Skip to main content
Top
Published in: Acta Neuropathologica Communications 1/2016

Open Access 01-12-2016 | Research

The retina as an early biomarker of neurodegeneration in a rotenone-induced model of Parkinson’s disease: evidence for a neuroprotective effect of rosiglitazone in the eye and brain

Authors: Eduardo Maria Normando, Benjamin Michael Davis, Lies De Groef, Shereen Nizari, Lisa A. Turner, Nivedita Ravindran, Milena Pahlitzsch, Jonathan Brenton, Giulia Malaguarnera, Li Guo, Satyanarayana Somavarapu, Maria Francesca Cordeiro

Published in: Acta Neuropathologica Communications | Issue 1/2016

Login to get access

Abstract

Parkinson’s Disease (PD) is the second most common neurodegenerative disease worldwide, affecting 1 % of the population over 65 years of age. Dopaminergic cell death in the substantia nigra and accumulation of Lewy bodies are the defining neuropathological hallmarks of the disease. Neuronal death and dysfunction have been reported in other central nervous system regions, including the retina. Symptoms of PD typically manifest only when more than 70 % of dopaminergic cells are lost, and the definitive diagnosis of PD can only be made histologically at post-mortem, with few biomarkers available.
In this study, a rotenone-induced rodent model of PD was employed to investigate retinal manifestations in PD and their usefulness in assessing the efficacy of a novel therapeutic intervention with a liposomal formulation of the PPAR-γ (Peroxisome proliferator-activated receptor gamma) agonist rosiglitazone.
Retinal assessment was performed using longitudinal in vivo imaging with DARC (detection of apoptosing retinal cells) and OCT (optical coherence tomography) technologies and revealed increased RGCs (Retinal Ganglion Cells) apoptosis and a transient swelling of the retinal layers at day 20 of the rotenone insult. Follow-up of this model demonstrated characteristic histological neurodegenerative changes in the substantia nigra and striatum by day 60, suggesting that retinal changes precede the “traditional” pathological manifestations of PD. The therapeutic effect of systemic administration of different formulations of rosiglitazone was then evaluated, both in the retina and the brain. Of all treatment regimen tested, sustained release administration of liposome-encapsulated rosiglitazone proved to be the most potent therapeutic strategy, as evidenced by its significant neuroprotective effect on retinal neurons at day 20, and on nigrostriatal neurons at day 60, provided convincing evidence for its potential as a treatment for PD.
Our results demonstrate significant retinal changes occurring in this model of PD. We show that rosiglitazone can efficiently protect retinal neurons from the rotenone insult, and that systemic administration of liposome-encapsulated rosiglitazone has an enhanced neuroprotective effect on the retina and CNS (Central Nervous System). To our knowledge, this is the first in vivo evidence of RGCs loss and early retinal thickness alterations in a PD model. Together, these findings suggest that retinal changes may be a good surrogate biomarker for PD, which may be used to assess new treatments both experimentally and clinically.
Literature
6.
go back to reference Alam M, Schmidt WJ. Rotenone destroys dopaminergic neurons and induces parkinsonian symptoms in rats. Behav Brain Res. 2002;136:317–24.CrossRefPubMed Alam M, Schmidt WJ. Rotenone destroys dopaminergic neurons and induces parkinsonian symptoms in rats. Behav Brain Res. 2002;136:317–24.CrossRefPubMed
7.
go back to reference Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV, Greenamyre JT. Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat Neurosci. 2000;3:1301–6. doi:10.1038/81834.CrossRefPubMed Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV, Greenamyre JT. Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat Neurosci. 2000;3:1301–6. doi:10.​1038/​81834.CrossRefPubMed
11.
go back to reference Adam CR, Shrier E, Ding Y, Glazman S, Bodis-Wollner I. Correlation of inner retinal thickness evaluated by spectral-domain optical coherence tomography and contrast sensitivity in Parkinson disease. J Neuroophthalmol. 2013;33:137–42. doi:10.1097/WNO.0b013e31828c4e1a.CrossRefPubMed Adam CR, Shrier E, Ding Y, Glazman S, Bodis-Wollner I. Correlation of inner retinal thickness evaluated by spectral-domain optical coherence tomography and contrast sensitivity in Parkinson disease. J Neuroophthalmol. 2013;33:137–42. doi:10.​1097/​WNO.​0b013e31828c4e1a​.CrossRefPubMed
13.
go back to reference Jimenez B, Ascaso FJ, Cristobal JA, Lopez del Val J. Development of a prediction formula of Parkinson disease severity by optical coherence tomography. Mov Disord. 2014;29:68–74. doi:10.1002/mds.25747.CrossRefPubMed Jimenez B, Ascaso FJ, Cristobal JA, Lopez del Val J. Development of a prediction formula of Parkinson disease severity by optical coherence tomography. Mov Disord. 2014;29:68–74. doi:10.​1002/​mds.​25747.CrossRefPubMed
16.
go back to reference Sartucci F, Orlandi G, Lucetti C, Bonuccelli U, Murri L, Orsini C, Porciatti V. Changes in pattern electroretinograms to equiluminant red-green and blue-yellow gratings in patients with early Parkinson’s disease. J Clin Neurophysiol. 2003;20:375–81.CrossRef Sartucci F, Orlandi G, Lucetti C, Bonuccelli U, Murri L, Orsini C, Porciatti V. Changes in pattern electroretinograms to equiluminant red-green and blue-yellow gratings in patients with early Parkinson’s disease. J Clin Neurophysiol. 2003;20:375–81.CrossRef
17.
go back to reference Cordeiro MF. DARC: a new method for detecting progressive neuronal death. Eye. 2007;21:S15–7.CrossRef Cordeiro MF. DARC: a new method for detecting progressive neuronal death. Eye. 2007;21:S15–7.CrossRef
19.
go back to reference Carta AR. PPAR-gamma: therapeutic prospects in Parkinson’s disease. Curr Drug Targets. 2013;14:743–51.CrossRefPubMed Carta AR. PPAR-gamma: therapeutic prospects in Parkinson’s disease. Curr Drug Targets. 2013;14:743–51.CrossRefPubMed
20.
go back to reference Carta AR, Frau L, Pisanu A, Wardas J, Spiga S, Carboni E. Rosiglitazone decreases peroxisome proliferator receptor-gamma levels in microglia and inhibits TNF-alpha production: new evidences on neuroprotection in a progressive Parkinson’s disease model. Neuroscience. 2011;194:250–61.CrossRefPubMed Carta AR, Frau L, Pisanu A, Wardas J, Spiga S, Carboni E. Rosiglitazone decreases peroxisome proliferator receptor-gamma levels in microglia and inhibits TNF-alpha production: new evidences on neuroprotection in a progressive Parkinson’s disease model. Neuroscience. 2011;194:250–61.CrossRefPubMed
23.
go back to reference He X, Feng L, Meng H, Wang X, Liu S. Rosiglitazone protects dopaminergic neurons against lipopolysaccharide-induced neurotoxicity through inhibition of microglia activation. Int J Neurosci. 2012;122:532–40.CrossRefPubMed He X, Feng L, Meng H, Wang X, Liu S. Rosiglitazone protects dopaminergic neurons against lipopolysaccharide-induced neurotoxicity through inhibition of microglia activation. Int J Neurosci. 2012;122:532–40.CrossRefPubMed
24.
go back to reference Lee EY, Lee JE, Park JH, Shin IC, Koh HC. Rosiglitazone, a PPAR-gamma agonist, protects against striatal dopaminergic neurodegeneration induced by 6-OHDA lesions in the substantia nigra of rats. Toxicol Lett. 2012;213:332–44.CrossRefPubMed Lee EY, Lee JE, Park JH, Shin IC, Koh HC. Rosiglitazone, a PPAR-gamma agonist, protects against striatal dopaminergic neurodegeneration induced by 6-OHDA lesions in the substantia nigra of rats. Toxicol Lett. 2012;213:332–44.CrossRefPubMed
31.
go back to reference Mayer LD, Hope MJ, Cullis PR. Vesicles of variable sizes produced by a rapid extrusion procedure. Biochim Biophys Acta. 1986;858:161–8.CrossRefPubMed Mayer LD, Hope MJ, Cullis PR. Vesicles of variable sizes produced by a rapid extrusion procedure. Biochim Biophys Acta. 1986;858:161–8.CrossRefPubMed
36.
go back to reference Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9:676–82. doi:10.1038/nmeth.2019.CrossRefPubMed Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9:676–82. doi:10.​1038/​nmeth.​2019.CrossRefPubMed
37.
go back to reference Burke RE, Cadet JL, Kent JD, Karanas AL, Jackson-Lewis V. An assessment of the validity of densitometric measures of striatal tyrosine hydroxylase-positive fibers: relationship to apomorphine-induced rotations in 6-hydroxydopamine lesioned rats. J Neurosci Methods. 1990;35:63–73.CrossRefPubMed Burke RE, Cadet JL, Kent JD, Karanas AL, Jackson-Lewis V. An assessment of the validity of densitometric measures of striatal tyrosine hydroxylase-positive fibers: relationship to apomorphine-induced rotations in 6-hydroxydopamine lesioned rats. J Neurosci Methods. 1990;35:63–73.CrossRefPubMed
39.
go back to reference Zhang Y, Granholm AC, Huh K, Shan L, Diaz-Ruiz O, Malik N, Olson L, Hoffer BJ, Lupica CR, Hoffman AF, et al. PTEN deletion enhances survival, neurite outgrowth and function of dopamine neuron grafts to MitoPark mice. Brain. 2012;135:2736–49. doi:10.1093/brain/aws196.CrossRefPubMedPubMedCentral Zhang Y, Granholm AC, Huh K, Shan L, Diaz-Ruiz O, Malik N, Olson L, Hoffer BJ, Lupica CR, Hoffman AF, et al. PTEN deletion enhances survival, neurite outgrowth and function of dopamine neuron grafts to MitoPark mice. Brain. 2012;135:2736–49. doi:10.​1093/​brain/​aws196.CrossRefPubMedPubMedCentral
40.
go back to reference Schmidt WJ, Alam M. Controversies on new animal models of Parkinson’s disease pro and con: the rotenone model of Parkinson’s disease (PD). J Neural Transm Suppl. 2006:273–276 Schmidt WJ, Alam M. Controversies on new animal models of Parkinson’s disease pro and con: the rotenone model of Parkinson’s disease (PD). J Neural Transm Suppl. 2006:273–276
41.
go back to reference Oishi K, Tomita T, Itoh N, Ohkura N. PPARγ activation induces acute PAI-1 gene expression in the liver but not in adipose tissues of diabetic model mice. Thromb Res. 2011;128:e81–5.CrossRefPubMed Oishi K, Tomita T, Itoh N, Ohkura N. PPARγ activation induces acute PAI-1 gene expression in the liver but not in adipose tissues of diabetic model mice. Thromb Res. 2011;128:e81–5.CrossRefPubMed
45.
go back to reference Han G, Casson RJ, Chidlow G, Wood JP. The mitochondrial complex I inhibitor rotenone induces endoplasmic reticulum stress and activation of GSK-3beta in cultured rat retinal cells. Invest Ophthalmol Vis Sci. 2014;55:5616–28. doi:10.1167/iovs.14-14371.CrossRefPubMed Han G, Casson RJ, Chidlow G, Wood JP. The mitochondrial complex I inhibitor rotenone induces endoplasmic reticulum stress and activation of GSK-3beta in cultured rat retinal cells. Invest Ophthalmol Vis Sci. 2014;55:5616–28. doi:10.​1167/​iovs.​14-14371.CrossRefPubMed
46.
go back to reference Kamalden TA, Ji D, Osborne NN. Rotenone-induced death of RGC-5 cells is caspase independent, involves the JNK and p38 pathways and is attenuated by specific green tea flavonoids. Neurochem Res. 2012;37:1091–101. doi:10.1007/s11064-012-0713-5.CrossRefPubMed Kamalden TA, Ji D, Osborne NN. Rotenone-induced death of RGC-5 cells is caspase independent, involves the JNK and p38 pathways and is attenuated by specific green tea flavonoids. Neurochem Res. 2012;37:1091–101. doi:10.​1007/​s11064-012-0713-5.CrossRefPubMed
47.
48.
go back to reference Ulbrich F, Lerach T, Biermann J, Kaufmann KB, Lagreze WA, Buerkle H, Loop T, Goebel U. Argon mediates protection by Interleukin-8 suppression via a TLR2/TLR4/STAT3/NF-kappaB pathway in a model of apoptosis in neuroblastoma cells in-vitro and following ischemia-reperfusion injury in rat retina in-vivo. J Neurochem. 2016; Doi 10.1111/jnc.13662 Ulbrich F, Lerach T, Biermann J, Kaufmann KB, Lagreze WA, Buerkle H, Loop T, Goebel U. Argon mediates protection by Interleukin-8 suppression via a TLR2/TLR4/STAT3/NF-kappaB pathway in a model of apoptosis in neuroblastoma cells in-vitro and following ischemia-reperfusion injury in rat retina in-vivo. J Neurochem. 2016; Doi 10.​1111/​jnc.​13662
52.
go back to reference London A, Benhar I, Schwartz M. The retina as a window to the brain-from eye research to CNS disorders. Nat Rev Neurol. 2013;9:44–53.CrossRefPubMed London A, Benhar I, Schwartz M. The retina as a window to the brain-from eye research to CNS disorders. Nat Rev Neurol. 2013;9:44–53.CrossRefPubMed
55.
go back to reference Weinreb RN, Friedman DS, Fechtner RD, Cioffi GA, Coleman AL, Girkin CA, Liebmann JM, Singh K, Wilson MR, Wilson R, et al. Risk assessment in the management of patients with ocular hypertension. Am J Ophthalmol. 2004;138:458–67. doi:10.1016/j.ajo.2004.04.054.CrossRefPubMed Weinreb RN, Friedman DS, Fechtner RD, Cioffi GA, Coleman AL, Girkin CA, Liebmann JM, Singh K, Wilson MR, Wilson R, et al. Risk assessment in the management of patients with ocular hypertension. Am J Ophthalmol. 2004;138:458–67. doi:10.​1016/​j.​ajo.​2004.​04.​054.CrossRefPubMed
57.
go back to reference Chen YY, Chen G, Fan Z, Luo J, Ke ZJ. GSK3beta and endoplasmic reticulum stress mediate rotenone-induced death of SK-N-MC neuroblastoma cells. Biochem Pharmacol. 2008;76(1):128-38. doi: 10.1016/j.bcp.2008.04.010. Epub 2008 Apr 29. Chen YY, Chen G, Fan Z, Luo J, Ke ZJ. GSK3beta and endoplasmic reticulum stress mediate rotenone-induced death of SK-N-MC neuroblastoma cells. Biochem Pharmacol. 2008;76(1):128-38. doi: 10.​1016/​j.​bcp.​2008.​04.​010. Epub 2008 Apr 29.
58.
go back to reference Zhang X, Jones D, Gonzalez-Lima F. Neurodegeneration produced by rotenone in the mouse retina: a potential model to investigate environmental pesticide contributions to neurodegenerative diseases. J Toxicol Environ Health A. 2006;69:1681–97. doi:10.1080/15287390600630203.CrossRefPubMed Zhang X, Jones D, Gonzalez-Lima F. Neurodegeneration produced by rotenone in the mouse retina: a potential model to investigate environmental pesticide contributions to neurodegenerative diseases. J Toxicol Environ Health A. 2006;69:1681–97. doi:10.​1080/​1528739060063020​3.CrossRefPubMed
59.
go back to reference Davies SP, Reddy H, Caivano M, Cohen P. Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem J. 2000;351:95–105.CrossRefPubMedPubMedCentral Davies SP, Reddy H, Caivano M, Cohen P. Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem J. 2000;351:95–105.CrossRefPubMedPubMedCentral
61.
go back to reference Barboni P, Carbonelli M, Savini G, Ramos Cdo V, Carta A, Berezovsky A, Salomao SR, Carelli V, Sadun AA. Natural history of Leber’s hereditary optic neuropathy: longitudinal analysis of the retinal nerve fiber layer by optical coherence tomography. Ophthalmology. 2010;117:623–7. doi:10.1016/j.ophtha.2009.07.026.CrossRefPubMed Barboni P, Carbonelli M, Savini G, Ramos Cdo V, Carta A, Berezovsky A, Salomao SR, Carelli V, Sadun AA. Natural history of Leber’s hereditary optic neuropathy: longitudinal analysis of the retinal nerve fiber layer by optical coherence tomography. Ophthalmology. 2010;117:623–7. doi:10.​1016/​j.​ophtha.​2009.​07.​026.CrossRefPubMed
62.
go back to reference Barboni P, Savini G, Feuer WJ, Budenz DL, Carbonelli M, Chicani F, Ramos Cdo V, Salomao SR, Negri AD, Parisi V, et al. Retinal nerve fiber layer thickness variability in Leber hereditary optic neuropathy carriers. Eur J Ophthalmol. 2012;22:985–91. doi:10.5301/ejo.5000154.CrossRefPubMed Barboni P, Savini G, Feuer WJ, Budenz DL, Carbonelli M, Chicani F, Ramos Cdo V, Salomao SR, Negri AD, Parisi V, et al. Retinal nerve fiber layer thickness variability in Leber hereditary optic neuropathy carriers. Eur J Ophthalmol. 2012;22:985–91. doi:10.​5301/​ejo.​5000154.CrossRefPubMed
63.
go back to reference Savini G, Barboni P, Valentino ML, Montagna P, Cortelli P, De Negri AM, Sadun F, Bianchi S, Longanesi L, Zanini M, et al. Retinal nerve fiber layer evaluation by optical coherence tomography in unaffected carriers with Leber’s hereditary optic neuropathy mutations. Ophthalmology. 2005;112:127–31. doi:10.1016/j.ophtha.2004.09.033.CrossRefPubMed Savini G, Barboni P, Valentino ML, Montagna P, Cortelli P, De Negri AM, Sadun F, Bianchi S, Longanesi L, Zanini M, et al. Retinal nerve fiber layer evaluation by optical coherence tomography in unaffected carriers with Leber’s hereditary optic neuropathy mutations. Ophthalmology. 2005;112:127–31. doi:10.​1016/​j.​ophtha.​2004.​09.​033.CrossRefPubMed
64.
go back to reference Hoang QV, Linsenmeier RA, Chung CK, Curcio CA. Photoreceptor inner segments in monkey and human retina: mitochondrial density, optics, and regional variation. Vis Neurosci. 2002;19:395–407.CrossRefPubMed Hoang QV, Linsenmeier RA, Chung CK, Curcio CA. Photoreceptor inner segments in monkey and human retina: mitochondrial density, optics, and regional variation. Vis Neurosci. 2002;19:395–407.CrossRefPubMed
66.
go back to reference Garcia-Martin E, Rodriguez-Mena D, Satue M, Almarcegui C, Dolz I, Alarcia R, Seral M, Polo V, Larrosa JM, Pablo LE. Electrophysiology and optical coherence tomography to evaluate Parkinson disease severity. Invest Ophthalmol Vis Sci. 2014;55:696–705. doi:10.1167/iovs.13-13062.CrossRefPubMed Garcia-Martin E, Rodriguez-Mena D, Satue M, Almarcegui C, Dolz I, Alarcia R, Seral M, Polo V, Larrosa JM, Pablo LE. Electrophysiology and optical coherence tomography to evaluate Parkinson disease severity. Invest Ophthalmol Vis Sci. 2014;55:696–705. doi:10.​1167/​iovs.​13-13062.CrossRefPubMed
67.
go back to reference Mailankody P, Battu R, Khanna A, Lenka A, Yadav R, Pal PK. Optical coherence tomography as a tool to evaluate retinal changes in Parkinson’s disease. Parkinsonism Relat Disord. 2015;21:1164–9.CrossRefPubMed Mailankody P, Battu R, Khanna A, Lenka A, Yadav R, Pal PK. Optical coherence tomography as a tool to evaluate retinal changes in Parkinson’s disease. Parkinsonism Relat Disord. 2015;21:1164–9.CrossRefPubMed
69.
go back to reference Cuartero MI, Ballesteros I, Moraga A, Nombela F, Vivancos J, Hamilton JA, Corbi AL, Lizasoain I, Moro MA. N2 neutrophils, novel players in brain inflammation after stroke: modulation by the PPARgamma agonist rosiglitazone. Stroke. 2013;44:3498–508. doi:10.1161/STROKEAHA.113.002470.CrossRefPubMed Cuartero MI, Ballesteros I, Moraga A, Nombela F, Vivancos J, Hamilton JA, Corbi AL, Lizasoain I, Moro MA. N2 neutrophils, novel players in brain inflammation after stroke: modulation by the PPARgamma agonist rosiglitazone. Stroke. 2013;44:3498–508. doi:10.​1161/​STROKEAHA.​113.​002470.CrossRefPubMed
71.
go back to reference Davis BM, Normando EM, Guo L, Turner LA, Nizari S, O’Shea P, Moss SE, Somavarapu S, Cordeiro MF. Topical delivery of Avastin to the posterior segment of the eye in vivo using annexin A5-associated liposomes. Small. 2014;10:1575–84. doi:10.1002/smll.201303433.CrossRefPubMed Davis BM, Normando EM, Guo L, Turner LA, Nizari S, O’Shea P, Moss SE, Somavarapu S, Cordeiro MF. Topical delivery of Avastin to the posterior segment of the eye in vivo using annexin A5-associated liposomes. Small. 2014;10:1575–84. doi:10.​1002/​smll.​201303433.CrossRefPubMed
72.
go back to reference Mallick S, Choi JS. Liposomes: versatile and biocompatible nanovesicles for efficient biomolecules delivery. J Nanosci Nanotechnol. 2014;14:755–65.CrossRefPubMed Mallick S, Choi JS. Liposomes: versatile and biocompatible nanovesicles for efficient biomolecules delivery. J Nanosci Nanotechnol. 2014;14:755–65.CrossRefPubMed
73.
go back to reference Kuo YC, Chou PR. Neuroprotection against degeneration of SK-N-MC cells using neuron growth factor-encapsulated liposomes with surface cereport and transferrin. J Pharm Sci. 2014; Doi: 10.1002/jps.24081 Kuo YC, Chou PR. Neuroprotection against degeneration of SK-N-MC cells using neuron growth factor-encapsulated liposomes with surface cereport and transferrin. J Pharm Sci. 2014; Doi: 10.​1002/​jps.​24081
76.
go back to reference Aabdallah DM, Eid NI. Possible neuroprotective effects of lecithin and alpha-tocopherol alone or in combination against ischemia/reperfusion insult in rat brain. J Biochem Mol Toxicol. 2004;18:273–8. doi:10.1002/jbt.20037.CrossRefPubMed Aabdallah DM, Eid NI. Possible neuroprotective effects of lecithin and alpha-tocopherol alone or in combination against ischemia/reperfusion insult in rat brain. J Biochem Mol Toxicol. 2004;18:273–8. doi:10.​1002/​jbt.​20037.CrossRefPubMed
77.
go back to reference Tokes T, Eros G, Bebes A, Hartmann P, Varszegi S, Varga G, Kaszaki J, Gulya K, Ghyczy M, Boros M. Protective effects of a phosphatidylcholine-enriched diet in lipopolysaccharide-induced experimental neuroinflammation in the rat. Shock. 2011;36:458–65. doi:10.1097/SHK.0b013e31822f36b0.CrossRefPubMed Tokes T, Eros G, Bebes A, Hartmann P, Varszegi S, Varga G, Kaszaki J, Gulya K, Ghyczy M, Boros M. Protective effects of a phosphatidylcholine-enriched diet in lipopolysaccharide-induced experimental neuroinflammation in the rat. Shock. 2011;36:458–65. doi:10.​1097/​SHK.​0b013e31822f36b0​.CrossRefPubMed
Metadata
Title
The retina as an early biomarker of neurodegeneration in a rotenone-induced model of Parkinson’s disease: evidence for a neuroprotective effect of rosiglitazone in the eye and brain
Authors
Eduardo Maria Normando
Benjamin Michael Davis
Lies De Groef
Shereen Nizari
Lisa A. Turner
Nivedita Ravindran
Milena Pahlitzsch
Jonathan Brenton
Giulia Malaguarnera
Li Guo
Satyanarayana Somavarapu
Maria Francesca Cordeiro
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Acta Neuropathologica Communications / Issue 1/2016
Electronic ISSN: 2051-5960
DOI
https://doi.org/10.1186/s40478-016-0346-z

Other articles of this Issue 1/2016

Acta Neuropathologica Communications 1/2016 Go to the issue