Skip to main content
Top
Published in: Molecular and Cellular Pediatrics 1/2020

Open Access 01-12-2020 | Bisphosphonate | Mini review

Osteogenesis imperfecta—pathophysiology and therapeutic options

Authors: Julia Etich, Lennart Leßmeier, Mirko Rehberg, Helge Sill, Frank Zaucke, Christian Netzer, Oliver Semler

Published in: Molecular and Cellular Pediatrics | Issue 1/2020

Login to get access

Abstract

Osteogenesis imperfecta (OI) is a rare congenital disease with a wide spectrum of severity characterized by skeletal deformity and increased bone fragility as well as additional, variable extraskeletal symptoms. Here, we present an overview of the genetic heterogeneity and pathophysiological background of OI as well as OI-related bone fragility disorders and highlight current therapeutic options.
The most common form of OI is caused by mutations in the two collagen type I genes. Stop mutations usually lead to reduced collagen amount resulting in a mild phenotype, while missense mutations mainly provoke structural alterations in the collagen protein and entail a more severe phenotype. Numerous other causal genes have been identified during the last decade that are involved in collagen biosynthesis, modification and secretion, the differentiation and function of osteoblasts, and the maintenance of bone homeostasis.
Management of patients with OI involves medical treatment by bisphosphonates as the most promising therapy to inhibit bone resorption and thereby facilitate bone formation. Surgical treatment ensures pain reduction and healing without an increase of deformities. Timely remobilization and regular strengthening of the muscles by physiotherapy are crucial to improve mobility, prevent muscle wasting and avoid bone resorption caused by immobilization. Identification of the pathomechanism for SERPINF1 mutations led to the development of a tailored mechanism-based therapy using denosumab, and unraveling further pathomechanisms will likely open new avenues for innovative treatment approaches.
Literature
1.
go back to reference Rehberg M, Etich J, Leßmeier L, Sill H, Netzer C, Semler O (2019) Osteogenesis imperfecta – Pathophysiologie und aktuelle Behandlungsstrategien. Med Genet 31(4):372–382 Rehberg M, Etich J, Leßmeier L, Sill H, Netzer C, Semler O (2019) Osteogenesis imperfecta – Pathophysiologie und aktuelle Behandlungsstrategien. Med Genet 31(4):372–382
2.
go back to reference Van Dijk FS, Sillence DO (2014) Osteogenesis imperfecta: clinical diagnosis, nomenclature and severity assessment. Am J Med Genet A 164A(6):1470–1481CrossRef Van Dijk FS, Sillence DO (2014) Osteogenesis imperfecta: clinical diagnosis, nomenclature and severity assessment. Am J Med Genet A 164A(6):1470–1481CrossRef
3.
go back to reference Marini JC, Forlino A, Bachinger HP, Bishop NJ, Byers PH, Paepe A et al (2017) Osteogenesis imperfecta. Nat Rev Dis Primers 3:17052CrossRef Marini JC, Forlino A, Bachinger HP, Bishop NJ, Byers PH, Paepe A et al (2017) Osteogenesis imperfecta. Nat Rev Dis Primers 3:17052CrossRef
4.
go back to reference Wenstrup RJ, Willing MC, Starman BJ, Byers PH (1990) Distinct biochemical phenotypes predict clinical severity in nonlethal variants of osteogenesis imperfecta. Am J Hum Genet 46(5):975–982PubMedPubMedCentral Wenstrup RJ, Willing MC, Starman BJ, Byers PH (1990) Distinct biochemical phenotypes predict clinical severity in nonlethal variants of osteogenesis imperfecta. Am J Hum Genet 46(5):975–982PubMedPubMedCentral
5.
go back to reference Kang H, Aryal ACS, Marini JC (2017) Osteogenesis imperfecta: new genes reveal novel mechanisms in bone dysplasia. Transl Res 181:27–48CrossRef Kang H, Aryal ACS, Marini JC (2017) Osteogenesis imperfecta: new genes reveal novel mechanisms in bone dysplasia. Transl Res 181:27–48CrossRef
6.
go back to reference van Dijk FS, Nesbitt IM, Zwikstra EH, Nikkels PG, Piersma SR, Fratantoni SA et al (2009) PPIB mutations cause severe osteogenesis imperfecta. Am J Hum Genet 85(4):521–527CrossRef van Dijk FS, Nesbitt IM, Zwikstra EH, Nikkels PG, Piersma SR, Fratantoni SA et al (2009) PPIB mutations cause severe osteogenesis imperfecta. Am J Hum Genet 85(4):521–527CrossRef
7.
go back to reference Cabral WA, Perdivara I, Weis M, Terajima M, Blissett AR, Chang W et al (2014) Abnormal type I collagen post-translational modification and crosslinking in a cyclophilin B KO mouse model of recessive osteogenesis imperfecta. PLoS Genet 10(6):e1004465CrossRef Cabral WA, Perdivara I, Weis M, Terajima M, Blissett AR, Chang W et al (2014) Abnormal type I collagen post-translational modification and crosslinking in a cyclophilin B KO mouse model of recessive osteogenesis imperfecta. PLoS Genet 10(6):e1004465CrossRef
8.
go back to reference Barnes AM, Carter EM, Cabral WA, Weis M, Chang W, Makareeva E et al (2010) Lack of cyclophilin B in osteogenesis imperfecta with normal collagen folding. N Engl J Med 362(6):521–528CrossRef Barnes AM, Carter EM, Cabral WA, Weis M, Chang W, Makareeva E et al (2010) Lack of cyclophilin B in osteogenesis imperfecta with normal collagen folding. N Engl J Med 362(6):521–528CrossRef
9.
go back to reference Ward LM, Rauch F, Travers R, Chabot G, Azouz EM, Lalic L et al (2002) Osteogenesis imperfecta type VII: an autosomal recessive form of brittle bone disease. Bone. 31(1):12–18CrossRef Ward LM, Rauch F, Travers R, Chabot G, Azouz EM, Lalic L et al (2002) Osteogenesis imperfecta type VII: an autosomal recessive form of brittle bone disease. Bone. 31(1):12–18CrossRef
10.
go back to reference Duran I, Nevarez L, Sarukhanov A, Wu S, Lee K, Krejci P et al (2015) HSP47 and FKBP65 cooperate in the synthesis of type I procollagen. Hum Mol Genet 24(7):1918–1928CrossRef Duran I, Nevarez L, Sarukhanov A, Wu S, Lee K, Krejci P et al (2015) HSP47 and FKBP65 cooperate in the synthesis of type I procollagen. Hum Mol Genet 24(7):1918–1928CrossRef
11.
go back to reference Lindert U, Cabral WA, Ausavarat S, Tongkobpetch S, Ludin K, Barnes AM et al (2016) MBTPS2 mutations cause defective regulated intramembrane proteolysis in X-linked osteogenesis imperfecta. Nat Commun 7:11920CrossRef Lindert U, Cabral WA, Ausavarat S, Tongkobpetch S, Ludin K, Barnes AM et al (2016) MBTPS2 mutations cause defective regulated intramembrane proteolysis in X-linked osteogenesis imperfecta. Nat Commun 7:11920CrossRef
12.
go back to reference Symoens S, Malfait F, D'Hondt S, Callewaert B, Dheedene A, Steyaert W et al (2013) Deficiency for the ER-stress transducer OASIS causes severe recessive osteogenesis imperfecta in humans. Orphanet J Rare Dis 8(1):154CrossRef Symoens S, Malfait F, D'Hondt S, Callewaert B, Dheedene A, Steyaert W et al (2013) Deficiency for the ER-stress transducer OASIS causes severe recessive osteogenesis imperfecta in humans. Orphanet J Rare Dis 8(1):154CrossRef
13.
go back to reference Garbes L, Kim K, Riess A, Hoyer-Kuhn H, Beleggia F, Bevot A et al (2015) Mutations in SEC24D, encoding a component of the COPII machinery, cause a syndromic form of osteogenesis imperfecta. Am J Hum Genet 96(3):432–439CrossRef Garbes L, Kim K, Riess A, Hoyer-Kuhn H, Beleggia F, Bevot A et al (2015) Mutations in SEC24D, encoding a component of the COPII machinery, cause a syndromic form of osteogenesis imperfecta. Am J Hum Genet 96(3):432–439CrossRef
14.
go back to reference Mendoza-Londono R, Fahiminiya S, Majewski J, Care4Rare Canada C, Tetreault M, Nadaf J et al (2015) Recessive osteogenesis imperfecta caused by missense mutations in SPARC. Am J Hum Genet 96(6):979–985CrossRef Mendoza-Londono R, Fahiminiya S, Majewski J, Care4Rare Canada C, Tetreault M, Nadaf J et al (2015) Recessive osteogenesis imperfecta caused by missense mutations in SPARC. Am J Hum Genet 96(6):979–985CrossRef
15.
go back to reference Martínez-Glez V, Valencia M, Caparrós-Martín JA, Aglan M, Temtamy S, Tenorio J et al (2012) Identification of a mutation causing deficient BMP1/mTLD proteolytic activity in autosomal recessive osteogenesis imperfecta. Hum Mutat 33(2):343–350CrossRef Martínez-Glez V, Valencia M, Caparrós-Martín JA, Aglan M, Temtamy S, Tenorio J et al (2012) Identification of a mutation causing deficient BMP1/mTLD proteolytic activity in autosomal recessive osteogenesis imperfecta. Hum Mutat 33(2):343–350CrossRef
16.
go back to reference Cundy T, Dray M, Delahunt J, Hald JD, Langdahl B, Li C et al (2018) Mutations That alter the carboxy-terminal-propeptide cleavage site of the chains of type i procollagen are associated with a unique osteogenesis imperfecta phenotype. J Bone Miner Res 33(7):1260–1271CrossRef Cundy T, Dray M, Delahunt J, Hald JD, Langdahl B, Li C et al (2018) Mutations That alter the carboxy-terminal-propeptide cleavage site of the chains of type i procollagen are associated with a unique osteogenesis imperfecta phenotype. J Bone Miner Res 33(7):1260–1271CrossRef
17.
go back to reference Lapunzina P, Aglan M, Temtamy S, Caparros-Martin JA, Valencia M, Leton R et al (2010) Identification of a frameshift mutation in Osterix in a patient with recessive osteogenesis imperfecta. Am J Hum Genet 87(1):110–114CrossRef Lapunzina P, Aglan M, Temtamy S, Caparros-Martin JA, Valencia M, Leton R et al (2010) Identification of a frameshift mutation in Osterix in a patient with recessive osteogenesis imperfecta. Am J Hum Genet 87(1):110–114CrossRef
18.
go back to reference Pyott SM, Tran TT, Leistritz DF, Pepin MG, Mendelsohn NJ, Temme RT et al (2013) WNT1 mutations in families affected by moderately severe and progressive recessive osteogenesis imperfecta. Am J Hum Genet 92(4):590–597CrossRef Pyott SM, Tran TT, Leistritz DF, Pepin MG, Mendelsohn NJ, Temme RT et al (2013) WNT1 mutations in families affected by moderately severe and progressive recessive osteogenesis imperfecta. Am J Hum Genet 92(4):590–597CrossRef
19.
go back to reference Moosa S, Yamamoto GL, Garbes L, Keupp K, Beleza-Meireles A, Moreno CA et al (2019) Autosomal-recessive mutations in MESD cause osteogenesis imperfecta. Am J Hum Genet 105(4):836–843CrossRef Moosa S, Yamamoto GL, Garbes L, Keupp K, Beleza-Meireles A, Moreno CA et al (2019) Autosomal-recessive mutations in MESD cause osteogenesis imperfecta. Am J Hum Genet 105(4):836–843CrossRef
20.
go back to reference Doyard M, Bacrot S, Huber C, Di Rocco M, Goldenberg A, Aglan MS et al (2018) FAM46A mutations are responsible for autosomal recessive osteogenesis imperfecta. J Med Genet 55(4):278–284CrossRef Doyard M, Bacrot S, Huber C, Di Rocco M, Goldenberg A, Aglan MS et al (2018) FAM46A mutations are responsible for autosomal recessive osteogenesis imperfecta. J Med Genet 55(4):278–284CrossRef
21.
go back to reference Semler O, Garbes L, Keupp K, Swan D, Zimmermann K, Becker J et al (2012) A mutation in the 5'-UTR of IFITM5 creates an in-frame start codon and causes autosomal-dominant osteogenesis imperfecta type V with hyperplastic callus. Am J Hum Genet 91(2):349–357CrossRef Semler O, Garbes L, Keupp K, Swan D, Zimmermann K, Becker J et al (2012) A mutation in the 5'-UTR of IFITM5 creates an in-frame start codon and causes autosomal-dominant osteogenesis imperfecta type V with hyperplastic callus. Am J Hum Genet 91(2):349–357CrossRef
22.
go back to reference Becker J, Semler O, Gilissen C, Li Y, Bolz HJ, Giunta C et al (2011) Exome sequencing identifies truncating mutations in human SERPINF1 in autosomal-recessive osteogenesis imperfecta. Am J Hum Genet 88(3):362–371CrossRef Becker J, Semler O, Gilissen C, Li Y, Bolz HJ, Giunta C et al (2011) Exome sequencing identifies truncating mutations in human SERPINF1 in autosomal-recessive osteogenesis imperfecta. Am J Hum Genet 88(3):362–371CrossRef
23.
go back to reference Hoyer-Kuhn H, Netzer C, Koerber F, Schoenau E, Semler O (2014) Two years' experience with denosumab for children with osteogenesis imperfecta type VI. Orphanet J Rare Dis 9(1):145CrossRef Hoyer-Kuhn H, Netzer C, Koerber F, Schoenau E, Semler O (2014) Two years' experience with denosumab for children with osteogenesis imperfecta type VI. Orphanet J Rare Dis 9(1):145CrossRef
24.
go back to reference van Dijk FS, Zillikens MC, Micha D, Riessland M, Marcelis CL, de Die-Smulders CE et al (2013) PLS3 mutations in X-linked osteoporosis with fractures. N Engl J Med 369(16):1529–1536CrossRef van Dijk FS, Zillikens MC, Micha D, Riessland M, Marcelis CL, de Die-Smulders CE et al (2013) PLS3 mutations in X-linked osteoporosis with fractures. N Engl J Med 369(16):1529–1536CrossRef
25.
go back to reference Neugebauer J, Heilig J, Hosseinibarkooie S, Ross BC, Mendoza-Ferreira N, Nolte F et al (2018) Plastin 3 influences bone homeostasis through regulation of osteoclast activity. Hum Mol Genet 27(24):4249–4262PubMed Neugebauer J, Heilig J, Hosseinibarkooie S, Ross BC, Mendoza-Ferreira N, Nolte F et al (2018) Plastin 3 influences bone homeostasis through regulation of osteoclast activity. Hum Mol Genet 27(24):4249–4262PubMed
26.
go back to reference Gatti D, Antoniazzi F, Prizzi R, Braga V, Rossini M, Tato L et al (2005) Intravenous neridronate in children with osteogenesis imperfecta: a randomized controlled study. J Bone Miner Res 20(5):758–763CrossRef Gatti D, Antoniazzi F, Prizzi R, Braga V, Rossini M, Tato L et al (2005) Intravenous neridronate in children with osteogenesis imperfecta: a randomized controlled study. J Bone Miner Res 20(5):758–763CrossRef
27.
go back to reference Hoyer-Kuhn H, Bartz-Seel J, Blickheuser R, V. Deimling U, Stücker R, Wirth T et al (2016) Diagnostik und Therapie der Osteogenesis imperfecta. Monatsschrift Kinderheilkunde 165(4):333–346CrossRef Hoyer-Kuhn H, Bartz-Seel J, Blickheuser R, V. Deimling U, Stücker R, Wirth T et al (2016) Diagnostik und Therapie der Osteogenesis imperfecta. Monatsschrift Kinderheilkunde 165(4):333–346CrossRef
28.
go back to reference Dwan K, Phillipi CA, Steiner RD, Basel D (2016) Bisphosphonate therapy for osteogenesis imperfecta. Cochrane Database Syst Rev 10:CD005088PubMed Dwan K, Phillipi CA, Steiner RD, Basel D (2016) Bisphosphonate therapy for osteogenesis imperfecta. Cochrane Database Syst Rev 10:CD005088PubMed
29.
go back to reference Wirth T (2019) The orthopaedic management of long bone deformities in genetically and acquired generalized bone weakening conditions. J Child Orthop 13(1):12–21CrossRef Wirth T (2019) The orthopaedic management of long bone deformities in genetically and acquired generalized bone weakening conditions. J Child Orthop 13(1):12–21CrossRef
30.
go back to reference Mueller B, Engelbert R, Baratta-Ziska F, Bartels B, Blanc N, Brizola E et al (2018) Consensus statement on physical rehabilitation in children and adolescents with osteogenesis imperfecta. Orphanet J Rare Dis 13(1):158CrossRef Mueller B, Engelbert R, Baratta-Ziska F, Bartels B, Blanc N, Brizola E et al (2018) Consensus statement on physical rehabilitation in children and adolescents with osteogenesis imperfecta. Orphanet J Rare Dis 13(1):158CrossRef
Metadata
Title
Osteogenesis imperfecta—pathophysiology and therapeutic options
Authors
Julia Etich
Lennart Leßmeier
Mirko Rehberg
Helge Sill
Frank Zaucke
Christian Netzer
Oliver Semler
Publication date
01-12-2020
Publisher
Springer Berlin Heidelberg
Published in
Molecular and Cellular Pediatrics / Issue 1/2020
Electronic ISSN: 2194-7791
DOI
https://doi.org/10.1186/s40348-020-00101-9

Other articles of this Issue 1/2020

Molecular and Cellular Pediatrics 1/2020 Go to the issue