Skip to main content
Top
Published in: Clinical and Translational Medicine 1/2018

Open Access 01-12-2018 | Review

Combination therapy to checkmate Glioblastoma: clinical challenges and advances

Authors: Debarati Ghosh, Saikat Nandi, Sonali Bhattacharjee

Published in: Clinical and Translational Medicine | Issue 1/2018

Login to get access

Abstract

Combination therapy is increasingly becoming the cornerstone of current day antitumor therapy. Glioblastoma multiforme is an aggressive brain tumor with a dismal median survival post diagnosis and a high rate of disease recurrence. The poor prognosis can be attributed to unique treatment limitations, which include the infiltrative nature of tumor cells, failure of anti-glioma drugs to cross the blood–brain barrier, tumor heterogeneity and the highly metastatic and angiogenic nature of the tumor making cells resistant to chemotherapy. Combination therapy approach is being developed against glioblastoma with new innovative combination drug regimens being tested in preclinical and clinical trials. In this review, we discuss the pathophysiology of glioblastoma, diagnostic markers, therapeutic targeting strategies, current treatment limitations, novel combination therapies in the context of current treatment options and the ongoing clinical trials for glioblastoma therapy.
Literature
1.
go back to reference Manolagas SC, Kronenberg HM (2014) Reproducibility of results in preclinical studies: a perspective from the bone field. J Bone Miner Res 29(10):2131–2140PubMedCrossRef Manolagas SC, Kronenberg HM (2014) Reproducibility of results in preclinical studies: a perspective from the bone field. J Bone Miner Res 29(10):2131–2140PubMedCrossRef
2.
go back to reference Cunanan KM et al (2017) Basket trials in oncology: a trade-off between complexity and efficiency. J Clin Oncol 35(3):271–273PubMedCrossRef Cunanan KM et al (2017) Basket trials in oncology: a trade-off between complexity and efficiency. J Clin Oncol 35(3):271–273PubMedCrossRef
3.
4.
go back to reference Coleman CN et al (2016) Improving the predictive value of preclinical studies in support of radiotherapy clinical trials. Clin Cancer Res 22(13):3138–3147PubMedPubMedCentralCrossRef Coleman CN et al (2016) Improving the predictive value of preclinical studies in support of radiotherapy clinical trials. Clin Cancer Res 22(13):3138–3147PubMedPubMedCentralCrossRef
5.
go back to reference Miles D, von Minckwitz G, Seidman AD (2002) Combination versus sequential single-agent therapy in metastatic breast cancer. Oncologist 7(Suppl 6):13–19PubMed Miles D, von Minckwitz G, Seidman AD (2002) Combination versus sequential single-agent therapy in metastatic breast cancer. Oncologist 7(Suppl 6):13–19PubMed
6.
go back to reference Bayat Mokhtari R et al (2017) Combination therapy in combating cancer. Oncotarget 8(23):38022–38043PubMed Bayat Mokhtari R et al (2017) Combination therapy in combating cancer. Oncotarget 8(23):38022–38043PubMed
7.
go back to reference Paolillo M, Boselli C, Schinelli S (2018) Glioblastoma under siege: an overview of current therapeutic strategies. Brain Sci 8(1):15PubMedCentralCrossRef Paolillo M, Boselli C, Schinelli S (2018) Glioblastoma under siege: an overview of current therapeutic strategies. Brain Sci 8(1):15PubMedCentralCrossRef
8.
go back to reference Malkki H (2016) Trial Watch: glioblastoma vaccine therapy disappointment in Phase III trial. Nat Rev Neurol 12(4):190PubMedCrossRef Malkki H (2016) Trial Watch: glioblastoma vaccine therapy disappointment in Phase III trial. Nat Rev Neurol 12(4):190PubMedCrossRef
9.
go back to reference Polivka J Jr et al (2017) Advances in experimental targeted therapy and immunotherapy for patients with glioblastoma multiforme. Anticancer Res 37(1):21–33PubMedCrossRef Polivka J Jr et al (2017) Advances in experimental targeted therapy and immunotherapy for patients with glioblastoma multiforme. Anticancer Res 37(1):21–33PubMedCrossRef
11.
go back to reference Ostrom QT et al (2013) CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2006–2010. Neuro Oncol 15(Suppl 2):ii1–ii56PubMedPubMedCentralCrossRef Ostrom QT et al (2013) CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2006–2010. Neuro Oncol 15(Suppl 2):ii1–ii56PubMedPubMedCentralCrossRef
12.
go back to reference Koshy M et al (2012) Improved survival time trends for glioblastoma using the SEER 17 population-based registries. J Neurooncol 107(1):207–212PubMedCrossRef Koshy M et al (2012) Improved survival time trends for glioblastoma using the SEER 17 population-based registries. J Neurooncol 107(1):207–212PubMedCrossRef
14.
go back to reference Ohgaki H, Kleihues P (2009) Genetic alterations and signaling pathways in the evolution of gliomas. Cancer Sci 100(12):2235–2241PubMedCrossRef Ohgaki H, Kleihues P (2009) Genetic alterations and signaling pathways in the evolution of gliomas. Cancer Sci 100(12):2235–2241PubMedCrossRef
15.
go back to reference Ohgaki H et al (2004) Genetic pathways to glioblastoma: a population-based study. Cancer Res 64(19):6892–6899PubMedCrossRef Ohgaki H et al (2004) Genetic pathways to glioblastoma: a population-based study. Cancer Res 64(19):6892–6899PubMedCrossRef
16.
17.
18.
go back to reference Verhaak RG et al (2010) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17(1):98–110PubMedPubMedCentralCrossRef Verhaak RG et al (2010) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17(1):98–110PubMedPubMedCentralCrossRef
20.
go back to reference Phillips HS et al (2006) Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 9(3):157–173PubMedCrossRef Phillips HS et al (2006) Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 9(3):157–173PubMedCrossRef
21.
go back to reference Louis DN et al (2016) The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131(6):803–820PubMedCrossRef Louis DN et al (2016) The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131(6):803–820PubMedCrossRef
22.
go back to reference Ohgaki H, Kleihues P (2013) The definition of primary and secondary glioblastoma. Clin Cancer Res 19(4):764–772PubMedCrossRef Ohgaki H, Kleihues P (2013) The definition of primary and secondary glioblastoma. Clin Cancer Res 19(4):764–772PubMedCrossRef
24.
go back to reference Song XY et al (2011) Glioblastoma with PNET-like components has a higher frequency of isocitrate dehydrogenase 1 (IDH1) mutation and likely a better prognosis than primary glioblastoma. Int J Clin Exp Pathol 4(7):651–660PubMedPubMedCentral Song XY et al (2011) Glioblastoma with PNET-like components has a higher frequency of isocitrate dehydrogenase 1 (IDH1) mutation and likely a better prognosis than primary glioblastoma. Int J Clin Exp Pathol 4(7):651–660PubMedPubMedCentral
25.
go back to reference Schittenhelm J, Psaras T (2010) Glioblastoma with granular cell astrocytoma features: a case report and literature review. Clin Neuropathol 29(5):323–329PubMedCrossRef Schittenhelm J, Psaras T (2010) Glioblastoma with granular cell astrocytoma features: a case report and literature review. Clin Neuropathol 29(5):323–329PubMedCrossRef
28.
go back to reference Hegi ME et al (2005) MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 352(10):997–1003PubMedCrossRef Hegi ME et al (2005) MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 352(10):997–1003PubMedCrossRef
29.
go back to reference Nakagawachi T et al (2003) Silencing effect of CpG island hypermethylation and histone modifications on O6-methylguanine-DNA methyltransferase (MGMT) gene expression in human cancer. Oncogene 22(55):8835–8844PubMedCrossRef Nakagawachi T et al (2003) Silencing effect of CpG island hypermethylation and histone modifications on O6-methylguanine-DNA methyltransferase (MGMT) gene expression in human cancer. Oncogene 22(55):8835–8844PubMedCrossRef
30.
go back to reference Wick W et al (2014) MGMT testing—the challenges for biomarker-based glioma treatment. Nat Rev Neurol 10(7):372–385PubMedCrossRef Wick W et al (2014) MGMT testing—the challenges for biomarker-based glioma treatment. Nat Rev Neurol 10(7):372–385PubMedCrossRef
31.
32.
33.
go back to reference Manuel JM et al (2016) Role of concurrent methylation pattern of MGMT, TP53 and CDKN2A genes in the prognosis of high grade glioma. J Carcinog Mutagen 7(1):2CrossRef Manuel JM et al (2016) Role of concurrent methylation pattern of MGMT, TP53 and CDKN2A genes in the prognosis of high grade glioma. J Carcinog Mutagen 7(1):2CrossRef
35.
go back to reference Shinojima N et al (2003) Prognostic value of epidermal growth factor receptor in patients with glioblastoma multiforme. Cancer Res 63(20):6962–6970PubMed Shinojima N et al (2003) Prognostic value of epidermal growth factor receptor in patients with glioblastoma multiforme. Cancer Res 63(20):6962–6970PubMed
37.
go back to reference Lai A et al (2011) Phase II study of bevacizumab plus temozolomide during and after radiation therapy for patients with newly diagnosed glioblastoma multiforme. J Clin Oncol 29(2):142–148PubMedCrossRef Lai A et al (2011) Phase II study of bevacizumab plus temozolomide during and after radiation therapy for patients with newly diagnosed glioblastoma multiforme. J Clin Oncol 29(2):142–148PubMedCrossRef
38.
go back to reference Malta TM et al (2018) Glioma CpG island methylator phenotype (G-CIMP): biological and clinical implications. Neuro Oncol 20(5):608–620PubMedCrossRef Malta TM et al (2018) Glioma CpG island methylator phenotype (G-CIMP): biological and clinical implications. Neuro Oncol 20(5):608–620PubMedCrossRef
39.
42.
go back to reference Hill C, Hunter SB, Brat DJ (2003) Genetic markers in glioblastoma: prognostic significance and future therapeutic implications—Commentary. Adv Anat Pathol 10(4):212–217PubMedCrossRef Hill C, Hunter SB, Brat DJ (2003) Genetic markers in glioblastoma: prognostic significance and future therapeutic implications—Commentary. Adv Anat Pathol 10(4):212–217PubMedCrossRef
44.
go back to reference Koschmann C, Lowenstein PR, Castro MG (2016) ATRX mutations and glioblastoma: impaired DNA damage repair, alternative lengthening of telomeres, and genetic instability. Mol Cell Oncol 3(3):e1167158PubMedPubMedCentralCrossRef Koschmann C, Lowenstein PR, Castro MG (2016) ATRX mutations and glioblastoma: impaired DNA damage repair, alternative lengthening of telomeres, and genetic instability. Mol Cell Oncol 3(3):e1167158PubMedPubMedCentralCrossRef
45.
go back to reference Wiestler B et al (2013) ATRX loss refines the classification of anaplastic gliomas and identifies a subgroup of IDH mutant astrocytic tumors with better prognosis. Acta Neuropathol 126(3):443–451PubMedCrossRef Wiestler B et al (2013) ATRX loss refines the classification of anaplastic gliomas and identifies a subgroup of IDH mutant astrocytic tumors with better prognosis. Acta Neuropathol 126(3):443–451PubMedCrossRef
48.
go back to reference Hu N, Richards R, Jensen R (2016) Role of chromosomal 1p/19q co-deletion on the prognosis of oligodendrogliomas: a systematic review and meta-analysis. Interdiscip Neurosurg 5:58–63CrossRef Hu N, Richards R, Jensen R (2016) Role of chromosomal 1p/19q co-deletion on the prognosis of oligodendrogliomas: a systematic review and meta-analysis. Interdiscip Neurosurg 5:58–63CrossRef
50.
go back to reference Wang Q et al (2017) Tumor evolution of glioma-intrinsic gene expression subtypes associates with immunological changes in the microenvironment. Cancer Cell 32(1):42–56.e6PubMedPubMedCentralCrossRef Wang Q et al (2017) Tumor evolution of glioma-intrinsic gene expression subtypes associates with immunological changes in the microenvironment. Cancer Cell 32(1):42–56.e6PubMedPubMedCentralCrossRef
51.
go back to reference Stupp R et al (2009) Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10(5):459–466PubMedCrossRef Stupp R et al (2009) Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10(5):459–466PubMedCrossRef
52.
go back to reference Singh SK et al (2004) Identification of human brain tumour initiating cells. Nature 432(7015):396–401PubMedCrossRef Singh SK et al (2004) Identification of human brain tumour initiating cells. Nature 432(7015):396–401PubMedCrossRef
54.
go back to reference Bao S et al (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444(7120):756–760PubMedCrossRef Bao S et al (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444(7120):756–760PubMedCrossRef
56.
57.
go back to reference Qazi MA et al (2017) Intratumoral heterogeneity: pathways to treatment resistance and relapse in human glioblastoma. Ann Oncol 28(7):1448–1456PubMedCrossRef Qazi MA et al (2017) Intratumoral heterogeneity: pathways to treatment resistance and relapse in human glioblastoma. Ann Oncol 28(7):1448–1456PubMedCrossRef
58.
go back to reference Osuka S et al (2013) IGF1 receptor signaling regulates adaptive radioprotection in glioma stem cells. Stem Cells 31(4):627–640PubMedCrossRef Osuka S et al (2013) IGF1 receptor signaling regulates adaptive radioprotection in glioma stem cells. Stem Cells 31(4):627–640PubMedCrossRef
60.
go back to reference Sottoriva A et al (2013) Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics. Proc Natl Acad Sci USA 110(10):4009–4014PubMedCrossRefPubMedCentral Sottoriva A et al (2013) Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics. Proc Natl Acad Sci USA 110(10):4009–4014PubMedCrossRefPubMedCentral
61.
go back to reference Inda MD et al (2010) Tumor heterogeneity is an active process maintained by a mutant EGFR-induced cytokine circuit in glioblastoma. Genes Dev 24(16):1731–1745PubMedPubMedCentralCrossRef Inda MD et al (2010) Tumor heterogeneity is an active process maintained by a mutant EGFR-induced cytokine circuit in glioblastoma. Genes Dev 24(16):1731–1745PubMedPubMedCentralCrossRef
63.
go back to reference Reinartz R et al (2017) Functional subclone profiling for prediction of treatment-induced intratumor population shifts and discovery of rational drug combinations in human glioblastoma. Clin Cancer Res 23(2):562–574PubMedCrossRef Reinartz R et al (2017) Functional subclone profiling for prediction of treatment-induced intratumor population shifts and discovery of rational drug combinations in human glioblastoma. Clin Cancer Res 23(2):562–574PubMedCrossRef
64.
go back to reference Venere M et al (2015) The mitotic kinesin KIF11 is a driver of invasion, proliferation, and self-renewal in glioblastoma. Sci Transl Med. 7(304):304ra143PubMedPubMedCentralCrossRef Venere M et al (2015) The mitotic kinesin KIF11 is a driver of invasion, proliferation, and self-renewal in glioblastoma. Sci Transl Med. 7(304):304ra143PubMedPubMedCentralCrossRef
65.
go back to reference Kim H et al (2015) Whole-genome and multisector exome sequencing of primary and post-treatment glioblastoma reveals patterns of tumor evolution. Genome Res 25(3):316–327PubMedPubMedCentralCrossRef Kim H et al (2015) Whole-genome and multisector exome sequencing of primary and post-treatment glioblastoma reveals patterns of tumor evolution. Genome Res 25(3):316–327PubMedPubMedCentralCrossRef
66.
go back to reference Bhat KPL et al (2013) Mesenchymal differentiation mediated by NF-kappaB promotes radiation resistance in glioblastoma. Cancer Cell 24(3):331–346PubMedCrossRef Bhat KPL et al (2013) Mesenchymal differentiation mediated by NF-kappaB promotes radiation resistance in glioblastoma. Cancer Cell 24(3):331–346PubMedCrossRef
67.
go back to reference Wang R et al (2010) Glioblastoma stem-like cells give rise to tumour endothelium. Nature 468(7325):829–833PubMedCrossRef Wang R et al (2010) Glioblastoma stem-like cells give rise to tumour endothelium. Nature 468(7325):829–833PubMedCrossRef
70.
go back to reference Hjelmeland AB et al (2011) Acidic stress promotes a glioma stem cell phenotype. Cell Death Differ 18(5):829–840PubMedCrossRef Hjelmeland AB et al (2011) Acidic stress promotes a glioma stem cell phenotype. Cell Death Differ 18(5):829–840PubMedCrossRef
71.
go back to reference Flavahan WA et al (2016) Insulator dysfunction and oncogene activation in IDH mutant gliomas. Nature 529(7584):110–114PubMedCrossRef Flavahan WA et al (2016) Insulator dysfunction and oncogene activation in IDH mutant gliomas. Nature 529(7584):110–114PubMedCrossRef
72.
go back to reference Hegi ME et al (2008) Correlation of O6-methylguanine methyltransferase (MGMT) promoter methylation with clinical outcomes in glioblastoma and clinical strategies to modulate MGMT activity. J Clin Oncol 26(25):4189–4199PubMedCrossRef Hegi ME et al (2008) Correlation of O6-methylguanine methyltransferase (MGMT) promoter methylation with clinical outcomes in glioblastoma and clinical strategies to modulate MGMT activity. J Clin Oncol 26(25):4189–4199PubMedCrossRef
73.
go back to reference Stommel JM et al (2007) Coactivation of receptor tyrosine kinases affects the response of tumor cells to targeted therapies. Science 318(5848):287–290PubMedCrossRef Stommel JM et al (2007) Coactivation of receptor tyrosine kinases affects the response of tumor cells to targeted therapies. Science 318(5848):287–290PubMedCrossRef
74.
go back to reference Calabrese C et al (2007) A perivascular niche for brain tumor stem cells. Cancer Cell 11(1):69–82PubMedCrossRef Calabrese C et al (2007) A perivascular niche for brain tumor stem cells. Cancer Cell 11(1):69–82PubMedCrossRef
76.
go back to reference Anjum K et al (2017) Current status and future therapeutic perspectives of glioblastoma multiforme (GBM) therapy: a review. Biomed Pharmacother 92:681–689PubMedCrossRef Anjum K et al (2017) Current status and future therapeutic perspectives of glioblastoma multiforme (GBM) therapy: a review. Biomed Pharmacother 92:681–689PubMedCrossRef
78.
go back to reference Chowdhury FA et al (2018) Therapeutic potential of thymoquinone in glioblastoma treatment: targeting major gliomagenesis signaling pathways. Biomed Res Int 2018:4010629PubMedPubMedCentralCrossRef Chowdhury FA et al (2018) Therapeutic potential of thymoquinone in glioblastoma treatment: targeting major gliomagenesis signaling pathways. Biomed Res Int 2018:4010629PubMedPubMedCentralCrossRef
79.
80.
81.
go back to reference Shibahara I et al (2013) The expression status of CD133 is associated with the pattern and timing of primary glioblastoma recurrence. Neuro Oncol 15(9):1151–1159PubMedPubMedCentralCrossRef Shibahara I et al (2013) The expression status of CD133 is associated with the pattern and timing of primary glioblastoma recurrence. Neuro Oncol 15(9):1151–1159PubMedPubMedCentralCrossRef
82.
go back to reference Brescia P et al (2013) CD133 is essential for glioblastoma stem cell maintenance. Stem Cells 31(5):857–869PubMedCrossRef Brescia P et al (2013) CD133 is essential for glioblastoma stem cell maintenance. Stem Cells 31(5):857–869PubMedCrossRef
83.
go back to reference Wang CH et al (2011) Photothermolysis of glioblastoma stem-like cells targeted by carbon nanotubes conjugated with CD133 monoclonal antibody. Nanomedicine 7(1):69–79PubMedCrossRef Wang CH et al (2011) Photothermolysis of glioblastoma stem-like cells targeted by carbon nanotubes conjugated with CD133 monoclonal antibody. Nanomedicine 7(1):69–79PubMedCrossRef
84.
go back to reference Shin DH et al (2015) Synergistic effect of immunoliposomal gemcitabine and bevacizumab in glioblastoma stem cell-targeted therapy. J Biomed Nanotechnol 11(11):1989–2002PubMedCrossRef Shin DH et al (2015) Synergistic effect of immunoliposomal gemcitabine and bevacizumab in glioblastoma stem cell-targeted therapy. J Biomed Nanotechnol 11(11):1989–2002PubMedCrossRef
86.
go back to reference Fan X et al (2010) NOTCH pathway blockade depletes CD133-positive glioblastoma cells and inhibits growth of tumor neurospheres and xenografts. Stem Cells 28(1):5–16PubMedPubMedCentral Fan X et al (2010) NOTCH pathway blockade depletes CD133-positive glioblastoma cells and inhibits growth of tumor neurospheres and xenografts. Stem Cells 28(1):5–16PubMedPubMedCentral
88.
go back to reference Guryanova OA et al (2011) Nonreceptor tyrosine kinase BMX maintains self-renewal and tumorigenic potential of glioblastoma stem cells by activating STAT3. Cancer Cell 19(4):498–511PubMedPubMedCentralCrossRef Guryanova OA et al (2011) Nonreceptor tyrosine kinase BMX maintains self-renewal and tumorigenic potential of glioblastoma stem cells by activating STAT3. Cancer Cell 19(4):498–511PubMedPubMedCentralCrossRef
89.
90.
go back to reference Chung AS, Ferrara N (2011) Developmental and pathological angiogenesis. Annu Rev Cell Dev Biol 27:563–584PubMedCrossRef Chung AS, Ferrara N (2011) Developmental and pathological angiogenesis. Annu Rev Cell Dev Biol 27:563–584PubMedCrossRef
91.
92.
go back to reference Zhou W et al (2015) Periostin secreted by glioblastoma stem cells recruits M2 tumour-associated macrophages and promotes malignant growth. Nat Cell Biol 17(2):170–182PubMedPubMedCentralCrossRef Zhou W et al (2015) Periostin secreted by glioblastoma stem cells recruits M2 tumour-associated macrophages and promotes malignant growth. Nat Cell Biol 17(2):170–182PubMedPubMedCentralCrossRef
93.
go back to reference Bhattacharjee S, Nandi S (2017) Synthetic lethality in DNA repair network: a novel avenue in targeted cancer therapy and combination therapeutics. IUBMB Life 69(12):929–937PubMedCrossRef Bhattacharjee S, Nandi S (2017) Synthetic lethality in DNA repair network: a novel avenue in targeted cancer therapy and combination therapeutics. IUBMB Life 69(12):929–937PubMedCrossRef
94.
go back to reference Bhattacharjee S, Nandi S (2017) DNA damage response and cancer therapeutics through the lens of the Fanconi Anemia DNA repair pathway. Cell Commun Signal 15(1):41PubMedPubMedCentralCrossRef Bhattacharjee S, Nandi S (2017) DNA damage response and cancer therapeutics through the lens of the Fanconi Anemia DNA repair pathway. Cell Commun Signal 15(1):41PubMedPubMedCentralCrossRef
95.
go back to reference Bhattacharjee S, Nandi S (2016) Choices have consequences: the nexus between DNA repair pathways and genomic instability in cancer. Clin Transl Med 5(1):45PubMedPubMedCentralCrossRef Bhattacharjee S, Nandi S (2016) Choices have consequences: the nexus between DNA repair pathways and genomic instability in cancer. Clin Transl Med 5(1):45PubMedPubMedCentralCrossRef
96.
go back to reference Bhattacharjee S, Nandi S (2018) Rare genetic diseases with defects in DNA repair: opportunities and challenges in orphan drug development for targeted cancer therapy. Cancers (Basel) 10(9):298CrossRef Bhattacharjee S, Nandi S (2018) Rare genetic diseases with defects in DNA repair: opportunities and challenges in orphan drug development for targeted cancer therapy. Cancers (Basel) 10(9):298CrossRef
98.
go back to reference Weller M, Steinbach JP, Wick W (2005) Temozolomide: a milestone in the pharmacotherapy of brain tumors. Future Oncol 1(6):747–754PubMedCrossRef Weller M, Steinbach JP, Wick W (2005) Temozolomide: a milestone in the pharmacotherapy of brain tumors. Future Oncol 1(6):747–754PubMedCrossRef
99.
go back to reference Sanderson BJ, Shield AJ (1996) Mutagenic damage to mammalian cells by therapeutic alkylating agents. Mutat Res 355(1–2):41–57PubMedCrossRef Sanderson BJ, Shield AJ (1996) Mutagenic damage to mammalian cells by therapeutic alkylating agents. Mutat Res 355(1–2):41–57PubMedCrossRef
100.
go back to reference Goldwirt L et al (2013) Development of a new UPLC-MSMS method for the determination of temozolomide in mice: application to plasma pharmacokinetics and brain distribution study. Biomed Chromatogr 27(7):889–893PubMedCrossRef Goldwirt L et al (2013) Development of a new UPLC-MSMS method for the determination of temozolomide in mice: application to plasma pharmacokinetics and brain distribution study. Biomed Chromatogr 27(7):889–893PubMedCrossRef
101.
go back to reference Trinh VA, Patel SP, Hwu WJ (2009) The safety of temozolomide in the treatment of malignancies. Expert Opin Drug Saf 8(4):493–499PubMedCrossRef Trinh VA, Patel SP, Hwu WJ (2009) The safety of temozolomide in the treatment of malignancies. Expert Opin Drug Saf 8(4):493–499PubMedCrossRef
102.
go back to reference Choi JS, Kim CS, Berdis A (2018) Inhibition of translesion DNA synthesis as a novel therapeutic strategy to treat brain cancer. Cancer Res 78(4):1083–1096PubMedCrossRef Choi JS, Kim CS, Berdis A (2018) Inhibition of translesion DNA synthesis as a novel therapeutic strategy to treat brain cancer. Cancer Res 78(4):1083–1096PubMedCrossRef
103.
go back to reference Becher OJ et al (2008) Gli activity correlates with tumor grade in platelet-derived growth factor-induced gliomas. Cancer Res 68(7):2241–2249PubMedCrossRef Becher OJ et al (2008) Gli activity correlates with tumor grade in platelet-derived growth factor-induced gliomas. Cancer Res 68(7):2241–2249PubMedCrossRef
104.
go back to reference Singec I et al (2006) Defining the actual sensitivity and specificity of the neurosphere assay in stem cell biology. Nat Methods 3(10):801–806PubMedCrossRef Singec I et al (2006) Defining the actual sensitivity and specificity of the neurosphere assay in stem cell biology. Nat Methods 3(10):801–806PubMedCrossRef
105.
go back to reference Liu YJ et al (2017) Combination therapy with micellarized cyclopamine and temozolomide attenuate glioblastoma growth through Gli1 down-regulation. Oncotarget 8(26):42495–42509PubMedPubMedCentral Liu YJ et al (2017) Combination therapy with micellarized cyclopamine and temozolomide attenuate glioblastoma growth through Gli1 down-regulation. Oncotarget 8(26):42495–42509PubMedPubMedCentral
106.
go back to reference Iorio AL et al (2017) Tumor response of temozolomide in combination with morphine in a xenograft model of human glioblastoma. Oncotarget 8(52):89595–89606PubMedPubMedCentralCrossRef Iorio AL et al (2017) Tumor response of temozolomide in combination with morphine in a xenograft model of human glioblastoma. Oncotarget 8(52):89595–89606PubMedPubMedCentralCrossRef
107.
go back to reference Wang H et al (2017) Combination therapy in a xenograft model of glioblastoma: enhancement of the antitumor activity of temozolomide by an MDM2 antagonist. J Neurosurg 126(2):446–459PubMedCrossRef Wang H et al (2017) Combination therapy in a xenograft model of glioblastoma: enhancement of the antitumor activity of temozolomide by an MDM2 antagonist. J Neurosurg 126(2):446–459PubMedCrossRef
108.
go back to reference Kim SS et al (2015) A tumor-targeting p53 nanodelivery system limits chemoresistance to temozolomide prolonging survival in a mouse model of glioblastoma multiforme. Nanomedicine 11(2):301–311PubMedCrossRef Kim SS et al (2015) A tumor-targeting p53 nanodelivery system limits chemoresistance to temozolomide prolonging survival in a mouse model of glioblastoma multiforme. Nanomedicine 11(2):301–311PubMedCrossRef
109.
go back to reference Lan F et al (2016) Sulforaphane reverses chemo-resistance to temozolomide in glioblastoma cells by NF-kappaB-dependent pathway downregulating MGMT expression. Int J Oncol 48(2):559–568PubMedCrossRef Lan F et al (2016) Sulforaphane reverses chemo-resistance to temozolomide in glioblastoma cells by NF-kappaB-dependent pathway downregulating MGMT expression. Int J Oncol 48(2):559–568PubMedCrossRef
110.
go back to reference Lan F et al (2015) Sulforaphane enhances temozolomide-induced apoptosis because of down-regulation of miR-21 via Wnt/beta-catenin signaling in glioblastoma. J Neurochem 134(5):811–818PubMedCrossRef Lan F et al (2015) Sulforaphane enhances temozolomide-induced apoptosis because of down-regulation of miR-21 via Wnt/beta-catenin signaling in glioblastoma. J Neurochem 134(5):811–818PubMedCrossRef
111.
go back to reference Sinnberg T et al (2009) Inhibition of PI3 K-AKT-mTOR signaling sensitizes melanoma cells to cisplatin and temozolomide. J Invest Dermatol 129(6):1500–1515PubMedCrossRef Sinnberg T et al (2009) Inhibition of PI3 K-AKT-mTOR signaling sensitizes melanoma cells to cisplatin and temozolomide. J Invest Dermatol 129(6):1500–1515PubMedCrossRef
113.
go back to reference Prasad G et al (2011) Inhibition of PI3 K/mTOR pathways in glioblastoma and implications for combination therapy with temozolomide. Neuro Oncol 13(4):384–392PubMedPubMedCentralCrossRef Prasad G et al (2011) Inhibition of PI3 K/mTOR pathways in glioblastoma and implications for combination therapy with temozolomide. Neuro Oncol 13(4):384–392PubMedPubMedCentralCrossRef
114.
go back to reference Lam FC et al (2018) Enhanced efficacy of combined temozolomide and bromodomain inhibitor therapy for gliomas using targeted nanoparticles. Nat Commun 9:1991PubMedPubMedCentralCrossRef Lam FC et al (2018) Enhanced efficacy of combined temozolomide and bromodomain inhibitor therapy for gliomas using targeted nanoparticles. Nat Commun 9:1991PubMedPubMedCentralCrossRef
115.
go back to reference Nitta Y et al (2016) Nimotuzumab enhances temozolomide-induced growth suppression of glioma cells expressing mutant EGFR in vivo. Cancer Med 5(3):486–499PubMedPubMedCentralCrossRef Nitta Y et al (2016) Nimotuzumab enhances temozolomide-induced growth suppression of glioma cells expressing mutant EGFR in vivo. Cancer Med 5(3):486–499PubMedPubMedCentralCrossRef
116.
go back to reference Nonnenmacher L et al (2015) RIST: a potent new combination therapy for glioblastoma. Int J Cancer 136(4):E173–E187PubMedCrossRef Nonnenmacher L et al (2015) RIST: a potent new combination therapy for glioblastoma. Int J Cancer 136(4):E173–E187PubMedCrossRef
117.
go back to reference Lesueur P et al (2017) Poly-(ADP-ribose)-polymerase inhibitors as radiosensitizers: a systematic review of pre-clinical and clinical human studies. Oncotarget 8(40):69105–69124PubMedPubMedCentralCrossRef Lesueur P et al (2017) Poly-(ADP-ribose)-polymerase inhibitors as radiosensitizers: a systematic review of pre-clinical and clinical human studies. Oncotarget 8(40):69105–69124PubMedPubMedCentralCrossRef
118.
go back to reference Lesueur P et al (2018) Radiosensitization effect of talazoparib, a parp inhibitor, on glioblastoma stem cells exposed to low and high linear energy transfer radiation. Sci Rep 8:3664PubMedPubMedCentralCrossRef Lesueur P et al (2018) Radiosensitization effect of talazoparib, a parp inhibitor, on glioblastoma stem cells exposed to low and high linear energy transfer radiation. Sci Rep 8:3664PubMedPubMedCentralCrossRef
120.
go back to reference Parrish KE et al (2015) Efflux transporters at the blood–brain barrier limit delivery and efficacy of cyclin-dependent kinase 4/6 inhibitor palbociclib (PD-0332991) in an orthotopic brain tumor model. J Pharmacol Exp Ther 355(2):264–271PubMedPubMedCentralCrossRef Parrish KE et al (2015) Efflux transporters at the blood–brain barrier limit delivery and efficacy of cyclin-dependent kinase 4/6 inhibitor palbociclib (PD-0332991) in an orthotopic brain tumor model. J Pharmacol Exp Ther 355(2):264–271PubMedPubMedCentralCrossRef
122.
go back to reference Park J et al (2017) Expression of immune checkpoint molecules on tumor infiltrating lymphocytes in glioblastoma multiforme. J Immunol 198(1):196CrossRef Park J et al (2017) Expression of immune checkpoint molecules on tumor infiltrating lymphocytes in glioblastoma multiforme. J Immunol 198(1):196CrossRef
123.
go back to reference Fecci PE et al (2007) Systemic CTLA-4 blockade ameliorates glioma-induced changes to the CD4(+) T cell compartment without affecting regulatory T-cell function. Clin Cancer Res 13(7):2158–2167PubMedCrossRef Fecci PE et al (2007) Systemic CTLA-4 blockade ameliorates glioma-induced changes to the CD4(+) T cell compartment without affecting regulatory T-cell function. Clin Cancer Res 13(7):2158–2167PubMedCrossRef
125.
go back to reference Zeng J et al (2013) Anti-PD-1 blockade and stereotactic radiation produce long-term survival in mice with intracranial gliomas. Int J Radiat Oncol Biol Phys 86(2):343–349PubMedPubMedCentralCrossRef Zeng J et al (2013) Anti-PD-1 blockade and stereotactic radiation produce long-term survival in mice with intracranial gliomas. Int J Radiat Oncol Biol Phys 86(2):343–349PubMedPubMedCentralCrossRef
126.
go back to reference Raychaudhuri B et al (2015) Myeloid derived suppressor cell infiltration of murine and human gliomas is associated with reduction of tumor infiltrating lymphocytes. J Neurooncol 122(2):293–301PubMedCrossRef Raychaudhuri B et al (2015) Myeloid derived suppressor cell infiltration of murine and human gliomas is associated with reduction of tumor infiltrating lymphocytes. J Neurooncol 122(2):293–301PubMedCrossRef
127.
go back to reference Raychaudhuri B et al (2011) Myeloid-derived suppressor cell accumulation and function in patients with newly diagnosed glioblastoma. Neuro Oncol 13(6):591–599PubMedPubMedCentralCrossRef Raychaudhuri B et al (2011) Myeloid-derived suppressor cell accumulation and function in patients with newly diagnosed glioblastoma. Neuro Oncol 13(6):591–599PubMedPubMedCentralCrossRef
128.
go back to reference Kamran N et al (2017) Immunosuppressive myeloid cells’ blockade in the glioma microenvironment enhances the efficacy of immune-stimulatory gene therapy. Mol Ther 25(1):232–248PubMedPubMedCentralCrossRef Kamran N et al (2017) Immunosuppressive myeloid cells’ blockade in the glioma microenvironment enhances the efficacy of immune-stimulatory gene therapy. Mol Ther 25(1):232–248PubMedPubMedCentralCrossRef
129.
go back to reference Jachimczak P et al (1996) Transforming growth factor-beta-mediated autocrine growth regulation of gliomas as detected with phosphorothioate antisense oligonucleotides. Int J Cancer 65(3):332–337PubMedCrossRef Jachimczak P et al (1996) Transforming growth factor-beta-mediated autocrine growth regulation of gliomas as detected with phosphorothioate antisense oligonucleotides. Int J Cancer 65(3):332–337PubMedCrossRef
130.
go back to reference Schneider T et al (2008) Brain tumor therapy by combined vaccination and antisense oligonucleotide delivery with nanoparticles. J Neuroimmunol 195(1–2):21–27PubMedCrossRef Schneider T et al (2008) Brain tumor therapy by combined vaccination and antisense oligonucleotide delivery with nanoparticles. J Neuroimmunol 195(1–2):21–27PubMedCrossRef
131.
go back to reference Mathews Griner LA et al (2014) High-throughput combinatorial screening identifies drugs that cooperate with ibrutinib to kill activated B-cell-like diffuse large B-cell lymphoma cells. Proc Natl Acad Sci USA 111(6):2349–2354PubMedCrossRefPubMedCentral Mathews Griner LA et al (2014) High-throughput combinatorial screening identifies drugs that cooperate with ibrutinib to kill activated B-cell-like diffuse large B-cell lymphoma cells. Proc Natl Acad Sci USA 111(6):2349–2354PubMedCrossRefPubMedCentral
132.
133.
134.
go back to reference Loewe S (1953) The problem of synergism and antagonism of combined drugs. Arzneimittelforschung 3(6):285–290PubMed Loewe S (1953) The problem of synergism and antagonism of combined drugs. Arzneimittelforschung 3(6):285–290PubMed
135.
go back to reference Bliss CI (1939) The toxicity of poisons applied jointly 1. Ann Appl Biol 26(3):585–615CrossRef Bliss CI (1939) The toxicity of poisons applied jointly 1. Ann Appl Biol 26(3):585–615CrossRef
136.
go back to reference Yadav B et al (2015) Searching for drug synergy in complex dose–response landscapes using an interaction potency model. Comput Struct Biotechnol J 13:504–513PubMedPubMedCentralCrossRef Yadav B et al (2015) Searching for drug synergy in complex dose–response landscapes using an interaction potency model. Comput Struct Biotechnol J 13:504–513PubMedPubMedCentralCrossRef
Metadata
Title
Combination therapy to checkmate Glioblastoma: clinical challenges and advances
Authors
Debarati Ghosh
Saikat Nandi
Sonali Bhattacharjee
Publication date
01-12-2018
Publisher
Springer Berlin Heidelberg
Published in
Clinical and Translational Medicine / Issue 1/2018
Electronic ISSN: 2001-1326
DOI
https://doi.org/10.1186/s40169-018-0211-8

Other articles of this Issue 1/2018

Clinical and Translational Medicine 1/2018 Go to the issue