Skip to main content
Top
Published in: Clinical and Translational Medicine 1/2019

Open Access 01-12-2019 | Gene Therapy in Oncology | Review

From fiction to science: clinical potentials and regulatory considerations of gene editing

Authors: Maria Schacker, Diane Seimetz

Published in: Clinical and Translational Medicine | Issue 1/2019

Login to get access

Abstract

Gene editing technologies such as CRISPR/Cas9 have emerged as an attractive tool not only for scientific research but also for the development of medicinal products. Their ability to induce precise double strand breaks into DNA enables targeted modifications of the genome including selective knockout of genes, correction of mutations or precise insertion of new genetic material into specific loci. Gene editing-based therapies hold a great potential for the treatment of numerous diseases and the first products are already being tested in clinical trials. The treatment indications include oncological malignancies, HIV, diseases of the hematopoietic system and metabolic disorders. This article reviews ongoing preclinical and clinical studies and discusses how gene editing technologies are altering the gene therapy landscape. In addition, it focusses on the regulatory challenges associated with such therapies and how they can be tackled during the drug development process.
Literature
1.
go back to reference Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821PubMedPubMedCentralCrossRef Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821PubMedPubMedCentralCrossRef
2.
go back to reference Doudna JA, Charpentier E (2014) Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346(6213):1258096PubMedCrossRef Doudna JA, Charpentier E (2014) Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346(6213):1258096PubMedCrossRef
4.
go back to reference Lee J, Chung JH, Kim HM, Kim DW, Kim H (2016) Designed nucleases for targeted genome editing. Plant Biotechnol J 14(2):448–462PubMedCrossRef Lee J, Chung JH, Kim HM, Kim DW, Kim H (2016) Designed nucleases for targeted genome editing. Plant Biotechnol J 14(2):448–462PubMedCrossRef
5.
go back to reference Durai S, Mani M, Kandavelou K, Wu J, Porteus MH, Chandrasegaran S (2005) Zinc finger nucleases: custom-designed molecular scissors for genome engineering of plant and mammalian cells. Nucleic Acids Res 33(18):5978–5990PubMedPubMedCentralCrossRef Durai S, Mani M, Kandavelou K, Wu J, Porteus MH, Chandrasegaran S (2005) Zinc finger nucleases: custom-designed molecular scissors for genome engineering of plant and mammalian cells. Nucleic Acids Res 33(18):5978–5990PubMedPubMedCentralCrossRef
6.
go back to reference Deng D, Yan C, Pan X, Mahfouz M, Wang J, Zhu JK et al (2012) Structural basis for sequence-specific recognition of DNA by TAL effectors. Science 335(6069):6720–6723CrossRef Deng D, Yan C, Pan X, Mahfouz M, Wang J, Zhu JK et al (2012) Structural basis for sequence-specific recognition of DNA by TAL effectors. Science 335(6069):6720–6723CrossRef
7.
go back to reference Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S et al (2009) Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326(5959):1509–1512CrossRefPubMed Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S et al (2009) Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326(5959):1509–1512CrossRefPubMed
8.
go back to reference Kim H, Kim JS (2014) A guide to genome engineering with programmable nucleases. Nat Rev Genet 15(5):321–334PubMedCrossRef Kim H, Kim JS (2014) A guide to genome engineering with programmable nucleases. Nat Rev Genet 15(5):321–334PubMedCrossRef
9.
10.
11.
go back to reference Blaese RM, Culver KW, Miller AD, Carter CS, Fleisher T, Clerici M et al (1995) T lymphocyte-directed gene therapy for ADA- SCID: initial trial results after 4 years. Science 270(5235):475–480PubMedCrossRef Blaese RM, Culver KW, Miller AD, Carter CS, Fleisher T, Clerici M et al (1995) T lymphocyte-directed gene therapy for ADA- SCID: initial trial results after 4 years. Science 270(5235):475–480PubMedCrossRef
12.
go back to reference Kite Pharma (2017) YESCARTA (axicabtagene ciloleucel) suspension for intravenous infusion, FDA approved package insert Kite Pharma (2017) YESCARTA (axicabtagene ciloleucel) suspension for intravenous infusion, FDA approved package insert
13.
go back to reference Novartis Pharmaceuticals (2018) KYMRIAH (tisagenlecleucel) suspension for intravenous infusion, FDA approved package insert Novartis Pharmaceuticals (2018) KYMRIAH (tisagenlecleucel) suspension for intravenous infusion, FDA approved package insert
14.
go back to reference Novartis P (2018) KYMRIAH (tisagenlecleucel) summary of product characteristics Novartis P (2018) KYMRIAH (tisagenlecleucel) summary of product characteristics
15.
go back to reference Spark Therapeutics Inc (2017) LUXTURNA (voretigene neparvovec-rzyl) intraocular suspension for subretinal injection, FDA approved package insert Spark Therapeutics Inc (2017) LUXTURNA (voretigene neparvovec-rzyl) intraocular suspension for subretinal injection, FDA approved package insert
16.
go back to reference AveXis Inc (2019) ZOLGENSMA® (onasemnogene abeparvovec-xioi) Suspension for intravenous infusion, FDA approved package insert AveXis Inc (2019) ZOLGENSMA® (onasemnogene abeparvovec-xioi) Suspension for intravenous infusion, FDA approved package insert
17.
go back to reference Baum C, Kustikova O, Modlich U, Li Z, Fehse B (2006) Mutagenesis and oncogenesis by chromosomal insertion of gene transfer vectors. Hum Gene Ther 17(3):253–263PubMedCrossRef Baum C, Kustikova O, Modlich U, Li Z, Fehse B (2006) Mutagenesis and oncogenesis by chromosomal insertion of gene transfer vectors. Hum Gene Ther 17(3):253–263PubMedCrossRef
20.
go back to reference Gross G, Waks T, Eshhar Z (1989) Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proc Natl Acad Sci USA 86(24):10024–10028PubMedCrossRefPubMedCentral Gross G, Waks T, Eshhar Z (1989) Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proc Natl Acad Sci USA 86(24):10024–10028PubMedCrossRefPubMedCentral
21.
go back to reference Eshhar Z, Waks T, Gross G, Schindler DG (1993) Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors. Proc Natl Acad Sci USA 90(2):720–724PubMedCrossRefPubMedCentral Eshhar Z, Waks T, Gross G, Schindler DG (1993) Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors. Proc Natl Acad Sci USA 90(2):720–724PubMedCrossRefPubMedCentral
22.
go back to reference Maher J, Brentjens RJ, Gunset G, Riviere I, Sadelain M (2002) Human T-lymphocyte cytotoxicity and proliferation directed by a single chimeric TCRzeta/CD28 receptor. Nat Biotechnol 20(1):70–75PubMedCrossRef Maher J, Brentjens RJ, Gunset G, Riviere I, Sadelain M (2002) Human T-lymphocyte cytotoxicity and proliferation directed by a single chimeric TCRzeta/CD28 receptor. Nat Biotechnol 20(1):70–75PubMedCrossRef
23.
go back to reference Imai C, Mihara K, Andreansky M, Nicholson IC, Pui CH, Geiger TL et al (2004) Chimeric receptors with 4-1BB signaling capacity provoke potent cytotoxicity against acute lymphoblastic leukemia. Leukemia 18(4):676–684PubMedCrossRef Imai C, Mihara K, Andreansky M, Nicholson IC, Pui CH, Geiger TL et al (2004) Chimeric receptors with 4-1BB signaling capacity provoke potent cytotoxicity against acute lymphoblastic leukemia. Leukemia 18(4):676–684PubMedCrossRef
24.
go back to reference Pule MA, Straathof KC, Dotti G, Heslop HE, Rooney CM, Brenner MK (2005) A chimeric T cell antigen receptor that augments cytokine release and supports clonal expansion of primary human T cells. Mol Ther 12(5):933–941PubMedCrossRef Pule MA, Straathof KC, Dotti G, Heslop HE, Rooney CM, Brenner MK (2005) A chimeric T cell antigen receptor that augments cytokine release and supports clonal expansion of primary human T cells. Mol Ther 12(5):933–941PubMedCrossRef
25.
go back to reference Wang J, Jensen M, Lin Y, Sui X, Chen E, Lindgren CG et al (2007) Optimizing adoptive polyclonal T cell immunotherapy of lymphomas, using a chimeric T cell receptor possessing CD28 and CD137 costimulatory domains. Hum Gene Ther 18(8):712–725PubMedCrossRef Wang J, Jensen M, Lin Y, Sui X, Chen E, Lindgren CG et al (2007) Optimizing adoptive polyclonal T cell immunotherapy of lymphomas, using a chimeric T cell receptor possessing CD28 and CD137 costimulatory domains. Hum Gene Ther 18(8):712–725PubMedCrossRef
26.
go back to reference Schuster SJ, Svoboda J, Chong EA, Nasta SD, Mato AR, Anak O et al (2017) Chimeric antigen receptor T cells in refractory B-cell lymphomas. N Engl J Med 377(26):2545–2554PubMedPubMedCentralCrossRef Schuster SJ, Svoboda J, Chong EA, Nasta SD, Mato AR, Anak O et al (2017) Chimeric antigen receptor T cells in refractory B-cell lymphomas. N Engl J Med 377(26):2545–2554PubMedPubMedCentralCrossRef
27.
go back to reference Maude SL, Laetsch TW, Buechner J, Rives S, Boyer M, Bittencourt H et al (2018) Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N Engl J Med 378(5):439–448PubMedPubMedCentralCrossRef Maude SL, Laetsch TW, Buechner J, Rives S, Boyer M, Bittencourt H et al (2018) Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N Engl J Med 378(5):439–448PubMedPubMedCentralCrossRef
28.
go back to reference Neelapu S, Tummala S, Kebriaei P, Wierda W, Gutierrez C, Locke F, et al (2017) Chimeric antigen receptor T-cell therapy—assessment and management of toxicities Neelapu S, Tummala S, Kebriaei P, Wierda W, Gutierrez C, Locke F, et al (2017) Chimeric antigen receptor T-cell therapy—assessment and management of toxicities
29.
go back to reference Ren J, Liu X, Fang C, Jiang S, June CH, Zhao Y (2017) Multiplex genome editing to generate universal CAR T cells resistant to PD1 inhibition. Clin Cancer Res 23(9):2255–2266PubMedCrossRef Ren J, Liu X, Fang C, Jiang S, June CH, Zhao Y (2017) Multiplex genome editing to generate universal CAR T cells resistant to PD1 inhibition. Clin Cancer Res 23(9):2255–2266PubMedCrossRef
31.
go back to reference Curran MA, Montalvo W, Yagita H, Allison JP (2010) PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors. Proc Natl Acad Sci USA 107(9):4275–4280PubMedCrossRefPubMedCentral Curran MA, Montalvo W, Yagita H, Allison JP (2010) PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors. Proc Natl Acad Sci USA 107(9):4275–4280PubMedCrossRefPubMedCentral
32.
go back to reference Jung IY, Kim YY, Yu HS, Lee M, Kim S, Lee J (2018) CRISPR/Cas9-mediated knockout of DGK improves antitumor activities of Human T cells. Cancer Res 78(16):4692–4703PubMedCrossRef Jung IY, Kim YY, Yu HS, Lee M, Kim S, Lee J (2018) CRISPR/Cas9-mediated knockout of DGK improves antitumor activities of Human T cells. Cancer Res 78(16):4692–4703PubMedCrossRef
33.
go back to reference Tebas P, Stein D, Tang WW, Frank I, Wang SQ, Lee G et al (2014) Gene editing of CCR33 in autologous CD4 T cells of persons infected with HIV. N Engl J Med 370(10):901–910PubMedPubMedCentralCrossRef Tebas P, Stein D, Tang WW, Frank I, Wang SQ, Lee G et al (2014) Gene editing of CCR33 in autologous CD4 T cells of persons infected with HIV. N Engl J Med 370(10):901–910PubMedPubMedCentralCrossRef
34.
go back to reference Alkhatib G, Combadiere C, Broder CC, Feng Y, Kennedy PE, Murphy PM et al (1996) CC CKR5: a RANTES, MIP-1alpha, MIP-1beta receptor as a fusion cofactor for macrophage-tropic HIV-1. Science 272(5270):1955–1958PubMedCrossRef Alkhatib G, Combadiere C, Broder CC, Feng Y, Kennedy PE, Murphy PM et al (1996) CC CKR5: a RANTES, MIP-1alpha, MIP-1beta receptor as a fusion cofactor for macrophage-tropic HIV-1. Science 272(5270):1955–1958PubMedCrossRef
35.
go back to reference Choe H, Farzan M, Sun Y, Sullivan N, Rollins B, Ponath PD et al (1996) The beta-chemokine receptors CCR35 and CCR35 facilitate infection by primary HIV-1 isolates. Cell 85(7):1135–1148PubMedCrossRef Choe H, Farzan M, Sun Y, Sullivan N, Rollins B, Ponath PD et al (1996) The beta-chemokine receptors CCR35 and CCR35 facilitate infection by primary HIV-1 isolates. Cell 85(7):1135–1148PubMedCrossRef
36.
go back to reference Deng H, Liu R, Ellmeier W, Choe S, Unutmaz D, Burkhart M et al (1996) Identification of a major co-receptor for primary isolates of HIV-1. Nature 381(6584):661–666PubMedCrossRef Deng H, Liu R, Ellmeier W, Choe S, Unutmaz D, Burkhart M et al (1996) Identification of a major co-receptor for primary isolates of HIV-1. Nature 381(6584):661–666PubMedCrossRef
37.
go back to reference Doranz BJ, Rucker J, Yi Y, Smyth RJ, Samson M, Peiper SC et al (1996) A dual-tropic primary HIV-1 isolate that uses fusin and the beta-chemokine receptors CKR-5, CKR-3, and CKR-2b as fusion cofactors. Cell 85(7):1149–1158PubMedCrossRef Doranz BJ, Rucker J, Yi Y, Smyth RJ, Samson M, Peiper SC et al (1996) A dual-tropic primary HIV-1 isolate that uses fusin and the beta-chemokine receptors CKR-5, CKR-3, and CKR-2b as fusion cofactors. Cell 85(7):1149–1158PubMedCrossRef
38.
go back to reference Dragic T, Litwin V, Allaway GP, Martin SR, Huang Y, Nagashima KA et al (1996) HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC-CKR-5. Nature 381(6584):667–673CrossRefPubMed Dragic T, Litwin V, Allaway GP, Martin SR, Huang Y, Nagashima KA et al (1996) HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC-CKR-5. Nature 381(6584):667–673CrossRefPubMed
39.
go back to reference Samson M, Libert F, Doranz BJ, Rucker J, Liesnard C, Farber CM et al (1996) Resistance to HIV-1 infection in caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature 382(6593):6722–6725CrossRef Samson M, Libert F, Doranz BJ, Rucker J, Liesnard C, Farber CM et al (1996) Resistance to HIV-1 infection in caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature 382(6593):6722–6725CrossRef
40.
go back to reference Huang Y, Paxton WA, Wolinsky SM, Neumann AU, Zhang L, He T et al (1996) The role of a mutant CCR40 allele in HIV-1 transmission and disease progression. Nat Med 2(11):1240–1243PubMedCrossRef Huang Y, Paxton WA, Wolinsky SM, Neumann AU, Zhang L, He T et al (1996) The role of a mutant CCR40 allele in HIV-1 transmission and disease progression. Nat Med 2(11):1240–1243PubMedCrossRef
41.
go back to reference Liu R, Paxton WA, Choe S, Ceradini D, Martin SR, Horuk R et al (1996) Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell 86(3):367–377PubMedCrossRef Liu R, Paxton WA, Choe S, Ceradini D, Martin SR, Horuk R et al (1996) Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell 86(3):367–377PubMedCrossRef
43.
go back to reference Dean J, Schechter AN (1978) Sickle-cell anemia: molecular and cellular bases of therapeutic approaches (first of three parts). N Engl J Med 299(14):752–763PubMedCrossRef Dean J, Schechter AN (1978) Sickle-cell anemia: molecular and cellular bases of therapeutic approaches (first of three parts). N Engl J Med 299(14):752–763PubMedCrossRef
44.
go back to reference Musallam KM, Sankaran VG, Cappellini MD, Duca L, Nathan DG, Taher AT (2012) Fetal hemoglobin levels and morbidity in untransfused patients with beta-thalassemia intermedia. Blood 119(2):364–367PubMedCrossRef Musallam KM, Sankaran VG, Cappellini MD, Duca L, Nathan DG, Taher AT (2012) Fetal hemoglobin levels and morbidity in untransfused patients with beta-thalassemia intermedia. Blood 119(2):364–367PubMedCrossRef
45.
go back to reference Jacob GF, Raper AB (1958) Hereditary persistence of foetal haemoglobin production, and its interaction with the sickle-cell trait. Br J Haematol 4(2):138–149PubMedCrossRef Jacob GF, Raper AB (1958) Hereditary persistence of foetal haemoglobin production, and its interaction with the sickle-cell trait. Br J Haematol 4(2):138–149PubMedCrossRef
46.
go back to reference Pestina TI, Hargrove PW, Jay D, Gray JT, Boyd KM, Persons DA (2009) Correction of murine sickle cell disease using gamma-globin lentiviral vectors to mediate high-level expression of fetal hemoglobin. Mol Ther 17(2):245–252PubMedCrossRef Pestina TI, Hargrove PW, Jay D, Gray JT, Boyd KM, Persons DA (2009) Correction of murine sickle cell disease using gamma-globin lentiviral vectors to mediate high-level expression of fetal hemoglobin. Mol Ther 17(2):245–252PubMedCrossRef
47.
go back to reference Powars DR, Weiss JN, Chan LS, Schroeder WA (1984) Is there a threshold level of fetal hemoglobin that ameliorates morbidity in sickle cell anemia? Blood 63(4):921–926PubMedCrossRef Powars DR, Weiss JN, Chan LS, Schroeder WA (1984) Is there a threshold level of fetal hemoglobin that ameliorates morbidity in sickle cell anemia? Blood 63(4):921–926PubMedCrossRef
49.
go back to reference Genovese P, Schiroli G, Escobar G, Tomaso TD, Firrito C, Calabria A et al (2014) Targeted genome editing in human repopulating haematopoietic stem cells. Nature 510(7504):235–240PubMedPubMedCentralCrossRef Genovese P, Schiroli G, Escobar G, Tomaso TD, Firrito C, Calabria A et al (2014) Targeted genome editing in human repopulating haematopoietic stem cells. Nature 510(7504):235–240PubMedPubMedCentralCrossRef
50.
go back to reference Schiroli G, Ferrari S, Conway A, Jacob A, Capo V, Albano L et al (2017) Preclinical modeling highlights the therapeutic potential of hematopoietic stem cell gene editing for correction of SCID-X1. Sci Transl Med. 9(411):eaan0820PubMedCrossRef Schiroli G, Ferrari S, Conway A, Jacob A, Capo V, Albano L et al (2017) Preclinical modeling highlights the therapeutic potential of hematopoietic stem cell gene editing for correction of SCID-X1. Sci Transl Med. 9(411):eaan0820PubMedCrossRef
51.
go back to reference Pavel-Dinu M, Wiebking V, Dejene BT, Srifa W, Mantri S, Nicolas CE et al (2019) Gene correction for SCID-X1 in long-term hematopoietic stem cells. Nat Commun 10(1):1634PubMedPubMedCentralCrossRef Pavel-Dinu M, Wiebking V, Dejene BT, Srifa W, Mantri S, Nicolas CE et al (2019) Gene correction for SCID-X1 in long-term hematopoietic stem cells. Nat Commun 10(1):1634PubMedPubMedCentralCrossRef
52.
go back to reference De Ravin SS, Reik A, Liu PQ, Li L, Wu X, Su L et al (2016) Targeted gene addition in human CD34(+) hematopoietic cells for correction of X-linked chronic granulomatous disease. Nat Biotechnol 34(4):424–429PubMedPubMedCentralCrossRef De Ravin SS, Reik A, Liu PQ, Li L, Wu X, Su L et al (2016) Targeted gene addition in human CD34(+) hematopoietic cells for correction of X-linked chronic granulomatous disease. Nat Biotechnol 34(4):424–429PubMedPubMedCentralCrossRef
53.
go back to reference Karpinski J, Hauber I, Chemnitz J, Schafer C, Paszkowski-Rogacz M, Chakraborty D et al (2016) Directed evolution of a recombinase that excises the provirus of most HIV-1 primary isolates with high specificity. Nat Biotechnol 34(4):401–409PubMedCrossRef Karpinski J, Hauber I, Chemnitz J, Schafer C, Paszkowski-Rogacz M, Chakraborty D et al (2016) Directed evolution of a recombinase that excises the provirus of most HIV-1 primary isolates with high specificity. Nat Biotechnol 34(4):401–409PubMedCrossRef
54.
go back to reference Laoharawee K, DeKelver RC, Podetz-Pedersen KM, Rohde M, Sproul S, Nguyen HO et al (2018) Dose-dependent prevention of metabolic and neurologic disease in murine MPS II by ZFN-mediated in vivo genome editing. Mol Ther 26(4):1127–1136PubMedPubMedCentralCrossRef Laoharawee K, DeKelver RC, Podetz-Pedersen KM, Rohde M, Sproul S, Nguyen HO et al (2018) Dose-dependent prevention of metabolic and neurologic disease in murine MPS II by ZFN-mediated in vivo genome editing. Mol Ther 26(4):1127–1136PubMedPubMedCentralCrossRef
55.
go back to reference den Hollander AI, Koenekoop RK, Yzer S, Lopez I, Arends ML, Voesenek KE et al (2006) Mutations in the CEP290 (NPHP6) gene are a frequent cause of Leber congenital amaurosis. Am J Hum Genet 79(3):556–561CrossRef den Hollander AI, Koenekoop RK, Yzer S, Lopez I, Arends ML, Voesenek KE et al (2006) Mutations in the CEP290 (NPHP6) gene are a frequent cause of Leber congenital amaurosis. Am J Hum Genet 79(3):556–561CrossRef
56.
go back to reference Coppieters F, Lefever S, Leroy BP, De Baere E (2010) CEP290, a gene with many faces: mutation overview and presentation of CEP290base. Hum Mutat 31(10):1097–1108PubMedCrossRef Coppieters F, Lefever S, Leroy BP, De Baere E (2010) CEP290, a gene with many faces: mutation overview and presentation of CEP290base. Hum Mutat 31(10):1097–1108PubMedCrossRef
57.
go back to reference Sheck L, Davies WIL, Moradi P, Robson AG, Kumaran N, Liasis AC et al (2018) Leber congenital amaurosis associated with mutations in CEP290, clinical phenotype, and natural history in preparation for trials of novel therapies. Ophthalmology 125(6):894–903PubMedCrossRef Sheck L, Davies WIL, Moradi P, Robson AG, Kumaran N, Liasis AC et al (2018) Leber congenital amaurosis associated with mutations in CEP290, clinical phenotype, and natural history in preparation for trials of novel therapies. Ophthalmology 125(6):894–903PubMedCrossRef
58.
go back to reference Maeder ML, Stefanidakis M, Wilson CJ, Baral R, Barrera LA, Bounoutas GS et al (2019) Development of a gene-editing approach to restore vision loss in Leber congenital amaurosis type 10. Nat Med 25(2):229–233PubMedCrossRef Maeder ML, Stefanidakis M, Wilson CJ, Baral R, Barrera LA, Bounoutas GS et al (2019) Development of a gene-editing approach to restore vision loss in Leber congenital amaurosis type 10. Nat Med 25(2):229–233PubMedCrossRef
59.
go back to reference Tsuda T (2018) Clinical manifestations and overall management strategies for duchenne muscular dystrophy. Methods Mol Biol 1687:19–28PubMedCrossRef Tsuda T (2018) Clinical manifestations and overall management strategies for duchenne muscular dystrophy. Methods Mol Biol 1687:19–28PubMedCrossRef
61.
go back to reference Ahn AH, Kunkel LM (1993) The structural and functional diversity of dystrophin. Nat Genet 3(4):283–291PubMedCrossRef Ahn AH, Kunkel LM (1993) The structural and functional diversity of dystrophin. Nat Genet 3(4):283–291PubMedCrossRef
62.
go back to reference Burmeister M, Monaco AP, Gillard EF, van Ommen GJ, Affara NA, Ferguson-Smith MA et al (1988) A 10-megabase physical map of human Xp21, including the Duchenne muscular dystrophy gene. Genomics 2(3):189–202PubMedCrossRef Burmeister M, Monaco AP, Gillard EF, van Ommen GJ, Affara NA, Ferguson-Smith MA et al (1988) A 10-megabase physical map of human Xp21, including the Duchenne muscular dystrophy gene. Genomics 2(3):189–202PubMedCrossRef
63.
go back to reference Roberts RG, Coffey AJ, Bobrow M, Bentley DR (1992) Determination of the exon structure of the distal portion of the dystrophin gene by vectorette PCR. Genomics 13(4):942–950PubMedCrossRef Roberts RG, Coffey AJ, Bobrow M, Bentley DR (1992) Determination of the exon structure of the distal portion of the dystrophin gene by vectorette PCR. Genomics 13(4):942–950PubMedCrossRef
64.
go back to reference Oshima J, Magner DB, Lee JA, Breman AM, Schmitt ES, White LD et al (2009) Regional genomic instability predisposes to complex dystrophin gene rearrangements. Hum Genet 126(3):411–423PubMedCrossRef Oshima J, Magner DB, Lee JA, Breman AM, Schmitt ES, White LD et al (2009) Regional genomic instability predisposes to complex dystrophin gene rearrangements. Hum Genet 126(3):411–423PubMedCrossRef
65.
go back to reference Takeshima Y, Yagi M, Okizuka Y, Awano H, Zhang Z, Yamauchi Y et al (2010) Mutation spectrum of the dystrophin gene in 442 Duchenne/Becker muscular dystrophy cases from one Japanese referral center. J Hum Genet 55(6):379–388PubMedCrossRef Takeshima Y, Yagi M, Okizuka Y, Awano H, Zhang Z, Yamauchi Y et al (2010) Mutation spectrum of the dystrophin gene in 442 Duchenne/Becker muscular dystrophy cases from one Japanese referral center. J Hum Genet 55(6):379–388PubMedCrossRef
66.
go back to reference Tuffery-Giraud S, Beroud C, Leturcq F, Yaou RB, Hamroun D, Michel-Calemard L et al (2009) Genotype-phenotype analysis in 2,405 patients with a dystrophinopathy using the UMD-DMD database: a model of nationwide knowledgebase. Hum Mutat 30(6):934–945PubMedCrossRef Tuffery-Giraud S, Beroud C, Leturcq F, Yaou RB, Hamroun D, Michel-Calemard L et al (2009) Genotype-phenotype analysis in 2,405 patients with a dystrophinopathy using the UMD-DMD database: a model of nationwide knowledgebase. Hum Mutat 30(6):934–945PubMedCrossRef
67.
go back to reference Min YL, Bassel-Duby R, Olson EN (2019) CRISPR correction of Duchenne muscular dystrophy. Annu Rev Med 70:239–255PubMedCrossRef Min YL, Bassel-Duby R, Olson EN (2019) CRISPR correction of Duchenne muscular dystrophy. Annu Rev Med 70:239–255PubMedCrossRef
68.
go back to reference Wein N, Alfano L, Flanigan KM (2015) Genetics and emerging treatments for Duchenne and Becker muscular dystrophy. Pediatr Clin N Am 62(3):723–742CrossRef Wein N, Alfano L, Flanigan KM (2015) Genetics and emerging treatments for Duchenne and Becker muscular dystrophy. Pediatr Clin N Am 62(3):723–742CrossRef
69.
go back to reference Aartsma-Rus A, Fokkema I, Verschuuren J, Ginjaar I, van Deutekom J, van Ommen GJ et al (2009) Theoretic applicability of antisense-mediated exon skipping for Duchenne muscular dystrophy mutations. Hum Mutat 30(3):293–299PubMedCrossRef Aartsma-Rus A, Fokkema I, Verschuuren J, Ginjaar I, van Deutekom J, van Ommen GJ et al (2009) Theoretic applicability of antisense-mediated exon skipping for Duchenne muscular dystrophy mutations. Hum Mutat 30(3):293–299PubMedCrossRef
70.
go back to reference Tabebordbar M, Zhu K, Cheng JKW, Chew WL, Widrick JJ, Yan WX et al (2016) In vivo gene editing in dystrophic mouse muscle and muscle stem cells. Science 351(6271):407–411PubMedCrossRef Tabebordbar M, Zhu K, Cheng JKW, Chew WL, Widrick JJ, Yan WX et al (2016) In vivo gene editing in dystrophic mouse muscle and muscle stem cells. Science 351(6271):407–411PubMedCrossRef
71.
go back to reference Xu L, Park KH, Zhao L, Xu J, El Refaey M, Gao Y et al (2016) CRISPR-mediated genome editing restores dystrophin expression and function in mdx mice. Mol Ther 24(3):564–569PubMedPubMedCentralCrossRef Xu L, Park KH, Zhao L, Xu J, El Refaey M, Gao Y et al (2016) CRISPR-mediated genome editing restores dystrophin expression and function in mdx mice. Mol Ther 24(3):564–569PubMedPubMedCentralCrossRef
72.
go back to reference Nelson CE, Hakim CH, Ousterout DG, Thakore PI, Moreb EA, Castellanos Rivera RM et al (2016) In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science 351(6271):403–407PubMedCrossRef Nelson CE, Hakim CH, Ousterout DG, Thakore PI, Moreb EA, Castellanos Rivera RM et al (2016) In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science 351(6271):403–407PubMedCrossRef
73.
go back to reference Long C, Amoasii L, Mireault AA, McAnally JR, Li H, Sanchez-Ortiz E et al (2016) Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy. Science 351(6271):400–403PubMedCrossRef Long C, Amoasii L, Mireault AA, McAnally JR, Li H, Sanchez-Ortiz E et al (2016) Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy. Science 351(6271):400–403PubMedCrossRef
74.
go back to reference Bengtsson NE, Hall JK, Odom GL, Phelps MP, Andrus CR, Hawkins RD et al (2017) Muscle-specific CRISPR/Cas9 dystrophin gene editing ameliorates pathophysiology in a mouse model for Duchenne muscular dystrophy. Nat Commun. 8:14454PubMedPubMedCentralCrossRef Bengtsson NE, Hall JK, Odom GL, Phelps MP, Andrus CR, Hawkins RD et al (2017) Muscle-specific CRISPR/Cas9 dystrophin gene editing ameliorates pathophysiology in a mouse model for Duchenne muscular dystrophy. Nat Commun. 8:14454PubMedPubMedCentralCrossRef
76.
go back to reference Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP et al (2013) Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152(5):1173–1183PubMedPubMedCentralCrossRef Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP et al (2013) Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152(5):1173–1183PubMedPubMedCentralCrossRef
77.
go back to reference Mendenhall EM, Williamson KE, Reyon D, Zou JY, Ram O, Joung JK et al (2013) Locus-specific editing of histone modifications at endogenous enhancers. Nat Biotechnol 31(12):1133–1136PubMedPubMedCentralCrossRef Mendenhall EM, Williamson KE, Reyon D, Zou JY, Ram O, Joung JK et al (2013) Locus-specific editing of histone modifications at endogenous enhancers. Nat Biotechnol 31(12):1133–1136PubMedPubMedCentralCrossRef
78.
go back to reference Hilton IB, D’Ippolito AM, Vockley CM, Thakore PI, Crawford GE, Reddy TE et al (2015) Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat Biotechnol 33(5):510–517PubMedPubMedCentralCrossRef Hilton IB, D’Ippolito AM, Vockley CM, Thakore PI, Crawford GE, Reddy TE et al (2015) Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat Biotechnol 33(5):510–517PubMedPubMedCentralCrossRef
79.
go back to reference Kearns NA, Pham H, Tabak B, Genga RM, Silverstein NJ, Garber M et al (2015) Functional annotation of native enhancers with a Cas9-histone demethylase fusion. Nat Methods 12(5):401–403PubMedPubMedCentralCrossRef Kearns NA, Pham H, Tabak B, Genga RM, Silverstein NJ, Garber M et al (2015) Functional annotation of native enhancers with a Cas9-histone demethylase fusion. Nat Methods 12(5):401–403PubMedPubMedCentralCrossRef
80.
81.
go back to reference Thakore PI, D’Ippolito AM, Song L, Safi A, Shivakumar NK, Kabadi AM et al (2015) Highly specific epigenome editing by CRISPR-Cas9 repressors for silencing of distal regulatory elements. Nat Methods 12(12):1143–1149PubMedPubMedCentralCrossRef Thakore PI, D’Ippolito AM, Song L, Safi A, Shivakumar NK, Kabadi AM et al (2015) Highly specific epigenome editing by CRISPR-Cas9 repressors for silencing of distal regulatory elements. Nat Methods 12(12):1143–1149PubMedPubMedCentralCrossRef
83.
go back to reference Moosavi A, Motevalizadeh Ardekani A (2016) Role of epigenetics in biology and human diseases. Iran Biomed J 20(5):246–258PubMedPubMedCentral Moosavi A, Motevalizadeh Ardekani A (2016) Role of epigenetics in biology and human diseases. Iran Biomed J 20(5):246–258PubMedPubMedCentral
84.
go back to reference Berdasco M, Esteller M (2019) Clinical epigenetics: seizing opportunities for translation. Nat Rev Genet 20(2):109–127PubMedCrossRef Berdasco M, Esteller M (2019) Clinical epigenetics: seizing opportunities for translation. Nat Rev Genet 20(2):109–127PubMedCrossRef
86.
go back to reference Gilbert LA, Larson MH, Morsut L, Liu Z, Brar GA, Torres SE et al (2013) CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154(2):442–451PubMedPubMedCentralCrossRef Gilbert LA, Larson MH, Morsut L, Liu Z, Brar GA, Torres SE et al (2013) CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154(2):442–451PubMedPubMedCentralCrossRef
87.
go back to reference Garcia-Bloj B, Moses C, Sgro A, Plani-Lam J, Arooj M, Duffy C et al (2016) Waking up dormant tumor suppressor genes with zinc fingers, TALEs and the CRISPR/dCas9 system. Oncotarget. 7(37):60535–60554PubMedPubMedCentralCrossRef Garcia-Bloj B, Moses C, Sgro A, Plani-Lam J, Arooj M, Duffy C et al (2016) Waking up dormant tumor suppressor genes with zinc fingers, TALEs and the CRISPR/dCas9 system. Oncotarget. 7(37):60535–60554PubMedPubMedCentralCrossRef
88.
go back to reference Moreno AM, Fu X, Zhu J, Katrekar D, Shih YV, Marlett J et al (2018) In situ gene therapy via AAV-CRISPR-Cas9-mediated targeted gene regulation. Mol Ther 26(7):1818–1827PubMedPubMedCentralCrossRef Moreno AM, Fu X, Zhu J, Katrekar D, Shih YV, Marlett J et al (2018) In situ gene therapy via AAV-CRISPR-Cas9-mediated targeted gene regulation. Mol Ther 26(7):1818–1827PubMedPubMedCentralCrossRef
89.
go back to reference Thakore PI, Kwon JB, Nelson CE, Rouse DC, Gemberling MP, Oliver ML et al (2018) RNA-guided transcriptional silencing in vivo with S. aureus CRISPR-Cas9 repressors. Nat Commun. 9(1):1674PubMedPubMedCentralCrossRef Thakore PI, Kwon JB, Nelson CE, Rouse DC, Gemberling MP, Oliver ML et al (2018) RNA-guided transcriptional silencing in vivo with S. aureus CRISPR-Cas9 repressors. Nat Commun. 9(1):1674PubMedPubMedCentralCrossRef
90.
go back to reference Bustos FJ, Ampuero E, Jury N, Aguilar R, Falahi F, Toledo J et al (2017) Epigenetic editing of the Dlg4/PSD95 gene improves cognition in aged and Alzheimer’s disease mice. Brain J Neurol 140(12):3252–3268CrossRef Bustos FJ, Ampuero E, Jury N, Aguilar R, Falahi F, Toledo J et al (2017) Epigenetic editing of the Dlg4/PSD95 gene improves cognition in aged and Alzheimer’s disease mice. Brain J Neurol 140(12):3252–3268CrossRef
91.
go back to reference Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR (2016) Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533(7603):420–424PubMedPubMedCentralCrossRef Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR (2016) Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533(7603):420–424PubMedPubMedCentralCrossRef
92.
go back to reference Nishida K, Arazoe T, Yachie N, Banno S, Kakimoto M, Tabata M et al (2016) Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science 353(6305):aaf8729PubMedCrossRef Nishida K, Arazoe T, Yachie N, Banno S, Kakimoto M, Tabata M et al (2016) Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science 353(6305):aaf8729PubMedCrossRef
93.
go back to reference Gaudelli NM, Komor AC, Rees HA, Packer MS, Badran AH, Bryson DI et al (2017) Programmable base editing of A*T to G*C in genomic DNA without DNA cleavage. Nature 551(7681):464–471PubMedPubMedCentralCrossRef Gaudelli NM, Komor AC, Rees HA, Packer MS, Badran AH, Bryson DI et al (2017) Programmable base editing of A*T to G*C in genomic DNA without DNA cleavage. Nature 551(7681):464–471PubMedPubMedCentralCrossRef
94.
95.
go back to reference Biagioni A, Laurenzana A, Margheri F, Chilla A, Fibbi G, Del Rosso M (2018) Delivery systems of CRISPR/Cas9-based cancer gene therapy. J Biol Eng 12:33PubMedPubMedCentralCrossRef Biagioni A, Laurenzana A, Margheri F, Chilla A, Fibbi G, Del Rosso M (2018) Delivery systems of CRISPR/Cas9-based cancer gene therapy. J Biol Eng 12:33PubMedPubMedCentralCrossRef
96.
go back to reference Drouin LM, Agbandje-McKenna M (2013) Adeno-associated virus structural biology as a tool in vector development. Fut Virol 8(12):1183–1199CrossRef Drouin LM, Agbandje-McKenna M (2013) Adeno-associated virus structural biology as a tool in vector development. Fut Virol 8(12):1183–1199CrossRef
97.
go back to reference Deverman BE, Pravdo PL, Simpson BP, Kumar SR, Chan KY, Banerjee A et al (2016) Cre-dependent selection yields AAV variants for widespread gene transfer to the adult brain. Nat Biotechnol 34(2):204–209PubMedPubMedCentralCrossRef Deverman BE, Pravdo PL, Simpson BP, Kumar SR, Chan KY, Banerjee A et al (2016) Cre-dependent selection yields AAV variants for widespread gene transfer to the adult brain. Nat Biotechnol 34(2):204–209PubMedPubMedCentralCrossRef
98.
go back to reference Choudhury SR, Fitzpatrick Z, Harris AF, Maitland SA, Ferreira JS, Zhang Y et al (2016) In vivo selection yields AAV-B1 capsid for central nervous system and muscle gene therapy. Mol Ther 24(7):1247–1257PubMedPubMedCentralCrossRef Choudhury SR, Fitzpatrick Z, Harris AF, Maitland SA, Ferreira JS, Zhang Y et al (2016) In vivo selection yields AAV-B1 capsid for central nervous system and muscle gene therapy. Mol Ther 24(7):1247–1257PubMedPubMedCentralCrossRef
99.
go back to reference Tervo DG, Hwang BY, Viswanathan S, Gaj T, Lavzin M, Ritola KD et al (2016) A designer AAV variant permits efficient retrograde access to projection neurons. Neuron 92(2):372–382PubMedPubMedCentralCrossRef Tervo DG, Hwang BY, Viswanathan S, Gaj T, Lavzin M, Ritola KD et al (2016) A designer AAV variant permits efficient retrograde access to projection neurons. Neuron 92(2):372–382PubMedPubMedCentralCrossRef
100.
go back to reference Lai Y, Yue Y, Liu M, Ghosh A, Engelhardt JF, Chamberlain JS et al (2005) Efficient in vivo gene expression by trans-splicing adeno-associated viral vectors. Nat Biotechnol 23(11):1435–1439PubMedPubMedCentralCrossRef Lai Y, Yue Y, Liu M, Ghosh A, Engelhardt JF, Chamberlain JS et al (2005) Efficient in vivo gene expression by trans-splicing adeno-associated viral vectors. Nat Biotechnol 23(11):1435–1439PubMedPubMedCentralCrossRef
101.
go back to reference Philippe S, Sarkis C, Barkats M, Mammeri H, Ladroue C, Petit C et al (2006) Lentiviral vectors with a defective integrase allow efficient and sustained transgene expression in vitro and in vivo. Proc Natl Acad Sci USA 103(47):17684–17689PubMedCrossRefPubMedCentral Philippe S, Sarkis C, Barkats M, Mammeri H, Ladroue C, Petit C et al (2006) Lentiviral vectors with a defective integrase allow efficient and sustained transgene expression in vitro and in vivo. Proc Natl Acad Sci USA 103(47):17684–17689PubMedCrossRefPubMedCentral
102.
go back to reference Yanez-Munoz RJ, Balaggan KS, MacNeil A, Howe SJ, Schmidt M, Smith AJ et al (2006) Effective gene therapy with nonintegrating lentiviral vectors. Nat Med 12(3):348–353PubMedCrossRef Yanez-Munoz RJ, Balaggan KS, MacNeil A, Howe SJ, Schmidt M, Smith AJ et al (2006) Effective gene therapy with nonintegrating lentiviral vectors. Nat Med 12(3):348–353PubMedCrossRef
103.
go back to reference Amalfitano A, Hauser MA, Hu H, Serra D, Begy CR, Chamberlain JS (1998) Production and characterization of improved adenovirus vectors with the E1, E2b, and E3 genes deleted. J Virol 72(2):926–933PubMedPubMedCentral Amalfitano A, Hauser MA, Hu H, Serra D, Begy CR, Chamberlain JS (1998) Production and characterization of improved adenovirus vectors with the E1, E2b, and E3 genes deleted. J Virol 72(2):926–933PubMedPubMedCentral
104.
go back to reference Lusky M, Christ M, Rittner K, Dieterle A, Dreyer D, Mourot B et al (1998) In vitro and in vivo biology of recombinant adenovirus vectors with E1, E1/E2A, or E1/E4 deleted. J Virol 72(3):2022–2032PubMedPubMedCentral Lusky M, Christ M, Rittner K, Dieterle A, Dreyer D, Mourot B et al (1998) In vitro and in vivo biology of recombinant adenovirus vectors with E1, E1/E2A, or E1/E4 deleted. J Virol 72(3):2022–2032PubMedPubMedCentral
105.
go back to reference Zuris JA, Thompson DB, Shu Y, Guilinger JP, Bessen JL, Hu JH et al (2015) Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo. Nat Biotechnol 33(1):73–80PubMedCrossRef Zuris JA, Thompson DB, Shu Y, Guilinger JP, Bessen JL, Hu JH et al (2015) Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo. Nat Biotechnol 33(1):73–80PubMedCrossRef
106.
go back to reference Wang M, Zuris JA, Meng F, Rees H, Sun S, Deng P et al (2016) Efficient delivery of genome-editing proteins using bioreducible lipid nanoparticles. Proc Natl Acad Sci USA 113(11):2868–2873PubMedCrossRefPubMedCentral Wang M, Zuris JA, Meng F, Rees H, Sun S, Deng P et al (2016) Efficient delivery of genome-editing proteins using bioreducible lipid nanoparticles. Proc Natl Acad Sci USA 113(11):2868–2873PubMedCrossRefPubMedCentral
107.
go back to reference Dong Y, Love KT, Dorkin JR, Sirirungruang S, Zhang Y, Chen D et al (2014) Lipopeptide nanoparticles for potent and selective siRNA delivery in rodents and nonhuman primates. Proc Natl Acad Sci USA 111(11):3955–3960PubMedCrossRefPubMedCentral Dong Y, Love KT, Dorkin JR, Sirirungruang S, Zhang Y, Chen D et al (2014) Lipopeptide nanoparticles for potent and selective siRNA delivery in rodents and nonhuman primates. Proc Natl Acad Sci USA 111(11):3955–3960PubMedCrossRefPubMedCentral
108.
go back to reference Yin H, Song CQ, Suresh S, Wu Q, Walsh S, Rhym LH et al (2017) Structure-guided chemical modification of guide RNA enables potent non-viral in vivo genome editing. Nat Biotechnol 35(12):1179–1187PubMedPubMedCentralCrossRef Yin H, Song CQ, Suresh S, Wu Q, Walsh S, Rhym LH et al (2017) Structure-guided chemical modification of guide RNA enables potent non-viral in vivo genome editing. Nat Biotechnol 35(12):1179–1187PubMedPubMedCentralCrossRef
109.
go back to reference Dow LE, Fisher J, O’Rourke KP, Muley A, Kastenhuber ER, Livshits G et al (2015) Inducible in vivo genome editing with CRISPR-Cas9. Nat Biotechnol 33(4):390–394PubMedPubMedCentralCrossRef Dow LE, Fisher J, O’Rourke KP, Muley A, Kastenhuber ER, Livshits G et al (2015) Inducible in vivo genome editing with CRISPR-Cas9. Nat Biotechnol 33(4):390–394PubMedPubMedCentralCrossRef
110.
go back to reference Cao J, Wu L, Zhang SM, Lu M, Cheung WK, Cai W et al (2016) An easy and efficient inducible CRISPR/Cas9 platform with improved specificity for multiple gene targeting. Nucleic Acids Res 44(19):e149PubMedPubMedCentral Cao J, Wu L, Zhang SM, Lu M, Cheung WK, Cai W et al (2016) An easy and efficient inducible CRISPR/Cas9 platform with improved specificity for multiple gene targeting. Nucleic Acids Res 44(19):e149PubMedPubMedCentral
111.
go back to reference Gonzalez F, Zhu Z, Shi ZD, Lelli K, Verma N, Li QV et al (2014) An iCRISPR platform for rapid, multiplexable, and inducible genome editing in human pluripotent stem cells. Cell Stem Cell 15(2):215–226PubMedPubMedCentralCrossRef Gonzalez F, Zhu Z, Shi ZD, Lelli K, Verma N, Li QV et al (2014) An iCRISPR platform for rapid, multiplexable, and inducible genome editing in human pluripotent stem cells. Cell Stem Cell 15(2):215–226PubMedPubMedCentralCrossRef
112.
go back to reference Pawluk A, Amrani N, Zhang Y, Garcia B, Hidalgo-Reyes Y, Lee J et al (2016) Naturally occurring off-switches for CRISPR-Cas9. Cell 167(7):1829–1838.e9PubMedPubMedCentralCrossRef Pawluk A, Amrani N, Zhang Y, Garcia B, Hidalgo-Reyes Y, Lee J et al (2016) Naturally occurring off-switches for CRISPR-Cas9. Cell 167(7):1829–1838.e9PubMedPubMedCentralCrossRef
113.
go back to reference Shen B, Zhang W, Zhang J, Zhou J, Wang J, Chen L et al (2014) Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects. Nat Methods 11(4):399–402PubMedCrossRef Shen B, Zhang W, Zhang J, Zhou J, Wang J, Chen L et al (2014) Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects. Nat Methods 11(4):399–402PubMedCrossRef
114.
go back to reference Ran FA, Hsu PD, Lin CY, Gootenberg JS, Konermann S, Trevino AE et al (2013) Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154(6):1380–1389PubMedPubMedCentralCrossRef Ran FA, Hsu PD, Lin CY, Gootenberg JS, Konermann S, Trevino AE et al (2013) Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154(6):1380–1389PubMedPubMedCentralCrossRef
115.
go back to reference Tsai SQ, Wyvekens N, Khayter C, Foden JA, Thapar V, Reyon D et al (2014) Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nat Biotechnol 32(6):569–576PubMedPubMedCentralCrossRef Tsai SQ, Wyvekens N, Khayter C, Foden JA, Thapar V, Reyon D et al (2014) Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nat Biotechnol 32(6):569–576PubMedPubMedCentralCrossRef
116.
go back to reference Guilinger JP, Thompson DB, Liu DR (2014) Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat Biotechnol 32(6):577–582PubMedPubMedCentralCrossRef Guilinger JP, Thompson DB, Liu DR (2014) Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat Biotechnol 32(6):577–582PubMedPubMedCentralCrossRef
117.
go back to reference Wright AV, Sternberg SH, Taylor DW, Staahl BT, Bardales JA, Kornfeld JE et al (2015) Rational design of a split-Cas9 enzyme complex. Proc Natl Acad Sci USA 112(10):2984–2989PubMedCrossRefPubMedCentral Wright AV, Sternberg SH, Taylor DW, Staahl BT, Bardales JA, Kornfeld JE et al (2015) Rational design of a split-Cas9 enzyme complex. Proc Natl Acad Sci USA 112(10):2984–2989PubMedCrossRefPubMedCentral
118.
go back to reference Zetsche B, Volz SE, Zhang F (2015) A split-Cas9 architecture for inducible genome editing and transcription modulation. Nat Biotechnol 33(2):139–142PubMedCrossRef Zetsche B, Volz SE, Zhang F (2015) A split-Cas9 architecture for inducible genome editing and transcription modulation. Nat Biotechnol 33(2):139–142PubMedCrossRef
121.
go back to reference Cathomen T, Schule S, Schussler-Lenz M, Abou-El-Enein M (2019) The human genome editing race: loosening regulatory standards for commercial advantage? Trends Biotechnol 37(2):120–123PubMedCrossRef Cathomen T, Schule S, Schussler-Lenz M, Abou-El-Enein M (2019) The human genome editing race: loosening regulatory standards for commercial advantage? Trends Biotechnol 37(2):120–123PubMedCrossRef
Metadata
Title
From fiction to science: clinical potentials and regulatory considerations of gene editing
Authors
Maria Schacker
Diane Seimetz
Publication date
01-12-2019
Publisher
Springer Berlin Heidelberg
Published in
Clinical and Translational Medicine / Issue 1/2019
Electronic ISSN: 2001-1326
DOI
https://doi.org/10.1186/s40169-019-0244-7

Other articles of this Issue 1/2019

Clinical and Translational Medicine 1/2019 Go to the issue