossRefPubMedCentralPubMed
5.
go back to reference Muller FL, Liu Y, Van Remmen H. Complex III releases superoxide to both sides of the inner mitochondrial membrane. J Biol Chem. 2004; 279(47):49064–73.CrossRefPubMed Muller FL, Liu Y, Van Remmen H. Complex III releases superoxide to both sides of the inner mitochondrial membrane. J Biol Chem. 2004; 279(47):49064–73.CrossRefPubMed
6.
go back to reference St-Pierre J, Buckingham JA, Roebuck SJ, Brand MD. Topology of superoxide production from different sites in the mitochondrial electron transport chain. J Biol Chem. 2002; 277:44784–90.CrossRefPubMed St-Pierre J, Buckingham JA, Roebuck SJ, Brand MD. Topology of superoxide production from different sites in the mitochondrial electron transport chain. J Biol Chem. 2002; 277:44784–90.CrossRefPubMed
7.
go back to reference Saborido A, Naudi A, Portero-Otin M, Pamplona R, Megias A. Stanozolol treatment decreases the mitochondrial ROS generation and oxidative stress induced by acute exercise in rat skeletal muscle. J Appl Physiol. 2011; 110:661–9.CrossRefPubMed Saborido A, Naudi A, Portero-Otin M, Pamplona R, Megias A. Stanozolol treatment decreases the mitochondrial ROS generation and oxidative stress induced by acute exercise in rat skeletal muscle. J Appl Physiol. 2011; 110:661–9.CrossRefPubMed
8.
go back to reference Gaitanos GC, Williams C, Boobis LH, Brooks S. Human muscle metabolism during intermittent maximal exercise. J Appl Physiol. 1993; 75:712–19.PubMed Gaitanos GC, Williams C, Boobis LH, Brooks S. Human muscle metabolism during intermittent maximal exercise. J Appl Physiol. 1993; 75:712–19.PubMed
9.
go back to reference Corbi G, Conti V, Russomanno G, Longobardi G, Furgi G, Filippelli A, Ferrara N. Adrenergic signaling and oxidative stress—a role for sirtuins? Front Physiol. 2013; 4:324–324. doi:10.3389/fphys.2013.00324.CrossRefPubMedCentralPubMed Corbi G, Conti V, Russomanno G, Longobardi G, Furgi G, Filippelli A, Ferrara N. Adrenergic signaling and oxidative stress—a role for sirtuins? Front Physiol. 2013; 4:324–324. doi:10.3389/fphys.2013.00324.CrossRefPubMedCentralPubMed
10.
go back to reference Kang SW, Chae HZ, Seo MS, Kim K, Baines IC, Rhee SG. Mammalian peroxiredoxin isoforms can reduce hydrogen peroxide generated in response to growth factors and tumor necrosis factor-a. J Biol Chem. 1998; 273:6297–302.CrossRefPubMed Kang SW, Chae HZ, Seo MS, Kim K, Baines IC, Rhee SG. Mammalian peroxiredoxin isoforms can reduce hydrogen peroxide generated in response to growth factors and tumor necrosis factor-a. J Biol Chem. 1998; 273:6297–302.CrossRefPubMed
11.
go back to reference Tao L, Gao E, Bryan NS, Qu Y, Liu HR, Hu A, et al. Cardioprotective effects of thioredoxin in myocardial ischemia and reperfusion: role of S-nitrosation. Proc Natl Acad Sci U S A. 2004; 101:11471–6.CrossRefPubMedCentralPubMed Tao L, Gao E, Bryan NS, Qu Y, Liu HR, Hu A, et al. Cardioprotective effects of thioredoxin in myocardial ischemia and reperfusion: role of S-nitrosation. Proc Natl Acad Sci U S A. 2004; 101:11471–6.CrossRefPubMedCentralPubMed
12.
go back to reference Yamawaki H, Haendeler J, Berk BC. Thioredoxin: a key regulator of cardiovascular homeostasis. Circ Res. 2003; 93:1029–33.CrossRefPubMed Yamawaki H, Haendeler J, Berk BC. Thioredoxin: a key regulator of cardiovascular homeostasis. Circ Res. 2003; 93:1029–33.CrossRefPubMed
13.
go back to reference Lu SC. Regulation of hepatic glutathione synthesis: current concepts and controversies. FASEB J. 1999; 13(10):1169–83.PubMed Lu SC. Regulation of hepatic glutathione synthesis: current concepts and controversies. FASEB J. 1999; 13(10):1169–83.PubMed
14.
go back to reference Fu XJ, Peng YB, Hu YP, Shi YZ, Yao M, Zhang X. NADPH oxidase 1 and its derived reactive oxygen species mediated tissue injury and repair. Oxidative Med Cell Longev. 2014; 2014:282854. doi:10.1155/2014/282854.CrossRef Fu XJ, Peng YB, Hu YP, Shi YZ, Yao M, Zhang X. NADPH oxidase 1 and its derived reactive oxygen species mediated tissue injury and repair. Oxidative Med Cell Longev. 2014; 2014:282854. doi:10.1155/2014/282854.CrossRef
15.
go back to reference Halliwell B, Gutteridge J. Free radicals in biology and medicine. Oxford: Oxford University Press; 2007. Halliwell B, Gutteridge J. Free radicals in biology and medicine. Oxford: Oxford University Press; 2007.
16.
go back to reference Cherednichenko G, Zima AV, Feng W, Schaefer S, Blatter LA, Pessah IN. NADH oxidase activity of rat cardiac sarcoplasmic reticulum regulates calcium induced calcium release. Circ Res. 2004; 94:478–86.CrossRefPubMed Cherednichenko G, Zima AV, Feng W, Schaefer S, Blatter LA, Pessah IN. NADH oxidase activity of rat cardiac sarcoplasmic reticulum regulates calcium induced calcium release. Circ Res. 2004; 94:478–86.CrossRefPubMed
17.
go back to reference Xia R, Webb JA, Gnall LL, Cutler K, Abramson JJ. Skeletal muscle sarcoplasmic reticulum contains a NADH-dependent oxidase that generates superoxide. Am J Physiol Cell Physiol. 2003; 285:C215–21.CrossRefPubMed Xia R, Webb JA, Gnall LL, Cutler K, Abramson JJ. Skeletal muscle sarcoplasmic reticulum contains a NADH-dependent oxidase that generates superoxide. Am J Physiol Cell Physiol. 2003; 285:C215–21.CrossRefPubMed
18.
19.
go back to reference Espinosa A, Leiva A, Pena M, Muller M, Debandi A, Hidalgo C, et al. Myotube depolarization generates reactive oxygen species through NAD(P)H oxidase: ROS-elicited Ca 2+ stimulates ERK, CREB, early genes. J Cell Physiol. 2006; 209:379–88.CrossRefPubMed Espinosa A, Leiva A, Pena M, Muller M, Debandi A, Hidalgo C, et al. Myotube depolarization generates reactive oxygen species through NAD(P)H oxidase: ROS-elicited Ca 2+ stimulates ERK, CREB, early genes. J Cell Physiol. 2006; 209:379–88.CrossRefPubMed
20.
go back to reference Hidalgo C, Sanchez G, Barrientos G, Aracena-Parks P. A transverse tubule NADPH oxidase activity stimulates calcium release from isolated triads via ryanodine receptor type 1 S-glutathionylation. J Biol Chem. 2006; 281:26473–82.CrossRefPubMed Hidalgo C, Sanchez G, Barrientos G, Aracena-Parks P. A transverse tubule NADPH oxidase activity stimulates calcium release from isolated triads via ryanodine receptor type 1 S-glutathionylation. J Biol Chem. 2006; 281:26473–82.CrossRefPubMed
21.
go back to reference Zhao X, Bey EA, Wientjes FB, Cathcart MK. Cytosolic phospholipase A2 (cPLA2) regulation of human monocyte NADPH oxidase activity: cPLA2 affects translocation but not phosphorylation of p67(phox) and p47(phox). J Biol Chem. 2002; 277:25385–92.CrossRefPubMed Zhao X, Bey EA, Wientjes FB, Cathcart MK. Cytosolic phospholipase A2 (cPLA2) regulation of human monocyte NADPH oxidase activity: cPLA2 affects translocation but not phosphorylation of p67(phox) and p47(phox). J Biol Chem. 2002; 277:25385–92.CrossRefPubMed
22.
go back to reference Gong MC, Arbogast S, Guo Z, Mathenia J, Su W, Reid MB. Calcium independent phospholipase A2 modulates cytosolic oxidant activity and contractile function in murine skeletal muscle cells. J Appl Physiol. 2006; 100:399–405.CrossRefPubMed Gong MC, Arbogast S, Guo Z, Mathenia J, Su W, Reid MB. Calcium independent phospholipase A2 modulates cytosolic oxidant activity and contractile function in murine skeletal muscle cells. J Appl Physiol. 2006; 100:399–405.CrossRefPubMed
23.
go back to reference McCord JM. Oxygen-derived free radicals in postischemic tissue injury. N Engl J Med. 1985; 312:159–63.CrossRefPubMed McCord JM. Oxygen-derived free radicals in postischemic tissue injury. N Engl J Med. 1985; 312:159–63.CrossRefPubMed
24.
go back to reference Kalyanaraman B. Teaching the basics of redox biology to medical and graduate students: oxidants, antioxidants and disease mechanisms. Redox Biol. 2013; 1:244–57.CrossRefPubMedCentralPubMed Kalyanaraman B. Teaching the basics of redox biology to medical and graduate students: oxidants, antioxidants and disease mechanisms. Redox Biol. 2013; 1:244–57.CrossRefPubMedCentralPubMed
25.
go back to reference Radak Z, Asano K, Inoue M, Kizaki T, Oh-Ishi S, Suzuki K, et al. Superoxide dismutase derivative reduces oxidative damage in skeletal muscle of rats during exhaustive exercise. J Appl Physiol. 1995; 79:129–35.PubMed Radak Z, Asano K, Inoue M, Kizaki T, Oh-Ishi S, Suzuki K, et al. Superoxide dismutase derivative reduces oxidative damage in skeletal muscle of rats during exhaustive exercise. J Appl Physiol. 1995; 79:129–35.PubMed
26.
go back to reference Sindler AL, Delp MD, Reyes R, Wu G, Muller-Delp JM. Effects of ageing and exercise training on eNOS uncoupling in skeletal muscle resistance arterioles. J Physiol. 2009; 587:3885–97.CrossRefPubMedCentralPubMed Sindler AL, Delp MD, Reyes R, Wu G, Muller-Delp JM. Effects of ageing and exercise training on eNOS uncoupling in skeletal muscle resistance arterioles. J Physiol. 2009; 587:3885–97.CrossRefPubMedCentralPubMed
27.
go back to reference Vasquez-Vivar J, Kalyanaraman B, Martasek P, Hogg N, Masters BS, Karoui H, et al. Superoxide generation by endothelial nitric oxide synthase: the influence of cofactors. Proc Natl Acad Sci U S A. 1998; 95:9220–5.CrossRefPubMedCentralPubMed Vasquez-Vivar J, Kalyanaraman B, Martasek P, Hogg N, Masters BS, Karoui H, et al. Superoxide generation by endothelial nitric oxide synthase: the influence of cofactors. Proc Natl Acad Sci U S A. 1998; 95:9220–5.CrossRefPubMedCentralPubMed
28.
go back to reference Cosentino F, Luscher TF. Tetrahydrobiopterin and endothelial nitric oxide synthase activity. Cardiovasc Res. 1999; 43:274–8.CrossRefPubMed Cosentino F, Luscher TF. Tetrahydrobiopterin and endothelial nitric oxide synthase activity. Cardiovasc Res. 1999; 43:274–8.CrossRefPubMed
29.
go back to reference Bevers LM, Braam B, Post JA, van Zonneveld AJ, Rabelink TJ, Koomans HA, et al. Tetrahydrobiopterin, but not l -arginine, decreases NO synthase uncoupling in cells expressing high levels of endothelial NO synthase. Hypertension. 2006; 47(1):87–94.CrossRefPubMed Bevers LM, Braam B, Post JA, van Zonneveld AJ, Rabelink TJ, Koomans HA, et al. Tetrahydrobiopterin, but not l -arginine, decreases NO synthase uncoupling in cells expressing high levels of endothelial NO synthase. Hypertension. 2006; 47(1):87–94.CrossRefPubMed
32.
33.
go back to reference Bartosz G. Reactive oxygen species: destroyers or messengers? Biochem Pharmacol. 2009; 77:1303–15.CrossRefPubMed Bartosz G. Reactive oxygen species: destroyers or messengers? Biochem Pharmacol. 2009; 77:1303–15.CrossRefPubMed
34.
go back to reference Toledano MB, Planson A-G, Delaunay-Moisan A. Reining in H(2)O(2) for safe signaling. Cell. 2010; 140:454–6.CrossRefPubMed Toledano MB, Planson A-G, Delaunay-Moisan A. Reining in H(2)O(2) for safe signaling. Cell. 2010; 140:454–6.CrossRefPubMed
35.
go back to reference Rhee SG, Kang SW, Jeong W, Chang TS, Yang KS, Woo HA. Intracellular messenger function of hydrogen peroxide and its regulation by peroxiredoxins. Curr Opin Cell Biol. 2005; 17:183–9.CrossRefPubMed Rhee SG, Kang SW, Jeong W, Chang TS, Yang KS, Woo HA. Intracellular messenger function of hydrogen peroxide and its regulation by peroxiredoxins. Curr Opin Cell Biol. 2005; 17:183–9.CrossRefPubMed
37.
go back to reference Davies MJ. The oxidative environment and protein damage. Biochim Biophys Acta. 2005; 1703:93–109.CrossRefPubMed Davies MJ. The oxidative environment and protein damage. Biochim Biophys Acta. 2005; 1703:93–109.CrossRefPubMed
38.
go back to reference Reid MB. Nitric oxide, reactive oxygen species, and skeletal muscle contraction. Med Sci Sports Exerc. 2001; 33:371–6.CrossRefPubMed Reid MB. Nitric oxide, reactive oxygen species, and skeletal muscle contraction. Med Sci Sports Exerc. 2001; 33:371–6.CrossRefPubMed
39.
go back to reference Reid MB. Redox modulation of skeletal muscle contraction: what we know and what we don’t. J Appl Physiol. 2001; 90:724–31.CrossRefPubMed Reid MB. Redox modulation of skeletal muscle contraction: what we know and what we don’t. J Appl Physiol. 2001; 90:724–31.CrossRefPubMed
40.
go back to reference Reid MB, Khawli FA, Moody MR. Reactive oxygen in skeletal muscle. III. Contractility of unfatigued muscle. J Appl Physiol. 1993; 75:1081–7.PubMed Reid MB, Khawli FA, Moody MR. Reactive oxygen in skeletal muscle. III. Contractility of unfatigued muscle. J Appl Physiol. 1993; 75:1081–7.PubMed
41.
go back to reference Gomez-Cabrera MC, Domenech E, Romagnoli M, Arduini A, Borras C, Pallardo FV, et al. Oral administration of vitamin C decreases muscle mitochondrial biogenesis and hampers training-induced adaptations in endurance performance. Am J Clin Nutr. 2008; 87:142–9.PubMed Gomez-Cabrera MC, Domenech E, Romagnoli M, Arduini A, Borras C, Pallardo FV, et al. Oral administration of vitamin C decreases muscle mitochondrial biogenesis and hampers training-induced adaptations in endurance performance. Am J Clin Nutr. 2008; 87:142–9.PubMed
42.
go back to reference Ristow M, Zarse K, Oberbach A, Kloting N, Birringer M, Kiehntopf M, et al. Antioxidants prevent health-promoting effects of physical exercise in humans. Proc Natl Acad Sci U S A. 2009; 106:8665–70.CrossRefPubMedCentralPubMed Ristow M, Zarse K, Oberbach A, Kloting N, Birringer M, Kiehntopf M, et al. Antioxidants prevent health-promoting effects of physical exercise in humans. Proc Natl Acad Sci U S A. 2009; 106:8665–70.CrossRefPubMedCentralPubMed
43.
go back to reference Yfanti C, Akerstrom T, Nielsen S, Nielsen A, Mounier R, Mortensen OH, et al. Antioxidant supplementation does not alter endurance training adaptation. Med Sci Sports Exerc. 2010; 42:1388–95.CrossRefPubMed Yfanti C, Akerstrom T, Nielsen S, Nielsen A, Mounier R, Mortensen OH, et al. Antioxidant supplementation does not alter endurance training adaptation. Med Sci Sports Exerc. 2010; 42:1388–95.CrossRefPubMed
44.
go back to reference Janssen-Heininger YM, Mossman BT, Heintz NH, Forman HJ, Kalyanaraman B, Finkel T, et al. Redox-based regulation of signal transduction: principles, pitfalls, and promises. Free Radic Biol Med. 2008; 45:1–17.CrossRefPubMedCentralPubMed Janssen-Heininger YM, Mossman BT, Heintz NH, Forman HJ, Kalyanaraman B, Finkel T, et al. Redox-based regulation of signal transduction: principles, pitfalls, and promises. Free Radic Biol Med. 2008; 45:1–17.CrossRefPubMedCentralPubMed
46.
47.
go back to reference Grune T, Reinheckel T, Davies KJ. Degradation of oxidized proteins in mammalian cells. FASEB J. 1997; 11:526–34.PubMed Grune T, Reinheckel T, Davies KJ. Degradation of oxidized proteins in mammalian cells. FASEB J. 1997; 11:526–34.PubMed
48.
go back to reference Levine RL. Carbonyl modified proteins in cellular regulation, aging, and disease. Free Radic Biol Med. 2002; 32:790–6.CrossRefPubMed Levine RL. Carbonyl modified proteins in cellular regulation, aging, and disease. Free Radic Biol Med. 2002; 32:790–6.CrossRefPubMed
49.
go back to reference Mylonas C, Kouretas D. Lipid peroxidation and tissue damage. In Vivo. 1999; 1999(13):295–310. Mylonas C, Kouretas D. Lipid peroxidation and tissue damage. In Vivo. 1999; 1999(13):295–310.
50.
go back to reference Szabo C, Ohshima H. DNA damage induced by peroxynitrite: subsequent biological effects. Nitric Oxide. 1997; 1(5):373–85.CrossRefPubMed Szabo C, Ohshima H. DNA damage induced by peroxynitrite: subsequent biological effects. Nitric Oxide. 1997; 1(5):373–85.CrossRefPubMed
51.
go back to reference Burney S, Caulfield JL, Niles JC, Wishnok JS, Tannenbaum SR. The chemistry of DNA damage from nitric oxide and peroxynitrite. Mutat Res. 1998; 424:37–49.CrossRef Burney S, Caulfield JL, Niles JC, Wishnok JS, Tannenbaum SR. The chemistry of DNA damage from nitric oxide and peroxynitrite. Mutat Res. 1998; 424:37–49.CrossRef
52.
go back to reference Cooke MS, Evans MD, Dizdaroglu M, Lunec J. Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J. 2003; 17:1195–214.CrossRefPubMed Cooke MS, Evans MD, Dizdaroglu M, Lunec J. Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J. 2003; 17:1195–214.CrossRefPubMed
53.
go back to reference Di Meo S, Venditti P. Mitochondria in exercise-induced oxidative stress. Biol Signals Recept. 2001; 10:125–40.CrossRefPubMed Di Meo S, Venditti P. Mitochondria in exercise-induced oxidative stress. Biol Signals Recept. 2001; 10:125–40.CrossRefPubMed
54.
go back to reference Kavazis AN, Talbert EE, Smuder AJ, Hudson MB, Nelson WB, Powers SK. Mechanical ventilation induces diaphragmatic mitochondrial dysfunction and increased oxidant production. Free Radic Biol Med. 2009; 46:842–50.CrossRefPubMedCentralPubMed Kavazis AN, Talbert EE, Smuder AJ, Hudson MB, Nelson WB, Powers SK. Mechanical ventilation induces diaphragmatic mitochondrial dysfunction and increased oxidant production. Free Radic Biol Med. 2009; 46:842–50.CrossRefPubMedCentralPubMed
55.
go back to reference Herrero A, Barja G. ADP-regulation of mitochondrial free radical production is different with complex I- or complex II-linked substrates: implications for the exercise paradox and brain hypermetabolism. J Bioenerg Biomembr. 1997; 29:241–9.CrossRefPubMed Herrero A, Barja G. ADP-regulation of mitochondrial free radical production is different with complex I- or complex II-linked substrates: implications for the exercise paradox and brain hypermetabolism. J Bioenerg Biomembr. 1997; 29:241–9.CrossRefPubMed
56.
go back to reference Adhihetty PJ, Ljubicic V, Menzies KJ, Hood DA. Differential susceptibility of subsarcolemmal and intermyofibrillar mitochondria to apoptotic stimuli. Am J Physiol Cell Physiol. 2005; 289:C994–1001.CrossRefPubMed Adhihetty PJ, Ljubicic V, Menzies KJ, Hood DA. Differential susceptibility of subsarcolemmal and intermyofibrillar mitochondria to apoptotic stimuli. Am J Physiol Cell Physiol. 2005; 289:C994–1001.CrossRefPubMed
57.
go back to reference Kozlov AV, Szalay L, Umar F, Kropik K, Staniek K, Niedermuller H, et al. Skeletal muscles, heart, and lung are the main sources of oxygen radicals in old rats. Biochem Biophys Acta. 2005; 1740:382–9.PubMed Kozlov AV, Szalay L, Umar F, Kropik K, Staniek K, Niedermuller H, et al. Skeletal muscles, heart, and lung are the main sources of oxygen radicals in old rats. Biochem Biophys Acta. 2005; 1740:382–9.PubMed
58.
go back to reference Fisher-Wellman KH, Neufer PD. Linking mitochondrial bioenergetics to insulin resistance via redox biology. Trends Endocrinol Metab. 2012; 23(3):142–53.CrossRefPubMedCentralPubMed Fisher-Wellman KH, Neufer PD. Linking mitochondrial bioenergetics to insulin resistance via redox biology. Trends Endocrinol Metab. 2012; 23(3):142–53.CrossRefPubMedCentralPubMed
59.
go back to reference Radak Z, Chung HY, Goto S. Systemic adaptation to oxidative challenge induced by regular exercise. Free Radic Biol Med. 2008; 2008(44):153–9.CrossRef Radak Z, Chung HY, Goto S. Systemic adaptation to oxidative challenge induced by regular exercise. Free Radic Biol Med. 2008; 2008(44):153–9.CrossRef
60.
go back to reference Urso ML, Clarkson PM. Oxidative stress, exercise, and antioxidant supplementation. Toxicology. 2003; 2003(189):41–54.CrossRef Urso ML, Clarkson PM. Oxidative stress, exercise, and antioxidant supplementation. Toxicology. 2003; 2003(189):41–54.CrossRef
61.
go back to reference Nyberg M, Mortensen SP, Cabo H, Gomez-Cabrera MC, Vina J, Hellsten Y. Roles of sedentary aging and lifelong physical activity in exchange of glutathione across exercising human skeletal muscle. Free Radic Biol Med. 2014; 73:166–73.CrossRefPubMed Nyberg M, Mortensen SP, Cabo H, Gomez-Cabrera MC, Vina J, Hellsten Y. Roles of sedentary aging and lifelong physical activity in exchange of glutathione across exercising human skeletal muscle. Free Radic Biol Med. 2014; 73:166–73.CrossRefPubMed
62.
go back to reference Sen CK. Oxidants and antioxidants in exercise. J Appl Physiol. 1995; 79(3):675–86.PubMed Sen CK. Oxidants and antioxidants in exercise. J Appl Physiol. 1995; 79(3):675–86.PubMed
63.
go back to reference Jackson MJ, Papa S, Bolanos J, Bruckdorfer R, Carlsen H, Elliott RM, et al. Antioxidants, reactive oxygen and nitrogen species, gene induction and mitochondrial function. Mol Aspects Med. 2002; 23:209–85.CrossRefPubMed Jackson MJ, Papa S, Bolanos J, Bruckdorfer R, Carlsen H, Elliott RM, et al. Antioxidants, reactive oxygen and nitrogen species, gene induction and mitochondrial function. Mol Aspects Med. 2002; 23:209–85.CrossRefPubMed
64.
go back to reference Vasilaki A, Mansouri A, Remmen H, van der Meulen JH, Larkin L, Richardson AG, et al. Free radical generation by skeletal muscle of adult and old mice: effect of contractile activity. Aging Cell. 2006; 5:109–17.CrossRefPubMed Vasilaki A, Mansouri A, Remmen H, van der Meulen JH, Larkin L, Richardson AG, et al. Free radical generation by skeletal muscle of adult and old mice: effect of contractile activity. Aging Cell. 2006; 5:109–17.CrossRefPubMed
65.
go back to reference Teixeira-Lemos E, Nunes S, Teixeira F, Reis F. Regular physical exercise training assists in preventing type 2 diabetes development: focus on its antioxidant and anti-inflammatory properties. Cardiovasc Diabetol. 2011;10:12. doi:10.1186/1475-2840-10-12. http://www.cardiab.com/content/10/1/12. Teixeira-Lemos E, Nunes S, Teixeira F, Reis F. Regular physical exercise training assists in preventing type 2 diabetes development: focus on its antioxidant and anti-inflammatory properties. Cardiovasc Diabetol. 2011;10:12. doi:10.1186/1475-2840-10-12. http://​www.​cardiab.​com/​content/​10/​1/​12.
68.
go back to reference Guarente L, Franklin H. Epstein lecture: sirtuins, aging, and medicine. N Engl J Med. 2011; 364:2235–44.CrossRefPubMed Guarente L, Franklin H. Epstein lecture: sirtuins, aging, and medicine. N Engl J Med. 2011; 364:2235–44.CrossRefPubMed
69.
go back to reference Navarro-Arevalo A, Canavate C, Sanchez-del-Pino MJ. Myocardial and skeletal muscle aging and changes in oxidative stress in relationship to rigorous exercise training. Mech Ageing Dev. 1999; 108:207–17.CrossRefPubMed Navarro-Arevalo A, Canavate C, Sanchez-del-Pino MJ. Myocardial and skeletal muscle aging and changes in oxidative stress in relationship to rigorous exercise training. Mech Ageing Dev. 1999; 108:207–17.CrossRefPubMed
70.
go back to reference Campbell PT, Gross MD, Potter JD, Schmitz KH, Duggan C, McTiernan A, et al. Effect of exercise on oxidative stress: a 12-month randomized, controlled trial. Med Sci Sports Exerc. 2010; 42:1448–53.CrossRefPubMedCentralPubMed Campbell PT, Gross MD, Potter JD, Schmitz KH, Duggan C, McTiernan A, et al. Effect of exercise on oxidative stress: a 12-month randomized, controlled trial. Med Sci Sports Exerc. 2010; 42:1448–53.CrossRefPubMedCentralPubMed
71.
go back to reference Nojima H, Watanabe H, Yamane K, Kitahara Y, Sekikawa K, Yamamoto H, et al. Effect of aerobic exercise training on oxidative stress in patients with type 2 diabetes mellitus. Metabolism. 2008; 57:170–6.CrossRefPubMed Nojima H, Watanabe H, Yamane K, Kitahara Y, Sekikawa K, Yamamoto H, et al. Effect of aerobic exercise training on oxidative stress in patients with type 2 diabetes mellitus. Metabolism. 2008; 57:170–6.CrossRefPubMed
72.
go back to reference Elosua R, Molina L, Fito M, Arquer A, Sanchez-Quesada JL, Covas MI, et al. Response of oxidative stress biomarkers to a 16-week aerobic physical activity program, and to acute physical activity, in healthy young men and women. Atherosclerosis. 2003; 167:327–34.CrossRefPubMed Elosua R, Molina L, Fito M, Arquer A, Sanchez-Quesada JL, Covas MI, et al. Response of oxidative stress biomarkers to a 16-week aerobic physical activity program, and to acute physical activity, in healthy young men and women. Atherosclerosis. 2003; 167:327–34.CrossRefPubMed
73.
go back to reference Falone S, Mirabilio A, Pennelli A, Cacchio M, Di Baldassarre A, Gallina S, et al. Differential impact of acute bout of exercise on redox- and oxidative damage-related profiles between untrained subjects and amateur runners. Physiol Res. 2010; 59:953–61.PubMed Falone S, Mirabilio A, Pennelli A, Cacchio M, Di Baldassarre A, Gallina S, et al. Differential impact of acute bout of exercise on redox- and oxidative damage-related profiles between untrained subjects and amateur runners. Physiol Res. 2010; 59:953–61.PubMed
74.
go back to reference Azizbeigi K, Azarbayiani MA, Peeri M, Agha-alinejad H, Stannard S. The effect of progressive resistance training on oxidative stress and antioxidant enzyme activity in erythrocytes in untrained men. Int J Sport Nutr Exerc Metab. 2013; 23:230–8.PubMed Azizbeigi K, Azarbayiani MA, Peeri M, Agha-alinejad H, Stannard S. The effect of progressive resistance training on oxidative stress and antioxidant enzyme activity in erythrocytes in untrained men. Int J Sport Nutr Exerc Metab. 2013; 23:230–8.PubMed
75.
go back to reference Metin G, Atukeren P, Alturfan AA, Gulyasar T, Kaya M, Gumustas MK. Lipid peroxidation, erythrocyte superoxide-dismutase activity and trace metals in young male footballers. Yonsei Med J. 2003; 44:979–86.CrossRefPubMed Metin G, Atukeren P, Alturfan AA, Gulyasar T, Kaya M, Gumustas MK. Lipid peroxidation, erythrocyte superoxide-dismutase activity and trace metals in young male footballers. Yonsei Med J. 2003; 44:979–86.CrossRefPubMed
76.
go back to reference Blache D, Lussier-Cacan S, Gagnon J, Leon AS, Rao DC, Skinner JS, et al. Effect of exercise training on in vitro LDL oxidation and free radical-induced hemolysis: the HERITAGE Family Study. Antioxid Redox Signal. 2007; 9:122–30. Blache D, Lussier-Cacan S, Gagnon J, Leon AS, Rao DC, Skinner JS, et al. Effect of exercise training on in vitro LDL oxidation and free radical-induced hemolysis: the HERITAGE Family Study. Antioxid Redox Signal. 2007; 9:122–30.
77.
go back to reference Masud MM, Fujimoto T, Miyake M, Watanuki S, Itoh M, Tashiro M. Redistribution of whole-body energy metabolism by exercise: a positron emission tomography study. Ann Nucl Med. 2009; 23:81–8.CrossRefPubMed Masud MM, Fujimoto T, Miyake M, Watanuki S, Itoh M, Tashiro M. Redistribution of whole-body energy metabolism by exercise: a positron emission tomography study. Ann Nucl Med. 2009; 23:81–8.CrossRefPubMed
78.
go back to reference Radak Z, Chung HY, Naito H, Takahashi R, Jung KJ, Kim HJ, et al. Age-associated increase in oxidative stress and nuclear factor kappaB activation are attenuated in rat liver by regular exercise. FASEB J. 2004; 18:749–50.PubMed Radak Z, Chung HY, Naito H, Takahashi R, Jung KJ, Kim HJ, et al. Age-associated increase in oxidative stress and nuclear factor kappaB activation are attenuated in rat liver by regular exercise. FASEB J. 2004; 18:749–50.PubMed
79.
go back to reference Barde YA. Trophic factors and neuronal survival. Neruon. 1989; 2:1525–34.CrossRef Barde YA. Trophic factors and neuronal survival. Neruon. 1989; 2:1525–34.CrossRef
80.
go back to reference Stranahan AM, Lee K, Martin B, Maudsley S, Golden E, Cutler RG, et al. Voluntary exercise and caloric restriction enhance hippocampal dendritic spine density and BDNF levels in diabetic mice. Hippocampus. 2009; 19:951–61.CrossRefPubMedCentralPubMed Stranahan AM, Lee K, Martin B, Maudsley S, Golden E, Cutler RG, et al. Voluntary exercise and caloric restriction enhance hippocampal dendritic spine density and BDNF levels in diabetic mice. Hippocampus. 2009; 19:951–61.CrossRefPubMedCentralPubMed
81.
go back to reference van Praag H, Kempermann G, Gage FH. Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat Neurosci. 1999; 2:266–70.CrossRefPubMed van Praag H, Kempermann G, Gage FH. Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat Neurosci. 1999; 2:266–70.CrossRefPubMed
82.
go back to reference Mattson MP, Maudsley S, Martin B. A neural signaling triumvirate that influences ageing and age-related disease: insulin/IGF-1. BDNF and Serotonin Ageing Res Rev. 2004; 3:445–64.CrossRef Mattson MP, Maudsley S, Martin B. A neural signaling triumvirate that influences ageing and age-related disease: insulin/IGF-1. BDNF and Serotonin Ageing Res Rev. 2004; 3:445–64.CrossRef
83.
go back to reference Mattson MP, Lovell MA, Furukawa K, Markesbery WR. Neurotrophic factors attenuate glutamate-induced accumulation of peroxides, elevation of intracellular Ca 2+ concentration, and neurotoxicity and increase antioxidant enzyme activities in hippocampal neurons. J Neurochem. 1995; 65:1740–51.CrossRefPubMed Mattson MP, Lovell MA, Furukawa K, Markesbery WR. Neurotrophic factors attenuate glutamate-induced accumulation of peroxides, elevation of intracellular Ca 2+ concentration, and neurotoxicity and increase antioxidant enzyme activities in hippocampal neurons. J Neurochem. 1995; 65:1740–51.CrossRefPubMed
84.
go back to reference Radak Z, Marton O, Nagy E, Koltai E, Goto S. The complex role of physical exercise and reactive oxygen species on the brain. J Sport Health Sci. 2013; 2:87–93.CrossRef Radak Z, Marton O, Nagy E, Koltai E, Goto S. The complex role of physical exercise and reactive oxygen species on the brain. J Sport Health Sci. 2013; 2:87–93.CrossRef
85.
go back to reference Marques-Aleixo I, Oliveira PJ, Moreira PI, Magalhaes J, Ascensao A. Physical exercise as a possible strategy for brain protection: evidence from mitochondrial-mediated mechanisms. Prog Neurobiol. 2012; 2012:149–62.CrossRef Marques-Aleixo I, Oliveira PJ, Moreira PI, Magalhaes J, Ascensao A. Physical exercise as a possible strategy for brain protection: evidence from mitochondrial-mediated mechanisms. Prog Neurobiol. 2012; 2012:149–62.CrossRef
86.
go back to reference Texel SJ, Mattson MP. Impaired adaptive cellular responses to oxidative stress and the pathogenesis of Alzheimer’s disease. Antioxid Redox Signal. 2011; 14(8):1519–34.CrossRefPubMedCentralPubMed Texel SJ, Mattson MP. Impaired adaptive cellular responses to oxidative stress and the pathogenesis of Alzheimer’s disease. Antioxid Redox Signal. 2011; 14(8):1519–34.CrossRefPubMedCentralPubMed
87.
go back to reference Rothman SM, Mattson MP. Activity-dependent, stress-responsive BDNF signaling and the quest for optimal brain health and resilience throughout the lifespan. Neuroscience. 2013; 239:228–40.CrossRefPubMedCentralPubMed Rothman SM, Mattson MP. Activity-dependent, stress-responsive BDNF signaling and the quest for optimal brain health and resilience throughout the lifespan. Neuroscience. 2013; 239:228–40.CrossRefPubMedCentralPubMed
88.
go back to reference Vasilaki A, McArdle F, Iwanejko LM, McArdle A. Adaptive responses of mouse skeletal muscle to contractile activity: the effect of age. Mech Ageing Dev. 2006; 127:830–9.CrossRefPubMed Vasilaki A, McArdle F, Iwanejko LM, McArdle A. Adaptive responses of mouse skeletal muscle to contractile activity: the effect of age. Mech Ageing Dev. 2006; 127:830–9.CrossRefPubMed
89.
go back to reference Cai D, Frantz JD, Tawa NE Jr, Melendez PA, Oh BC, Lidov HG, et al. IKKbeta/NF-kappaB activation causes severe muscle wasting in mice. Cell. 2004; 119:285–98.CrossRefPubMed Cai D, Frantz JD, Tawa NE Jr, Melendez PA, Oh BC, Lidov HG, et al. IKKbeta/NF-kappaB activation causes severe muscle wasting in mice. Cell. 2004; 119:285–98.CrossRefPubMed
90.
92.
go back to reference Drose S, Brandt U. Molecular mechanisms of superoxide production by the mitochondrial respiratory chain. Adv Exp Med Biol. 2012; 748:145–69.CrossRefPubMed Drose S, Brandt U. Molecular mechanisms of superoxide production by the mitochondrial respiratory chain. Adv Exp Med Biol. 2012; 748:145–69.CrossRefPubMed
94.
go back to reference Ron D, Harding HP. Protein-folding homeostasis in the endoplasmic reticulum and nutritional regulation. Cold Spring Harb Perspect Biol. 2012; 4:a013177. doi:10.1101/cshperspect.a013177.CrossRefPubMedCentralPubMed Ron D, Harding HP. Protein-folding homeostasis in the endoplasmic reticulum and nutritional regulation. Cold Spring Harb Perspect Biol. 2012; 4:a013177. doi:10.1101/cshperspect.a013177.CrossRefPubMedCentralPubMed
Metadata
Title
A tutorial on oxidative stress and redox signaling with application to exercise and sedentariness
Authors
Robert Buresh
Kris Berg
Publication date
01-12-2015
Publisher
Springer International Publishing
Published in
Sports Medicine - Open / Issue 1/2015
Print ISSN: 2199-1170
Electronic ISSN: 2198-9761
DOI
https://doi.org/10.1186/s40798-014-0003-7

Other articles of this Issue 1/2015

Sports Medicine - Open 1/2015 Go to the issue