Skip to main content
Top
Published in: Clinical and Translational Medicine 1/2018

Open Access 01-12-2018 | Review

Application of metabolomics to drug discovery and understanding the mechanisms of action of medicinal plants with anti-tuberculosis activity

Authors: Naasson Tuyiringire, Deusdedit Tusubira, Jean-Pierre Munyampundu, Casim Umba Tolo, Claude M. Muvunyi, Patrick Engeu Ogwang

Published in: Clinical and Translational Medicine | Issue 1/2018

Login to get access

Abstract

Human tuberculosis (TB) is amongst the oldest and deadliest human bacterial diseases that pose major health, social and economic burden at a global level. Current regimens for TB treatment are lengthy, expensive and ineffective to emerging drug resistant strains. Thus, there is an urgent need for identification and development of novel TB drugs and drug regimens with comprehensive and specific mechanisms of action. Many medicinal plants are traditionally used for TB treatment. While some of their phytochemical composition has been elucidated, their mechanisms of action are not well understood. Insufficient knowledge on Mycobacterium tuberculosis (M.tb) biology and the complex nature of its infection limit the effectiveness of current screening-based methods used for TB drug discovery. Nonetheless, application of metabolomics tools within the ‘omics’ approaches, could provide an alternative method of elucidating the mechanism of action of medicinal plants. Metabolomics aims at high throughput detection, quantification and identification of metabolites in biological samples. Changes in the concentration of specific metabolites in a biological sample indicate changes in the metabolic pathways. In this paper review and discuss novel methods that involve application of metabolomics to drug discovery and the understanding of mechanisms of action of medicinal plants with anti-TB activity. Current knowledge on TB infection, anti-TB drugs and mechanisms of action are also included. We further highlight metabolism of M. tuberculosis and the potential drug targets, as well as current approaches in the development of anti-TB drugs.
Literature
2.
go back to reference Sasindran SJ, Torrelles JB (2011) Mycobacterium tuberculosis infection and inflammation: what is beneficial for the host and for the bacterium? Front Microbiol 2:1–16CrossRef Sasindran SJ, Torrelles JB (2011) Mycobacterium tuberculosis infection and inflammation: what is beneficial for the host and for the bacterium? Front Microbiol 2:1–16CrossRef
3.
go back to reference WHO (2014) Global tuberculosis report. World Health Organization, Geneva WHO (2014) Global tuberculosis report. World Health Organization, Geneva
4.
go back to reference WHO (2017) Global tuberculosis report. World Health Organization, Geneva WHO (2017) Global tuberculosis report. World Health Organization, Geneva
9.
go back to reference World Health Organization (2016) Global tuberculosis report. World Health Organization, Geneva World Health Organization (2016) Global tuberculosis report. World Health Organization, Geneva
10.
go back to reference McIlleron H, Meintjes G, Burman WJ, Maartens G (2007) Complications of antiretroviral therapy in patients with tuberculosis: drug interactions, toxicity, and immune reconstitution inflammatory syndrome. J Infect Dis 196(Suppl 1):63–75CrossRef McIlleron H, Meintjes G, Burman WJ, Maartens G (2007) Complications of antiretroviral therapy in patients with tuberculosis: drug interactions, toxicity, and immune reconstitution inflammatory syndrome. J Infect Dis 196(Suppl 1):63–75CrossRef
12.
go back to reference Ehrt S, Rhee K (2013) Mycobacterium tuberculosis metabolism and host interaction: mysteries and paradoxes. In: Pieters J, McKinney J (eds) Pathogenesis of Mycobacterium tuberculosis and its interaction with the host organism. Current topics in microbiology and immunology. Springer, Berlin, Heidelberg, pp 163–188 Ehrt S, Rhee K (2013) Mycobacterium tuberculosis metabolism and host interaction: mysteries and paradoxes. In: Pieters J, McKinney J (eds) Pathogenesis of Mycobacterium tuberculosis and its interaction with the host organism. Current topics in microbiology and immunology. Springer, Berlin, Heidelberg, pp 163–188
13.
go back to reference Gandhi NR, Shah NS, Andrews JR, Vella V, Moll AP, Scott M et al (2010) HIV coinfection in multidrug-and extensively drug-resistant tuberculosis results in high early mortality. Am J Resp Crit Care Med. 181:80–86CrossRefPubMed Gandhi NR, Shah NS, Andrews JR, Vella V, Moll AP, Scott M et al (2010) HIV coinfection in multidrug-and extensively drug-resistant tuberculosis results in high early mortality. Am J Resp Crit Care Med. 181:80–86CrossRefPubMed
14.
go back to reference Rae JM, Johnson MD, Lippman ME, Flockhart DA (2001) Rifampin is a selective, pleiotropic inducer of drug metabolism genes in human hepatocytes: studies with cDNA and oligonucleotide expression arrays. J Pharmacol Exp Ther 299:849–857PubMed Rae JM, Johnson MD, Lippman ME, Flockhart DA (2001) Rifampin is a selective, pleiotropic inducer of drug metabolism genes in human hepatocytes: studies with cDNA and oligonucleotide expression arrays. J Pharmacol Exp Ther 299:849–857PubMed
15.
go back to reference Mortaz E, Adcock IM, Tabarsi P, Masjedi MR, Mansouri D, Velayati AA et al (2015) Interaction of pattern recognition receptors with Mycobacterium tuberculosis. J Clin Immunol 35:1–10CrossRefPubMed Mortaz E, Adcock IM, Tabarsi P, Masjedi MR, Mansouri D, Velayati AA et al (2015) Interaction of pattern recognition receptors with Mycobacterium tuberculosis. J Clin Immunol 35:1–10CrossRefPubMed
16.
go back to reference Ait-Khaled N, Enarson DA (2003) Tuberculosis: a manual for medical students. WHO, Geneva, p 148 Ait-Khaled N, Enarson DA (2003) Tuberculosis: a manual for medical students. WHO, Geneva, p 148
17.
go back to reference Karakousis PC, Williams EP, Bishai WR (2008) Altered expression of isoniazid-regulated genes in drug-treated dormant Mycobacterium tuberculosis. J Antimicrob Chemother 61:323–331CrossRefPubMed Karakousis PC, Williams EP, Bishai WR (2008) Altered expression of isoniazid-regulated genes in drug-treated dormant Mycobacterium tuberculosis. J Antimicrob Chemother 61:323–331CrossRefPubMed
18.
go back to reference Gutierrez MC, Brisse S, Brosch R, Fabre M, Omaïs B, Marmiesse M et al (2005) Ancient origin and gene mosaicism of the progenitor of Mycobacterium tuberculosis. PLoS Pathog 1:0055–0061CrossRef Gutierrez MC, Brisse S, Brosch R, Fabre M, Omaïs B, Marmiesse M et al (2005) Ancient origin and gene mosaicism of the progenitor of Mycobacterium tuberculosis. PLoS Pathog 1:0055–0061CrossRef
19.
go back to reference Mdluli K, Kaneko T, Upton A (2014) Tuberculosis drug discovery and emerging targets. Ann NY Acad Sci. 1323:56–75CrossRefPubMed Mdluli K, Kaneko T, Upton A (2014) Tuberculosis drug discovery and emerging targets. Ann NY Acad Sci. 1323:56–75CrossRefPubMed
20.
go back to reference Barry CE, Boshoff H, Dartois V, Dick T, Ehrt S, Flynn J et al (2009) The spectrum of latent tuberculosis: rethinking the goals of prophylaxis. Nat Rev Microbiol 7:845–855CrossRefPubMedPubMedCentral Barry CE, Boshoff H, Dartois V, Dick T, Ehrt S, Flynn J et al (2009) The spectrum of latent tuberculosis: rethinking the goals of prophylaxis. Nat Rev Microbiol 7:845–855CrossRefPubMedPubMedCentral
21.
go back to reference Mdluli K, Kaneko T, Upton A (2015) The tuberculosis drug discovery and development pipeline and emerging drug targets. Cold Spring Harb Perspect Med 5:1–24CrossRef Mdluli K, Kaneko T, Upton A (2015) The tuberculosis drug discovery and development pipeline and emerging drug targets. Cold Spring Harb Perspect Med 5:1–24CrossRef
23.
go back to reference de Carvalho LPS, Fischer SM, Marrero J, Nathan C, Ehrt S, Rhee KY (2010) Metabolomics of Mycobacterium tuberculosis reveals compartmentalized co-catabolism of carbon substrates. Chem Biol 17:1122–1131CrossRefPubMed de Carvalho LPS, Fischer SM, Marrero J, Nathan C, Ehrt S, Rhee KY (2010) Metabolomics of Mycobacterium tuberculosis reveals compartmentalized co-catabolism of carbon substrates. Chem Biol 17:1122–1131CrossRefPubMed
24.
go back to reference Rhee KY, de Carvalho LPS, Bryk R, Ehrt S, Marrero J, Park SW et al (2011) Central carbon metabolism in Mycobacterium tuberculosis: an unexpected frontier. Trends Microbiol 19:307–314CrossRefPubMedPubMedCentral Rhee KY, de Carvalho LPS, Bryk R, Ehrt S, Marrero J, Park SW et al (2011) Central carbon metabolism in Mycobacterium tuberculosis: an unexpected frontier. Trends Microbiol 19:307–314CrossRefPubMedPubMedCentral
25.
go back to reference Kasilo OM, Trapsida JM, Mwikisa Ngenda C, Lusamba-Dikassa PS (2010) An overview of the traditional medicine situation in the African region. African Health Monitor. WHO, Geneva, pp 7–15 Kasilo OM, Trapsida JM, Mwikisa Ngenda C, Lusamba-Dikassa PS (2010) An overview of the traditional medicine situation in the African region. African Health Monitor. WHO, Geneva, pp 7–15
26.
go back to reference Gupta R, Thakur B, Singh P, Singh H, Sharma V, Katoch V et al (2010) Anti-tuberculosis activity of selected medicinal plants against multi-drug resistant Mycobacterium tuberculosis isolates. Indian J Med Res 131:809–813PubMed Gupta R, Thakur B, Singh P, Singh H, Sharma V, Katoch V et al (2010) Anti-tuberculosis activity of selected medicinal plants against multi-drug resistant Mycobacterium tuberculosis isolates. Indian J Med Res 131:809–813PubMed
29.
go back to reference Mathew A, Padmanaban V (2013) Metabolomics: the apogee of the omics trilogy. Int J Pharm Pharm Sci. 5:45–48 Mathew A, Padmanaban V (2013) Metabolomics: the apogee of the omics trilogy. Int J Pharm Pharm Sci. 5:45–48
30.
go back to reference Wishart DS (2016) Emerging applications of metabolomics in drug discovery and precision medicine. Nat Rev Drug Discov. 15:473CrossRefPubMed Wishart DS (2016) Emerging applications of metabolomics in drug discovery and precision medicine. Nat Rev Drug Discov. 15:473CrossRefPubMed
34.
go back to reference Kasture VS, Musmade DS, Vakte MB, Sonawane SB, Patil PP (2012) Metabolomics: current technologies and future trends. Int J Res Dev Pharm Life Sci. 2:206–217 Kasture VS, Musmade DS, Vakte MB, Sonawane SB, Patil PP (2012) Metabolomics: current technologies and future trends. Int J Res Dev Pharm Life Sci. 2:206–217
35.
go back to reference Syggelou A, Iacovidou N, Atzori L, Xanthos T, Fanos V (2012) Metabolomics in the developing human being. Pediatr Clin North Am 59:1039–1058CrossRefPubMed Syggelou A, Iacovidou N, Atzori L, Xanthos T, Fanos V (2012) Metabolomics in the developing human being. Pediatr Clin North Am 59:1039–1058CrossRefPubMed
36.
go back to reference Powers R (2009) NMR metabolomics and drug discovery. Magn Reson Chem 47(Suppl 1):2–11CrossRef Powers R (2009) NMR metabolomics and drug discovery. Magn Reson Chem 47(Suppl 1):2–11CrossRef
37.
go back to reference Fillet M, Frédérich M (2015) The emergence of metabolomics as a key discipline in the drug discovery process. Drug Discov Today Technol. 13:19–24CrossRefPubMed Fillet M, Frédérich M (2015) The emergence of metabolomics as a key discipline in the drug discovery process. Drug Discov Today Technol. 13:19–24CrossRefPubMed
38.
go back to reference Robertson D, Frevert U (2013) Metabolomics in drug discovery and development. Clin Pharmacol Ther 94:559–561CrossRefPubMed Robertson D, Frevert U (2013) Metabolomics in drug discovery and development. Clin Pharmacol Ther 94:559–561CrossRefPubMed
39.
go back to reference Wishart DS (2008) Applications of metabolomics in drug discovery and development. Drugs R D. 9:307–322CrossRefPubMed Wishart DS (2008) Applications of metabolomics in drug discovery and development. Drugs R D. 9:307–322CrossRefPubMed
40.
go back to reference Nguta JM, Appiah-Opong R, Nyarko AK, Yeboah-Manu D, Addo PG (2015) Current perspectives in drug discovery against tuberculosis from natural products. Int J Mycobacteriol. 4:165–183CrossRefPubMed Nguta JM, Appiah-Opong R, Nyarko AK, Yeboah-Manu D, Addo PG (2015) Current perspectives in drug discovery against tuberculosis from natural products. Int J Mycobacteriol. 4:165–183CrossRefPubMed
41.
go back to reference Vilchèze C, Jacobs J, William R (2007) The mechanism of isoniazid killing: clarity through the scope of genetics. Annu Rev Microbiol 61:35–50CrossRefPubMed Vilchèze C, Jacobs J, William R (2007) The mechanism of isoniazid killing: clarity through the scope of genetics. Annu Rev Microbiol 61:35–50CrossRefPubMed
43.
go back to reference Riccardi G, Pasca MR, Buroni S (2009) Mycobacterium tuberculosis: drug resistance and future perspectives. Fut Microbiol. 4:597–614CrossRef Riccardi G, Pasca MR, Buroni S (2009) Mycobacterium tuberculosis: drug resistance and future perspectives. Fut Microbiol. 4:597–614CrossRef
44.
go back to reference Riccardi G, Pasca MR (2014) Trends in discovery of new drugs for tuberculosis therapy. J Antibiot 67:655CrossRefPubMed Riccardi G, Pasca MR (2014) Trends in discovery of new drugs for tuberculosis therapy. J Antibiot 67:655CrossRefPubMed
45.
go back to reference Wang LQ, Falany CN, James MO (2004) Triclosan as a substrate and inhibitor of 3′-phosphoadenosine 5′-phosphosulfate-sulfotransferase and UDP-glucuronosyl transferase in human liver fractions. Drug Metab Dispos 32:1162–1169CrossRefPubMed Wang LQ, Falany CN, James MO (2004) Triclosan as a substrate and inhibitor of 3′-phosphoadenosine 5′-phosphosulfate-sulfotransferase and UDP-glucuronosyl transferase in human liver fractions. Drug Metab Dispos 32:1162–1169CrossRefPubMed
46.
go back to reference Kaufmann SHE, Hahn H (2003) Mycobacteria and TB, vol Issues in infectious diseases, 2. Karger Publishers, Berlin Kaufmann SHE, Hahn H (2003) Mycobacteria and TB, vol Issues in infectious diseases, 2. Karger Publishers, Berlin
47.
go back to reference Scorpio A, Lindholm-Levy P, Heifets L, Gilman R, Siddiqi S, Cynamon M et al (1997) Characterization of pncA mutations in pyrazinamide-resistant Mycobacterium tuberculosis. Antimicrob Agents Chemother 41:540–543PubMedPubMedCentralCrossRef Scorpio A, Lindholm-Levy P, Heifets L, Gilman R, Siddiqi S, Cynamon M et al (1997) Characterization of pncA mutations in pyrazinamide-resistant Mycobacterium tuberculosis. Antimicrob Agents Chemother 41:540–543PubMedPubMedCentralCrossRef
48.
go back to reference Shi W, Zhang X, Jiang X, Yuan H, Lee JS, Barry CE et al (2011) Pyrazinamide inhibits trans-translation in Mycobacterium tuberculosis. Science 333:1630–1632CrossRefPubMedPubMedCentral Shi W, Zhang X, Jiang X, Yuan H, Lee JS, Barry CE et al (2011) Pyrazinamide inhibits trans-translation in Mycobacterium tuberculosis. Science 333:1630–1632CrossRefPubMedPubMedCentral
49.
go back to reference Kalinda AS, Aldrich CC (2012) Pyrazinamide: a frontline drug used for tuberculosis. Molecular mechanism of action resolved after 50 years? ChemMedChem 7:558–560CrossRefPubMed Kalinda AS, Aldrich CC (2012) Pyrazinamide: a frontline drug used for tuberculosis. Molecular mechanism of action resolved after 50 years? ChemMedChem 7:558–560CrossRefPubMed
50.
go back to reference Saguy M, Gillet R, Skorski P, Hermann-Le Denmat S, Felden B (2007) Ribosomal protein S1 influences trans-translation in vitro and in vivo. Nucleic Acids Res 35:2368–2376CrossRefPubMedPubMedCentral Saguy M, Gillet R, Skorski P, Hermann-Le Denmat S, Felden B (2007) Ribosomal protein S1 influences trans-translation in vitro and in vivo. Nucleic Acids Res 35:2368–2376CrossRefPubMedPubMedCentral
51.
go back to reference McDermott W, Tompsett R (1954) Activation of pyrazinamide and nicotinamide in acidic environments in vitro. Am Rev Tuberc. 70:748–754PubMed McDermott W, Tompsett R (1954) Activation of pyrazinamide and nicotinamide in acidic environments in vitro. Am Rev Tuberc. 70:748–754PubMed
52.
go back to reference Zhang Y, Wade MM, Scorpio A, Zhang H, Sun Z (2003) Mode of action of pyrazinamide: disruption of Mycobacterium tuberculosis membrane transport and energetics by pyrazinoic acid. J Antimicrob Chemother 52:790–795CrossRefPubMed Zhang Y, Wade MM, Scorpio A, Zhang H, Sun Z (2003) Mode of action of pyrazinamide: disruption of Mycobacterium tuberculosis membrane transport and energetics by pyrazinoic acid. J Antimicrob Chemother 52:790–795CrossRefPubMed
53.
go back to reference Sreevatsan S, Stockbauer KE, Pan X, Kreiswirth BN, Moghazeh SL, Jacobs WR et al (1997) Ethambutol resistance in Mycobacterium tuberculosis: critical role of embB mutations. Antimicrob Agents Chemother 41:1677–1681PubMedPubMedCentralCrossRef Sreevatsan S, Stockbauer KE, Pan X, Kreiswirth BN, Moghazeh SL, Jacobs WR et al (1997) Ethambutol resistance in Mycobacterium tuberculosis: critical role of embB mutations. Antimicrob Agents Chemother 41:1677–1681PubMedPubMedCentralCrossRef
54.
go back to reference Telenti A, Philipp WJ, Sreevatsan S, Bernasconi C, Stockbauer KE, Wieles B et al (1997) The emb operon, a gene cluster of Mycobacterium tuberculosis involved in resistance to ethambutol. Nat Med 3:567–570CrossRefPubMed Telenti A, Philipp WJ, Sreevatsan S, Bernasconi C, Stockbauer KE, Wieles B et al (1997) The emb operon, a gene cluster of Mycobacterium tuberculosis involved in resistance to ethambutol. Nat Med 3:567–570CrossRefPubMed
55.
go back to reference Wolucka BA (2008) Biosynthesis of d-arabinose in mycobacteria—a novel bacterial pathway with implications for antimycobacterial therapy. FEBS J 275:2691–2711CrossRefPubMed Wolucka BA (2008) Biosynthesis of d-arabinose in mycobacteria—a novel bacterial pathway with implications for antimycobacterial therapy. FEBS J 275:2691–2711CrossRefPubMed
56.
go back to reference Telenti A, Imboden P, Marchesi F, Matter L, Schopfer K, Bodmer T et al (1993) Detection of rifampicin-resistance mutations in Mycobacterium tuberculosis. Lancet 341:647–651CrossRefPubMed Telenti A, Imboden P, Marchesi F, Matter L, Schopfer K, Bodmer T et al (1993) Detection of rifampicin-resistance mutations in Mycobacterium tuberculosis. Lancet 341:647–651CrossRefPubMed
57.
go back to reference Siu GKH, Zhang Y, Lau TC, Lau RW, Ho P-L, Yew WW et al (2011) Mutations outside the rifampicin resistance-determining region associated with rifampicin resistance in Mycobacterium tuberculosis. J Antimicrob Chemother 66:730–733CrossRefPubMed Siu GKH, Zhang Y, Lau TC, Lau RW, Ho P-L, Yew WW et al (2011) Mutations outside the rifampicin resistance-determining region associated with rifampicin resistance in Mycobacterium tuberculosis. J Antimicrob Chemother 66:730–733CrossRefPubMed
58.
go back to reference Wehrli W (1983) Rifampin: mechanisms of action and resistance. Rev Infect Dis 5(Suppl 3):407–411CrossRef Wehrli W (1983) Rifampin: mechanisms of action and resistance. Rev Infect Dis 5(Suppl 3):407–411CrossRef
59.
go back to reference Sensi P (1983) History of the development of rifampin. Rev Infect Dis 5(Suppl 3):402–406CrossRef Sensi P (1983) History of the development of rifampin. Rev Infect Dis 5(Suppl 3):402–406CrossRef
60.
go back to reference Mukhopadhyay J, Das K, Ismail S, Koppstein D, Jang M, Hudson B et al (2008) The RNA polymerase “switch region” is a target for inhibitors. Cell 135:295–307CrossRefPubMedPubMedCentral Mukhopadhyay J, Das K, Ismail S, Koppstein D, Jang M, Hudson B et al (2008) The RNA polymerase “switch region” is a target for inhibitors. Cell 135:295–307CrossRefPubMedPubMedCentral
62.
63.
go back to reference Rajendram M, Hurley KA, Foss MH, Thornton KM, Moore JT, Shaw JT et al (2014) Gyramides prevent bacterial growth by inhibiting DNA gyrase and altering chromosome topology. ACS Chem Biol 9:1312–1319CrossRefPubMedPubMedCentral Rajendram M, Hurley KA, Foss MH, Thornton KM, Moore JT, Shaw JT et al (2014) Gyramides prevent bacterial growth by inhibiting DNA gyrase and altering chromosome topology. ACS Chem Biol 9:1312–1319CrossRefPubMedPubMedCentral
64.
go back to reference Lambert MP, Neuhaus FC (1972) Mechanism of d-cycloserine action: alanine racemase from Escherichia coli W. J Bacteriol 110:978–987PubMedPubMedCentral Lambert MP, Neuhaus FC (1972) Mechanism of d-cycloserine action: alanine racemase from Escherichia coli W. J Bacteriol 110:978–987PubMedPubMedCentral
65.
go back to reference Andries K, Verhasselt P, Guillemont J, Göhlmann HW, Neefs JM, Winkler H et al (2005) A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis. Science 307:223–227CrossRefPubMed Andries K, Verhasselt P, Guillemont J, Göhlmann HW, Neefs JM, Winkler H et al (2005) A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis. Science 307:223–227CrossRefPubMed
66.
go back to reference Tiberi S, Muñoz-Torrico M, Duarte R, Dalcolmo M, D’Ambrosio L, Zumla A et al (2018) New drugs and perspectives for new anti-tuberculosis regimens. Pulmonology. 24:86–98CrossRefPubMed Tiberi S, Muñoz-Torrico M, Duarte R, Dalcolmo M, D’Ambrosio L, Zumla A et al (2018) New drugs and perspectives for new anti-tuberculosis regimens. Pulmonology. 24:86–98CrossRefPubMed
67.
go back to reference Segala E, Sougakoff W, Nevejans-Chauffour A, Jarlier V, Petrella S (2012) New mutations in the mycobacterial ATP synthase: new insights into the binding of the diarylquinoline TMC207 to the ATP synthase C-ring structure. Antimicrob Agents Chemother 56:2326–2334CrossRefPubMedPubMedCentral Segala E, Sougakoff W, Nevejans-Chauffour A, Jarlier V, Petrella S (2012) New mutations in the mycobacterial ATP synthase: new insights into the binding of the diarylquinoline TMC207 to the ATP synthase C-ring structure. Antimicrob Agents Chemother 56:2326–2334CrossRefPubMedPubMedCentral
68.
go back to reference Zhao X, Xu C, Domagala J, Drlica K (1997) DNA topoisomerase targets of the fluoroquinolones: a strategy for avoiding bacterial resistance. Proc Nat Acad Sci USA 94:13991–13996CrossRefPubMed Zhao X, Xu C, Domagala J, Drlica K (1997) DNA topoisomerase targets of the fluoroquinolones: a strategy for avoiding bacterial resistance. Proc Nat Acad Sci USA 94:13991–13996CrossRefPubMed
70.
go back to reference Beste DJ, Nöh K, Niedenführ S, Mendum TA, Hawkins ND, Ward JL et al (2013) 13C-flux spectral analysis of host-pathogen metabolism reveals a mixed diet for intracellular Mycobacterium tuberculosis. Chem Biol 20:1012–1021CrossRefPubMedPubMedCentral Beste DJ, Nöh K, Niedenführ S, Mendum TA, Hawkins ND, Ward JL et al (2013) 13C-flux spectral analysis of host-pathogen metabolism reveals a mixed diet for intracellular Mycobacterium tuberculosis. Chem Biol 20:1012–1021CrossRefPubMedPubMedCentral
71.
go back to reference Gupta VK, Kumar MM, Bisht D, Kaushik A (2017) Plants in our combating strategies against Mycobacterium tuberculosis: progress made and obstacles met. Pharm Biol. 55:1536–1544CrossRefPubMedPubMedCentral Gupta VK, Kumar MM, Bisht D, Kaushik A (2017) Plants in our combating strategies against Mycobacterium tuberculosis: progress made and obstacles met. Pharm Biol. 55:1536–1544CrossRefPubMedPubMedCentral
72.
go back to reference Griffin JE, Pandey AK, Gilmore SA, Mizrahi V, Mckinney JD, Bertozzi CR et al (2012) Cholesterol catabolism by Mycobacterium tuberculosis requires transcriptional and metabolic adaptations. Chem Biol 19:218–227CrossRefPubMedPubMedCentral Griffin JE, Pandey AK, Gilmore SA, Mizrahi V, Mckinney JD, Bertozzi CR et al (2012) Cholesterol catabolism by Mycobacterium tuberculosis requires transcriptional and metabolic adaptations. Chem Biol 19:218–227CrossRefPubMedPubMedCentral
73.
go back to reference López-Agudelo VA, Baena A, Ramirez-Malule H, Ochoa S, Barrera LF, Ríos-Estepa R (2017) Metabolic adaptation of two in silico mutants of Mycobacterium tuberculosis during infection. BMC Syst Biol 11:107CrossRefPubMedPubMedCentral López-Agudelo VA, Baena A, Ramirez-Malule H, Ochoa S, Barrera LF, Ríos-Estepa R (2017) Metabolic adaptation of two in silico mutants of Mycobacterium tuberculosis during infection. BMC Syst Biol 11:107CrossRefPubMedPubMedCentral
74.
go back to reference Lipinski CA (2004) Lead-and drug-like compounds: the rule-of-five revolution. D Drug Discov Today Technol. 1:337–341CrossRefPubMed Lipinski CA (2004) Lead-and drug-like compounds: the rule-of-five revolution. D Drug Discov Today Technol. 1:337–341CrossRefPubMed
75.
76.
go back to reference Payne DJ, Gwynn MN, Holmes DJ, Pompliano DL (2007) Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nat Rev Drug Discov. 6:29–40CrossRefPubMed Payne DJ, Gwynn MN, Holmes DJ, Pompliano DL (2007) Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nat Rev Drug Discov. 6:29–40CrossRefPubMed
77.
78.
go back to reference Vinayavekhin N, Saghatelian A (2010) Untargeted metabolomics. Curr Protoc Mol Biol. 90:30.1.1–30.1.24 Vinayavekhin N, Saghatelian A (2010) Untargeted metabolomics. Curr Protoc Mol Biol. 90:30.1.1–30.1.24
79.
go back to reference Wishart DS (2007) Metabolomics in humans and other mammals. In: Villa-Boas SG, Roessner U, Hansen M, Smedsgaard J, Nielsen J (eds) Metabolome analysis: an introduction. John Wiley & Sons Inc., Hoboken, pp 253–288CrossRef Wishart DS (2007) Metabolomics in humans and other mammals. In: Villa-Boas SG, Roessner U, Hansen M, Smedsgaard J, Nielsen J (eds) Metabolome analysis: an introduction. John Wiley & Sons Inc., Hoboken, pp 253–288CrossRef
81.
82.
go back to reference Robertson DG, Reily MD (2012) The current status of metabolomics in drug discovery and development. Drug Dev Res 73:535–546CrossRef Robertson DG, Reily MD (2012) The current status of metabolomics in drug discovery and development. Drug Dev Res 73:535–546CrossRef
83.
go back to reference Fan TWM, Lorkiewicz PK, Sellers K, Moseley HN, Higashi RM, Lane AN (2012) Stable isotope-resolved metabolomics and applications for drug development. Pharmacol Ther 133:366–391CrossRefPubMed Fan TWM, Lorkiewicz PK, Sellers K, Moseley HN, Higashi RM, Lane AN (2012) Stable isotope-resolved metabolomics and applications for drug development. Pharmacol Ther 133:366–391CrossRefPubMed
84.
go back to reference North EJ, Jackson M, Lee RE (2014) New approaches to target the mycolic acid biosynthesis pathway for the development of tuberculosis therapeutics. Curr Pharm Des 20:4357–4378CrossRefPubMedPubMedCentral North EJ, Jackson M, Lee RE (2014) New approaches to target the mycolic acid biosynthesis pathway for the development of tuberculosis therapeutics. Curr Pharm Des 20:4357–4378CrossRefPubMedPubMedCentral
85.
go back to reference Semenya SS, Maroyi A (2013) Medicinal plants used for the treatment of tuberculosis by Bapedi traditional healers in three districts of the Limpopo Province, South Africa. Afr J Tradit Complement Altern Med 10:316–323PubMed Semenya SS, Maroyi A (2013) Medicinal plants used for the treatment of tuberculosis by Bapedi traditional healers in three districts of the Limpopo Province, South Africa. Afr J Tradit Complement Altern Med 10:316–323PubMed
86.
go back to reference Orodho J, Okemo P, Tabuti J, Otieno N, Magadula J, Kirimuhuzya C (2014) Indigenous knowledge of communities around Lake Victoria Basin regarding treatment and management of tuberculosis using medicinal plants. Int J Med Med Sci. 6:16–23CrossRef Orodho J, Okemo P, Tabuti J, Otieno N, Magadula J, Kirimuhuzya C (2014) Indigenous knowledge of communities around Lake Victoria Basin regarding treatment and management of tuberculosis using medicinal plants. Int J Med Med Sci. 6:16–23CrossRef
87.
go back to reference Nguta JM, Appiah-Opong R, Nyarko AK, Yeboah-Manu D, Addo PG, Otchere I et al (2016) Antimycobacterial and cytotoxic activity of selected medicinal plant extracts. J Ethnopharmacol 182:10–15CrossRefPubMedPubMedCentral Nguta JM, Appiah-Opong R, Nyarko AK, Yeboah-Manu D, Addo PG, Otchere I et al (2016) Antimycobacterial and cytotoxic activity of selected medicinal plant extracts. J Ethnopharmacol 182:10–15CrossRefPubMedPubMedCentral
88.
go back to reference Singh R, Hussain S, Verma R, Sharma P (2013) Anti-mycobacterial screening of five Indian medicinal plants and partial purification of active extracts of Cassia sophera and Urtica dioica. Asian Pac J Trop Med. 6:366–371CrossRefPubMed Singh R, Hussain S, Verma R, Sharma P (2013) Anti-mycobacterial screening of five Indian medicinal plants and partial purification of active extracts of Cassia sophera and Urtica dioica. Asian Pac J Trop Med. 6:366–371CrossRefPubMed
90.
go back to reference Nkenfou CN, Mawabo IK, Notedji A, Nkenfou J, Fokou PVT, Jouda JB et al (2015) In vitro antimycobacterial activity of six Cameroonian medicinal plants using microplate alamarBlue assay. Int J Mycobacteriol. 4:306–311CrossRefPubMed Nkenfou CN, Mawabo IK, Notedji A, Nkenfou J, Fokou PVT, Jouda JB et al (2015) In vitro antimycobacterial activity of six Cameroonian medicinal plants using microplate alamarBlue assay. Int J Mycobacteriol. 4:306–311CrossRefPubMed
91.
go back to reference Halouska S, Zhang B, Gaupp R, Lei S, Snell E, Fenton RJ et al (2013) Revisiting protocols for the NMR analysis of bacterial metabolomes. J Integr OMICS. 3:120PubMedPubMedCentral Halouska S, Zhang B, Gaupp R, Lei S, Snell E, Fenton RJ et al (2013) Revisiting protocols for the NMR analysis of bacterial metabolomes. J Integr OMICS. 3:120PubMedPubMedCentral
92.
go back to reference Agin A, Heintz D, Ruhland E, Chao de la Barca JM, Zumsteg J, Moal V et al (2016) Metabolomics—an overview. From basic principles to potential biomarkers (part 1). Médecine Nucleaire. 40:4–10CrossRef Agin A, Heintz D, Ruhland E, Chao de la Barca JM, Zumsteg J, Moal V et al (2016) Metabolomics—an overview. From basic principles to potential biomarkers (part 1). Médecine Nucleaire. 40:4–10CrossRef
93.
94.
go back to reference Haagsma AC, Abdillahi-Ibrahim R, Wagner MJ, Krab K, Vergauwen K, Guillemont J et al (2009) Selectivity of TMC207 towards mycobacterial ATP synthase compared with that towards the eukaryotic homologue. Antimicrob Agents Chemother 53:1290–1292CrossRefPubMed Haagsma AC, Abdillahi-Ibrahim R, Wagner MJ, Krab K, Vergauwen K, Guillemont J et al (2009) Selectivity of TMC207 towards mycobacterial ATP synthase compared with that towards the eukaryotic homologue. Antimicrob Agents Chemother 53:1290–1292CrossRefPubMed
96.
go back to reference Stover CK, Warrener P, VanDevanter DR, Sherman DR, Arain TM, Langhorne MH et al (2000) A small-molecule nitroimidazopyran drug candidate for the treatment of tuberculosis. Nature 405:962–966CrossRefPubMed Stover CK, Warrener P, VanDevanter DR, Sherman DR, Arain TM, Langhorne MH et al (2000) A small-molecule nitroimidazopyran drug candidate for the treatment of tuberculosis. Nature 405:962–966CrossRefPubMed
97.
go back to reference Singh R, Manjunatha U, Boshoff HI, Ha YH, Niyomrattanakit P, Ledwidge R et al (2008) PA-824 kills nonreplicating Mycobacterium tuberculosis by intracellular NO release. Science 322:1392–1395CrossRefPubMedPubMedCentral Singh R, Manjunatha U, Boshoff HI, Ha YH, Niyomrattanakit P, Ledwidge R et al (2008) PA-824 kills nonreplicating Mycobacterium tuberculosis by intracellular NO release. Science 322:1392–1395CrossRefPubMedPubMedCentral
98.
go back to reference Egelund EF, Peloquin CA (2016) Rifapentine for the treatment of latent tuberculosis. Expert Rev Clin Pharmacol 9:1253–1261CrossRef Egelund EF, Peloquin CA (2016) Rifapentine for the treatment of latent tuberculosis. Expert Rev Clin Pharmacol 9:1253–1261CrossRef
99.
go back to reference Swaney SM, Aoki H, Ganoza MC, Shinabarger DL (1998) The oxazolidinone linezolid inhibits initiation of protein synthesis in bacteria. Antimicrob Agents Chemother 42:3251–3255PubMedPubMedCentralCrossRef Swaney SM, Aoki H, Ganoza MC, Shinabarger DL (1998) The oxazolidinone linezolid inhibits initiation of protein synthesis in bacteria. Antimicrob Agents Chemother 42:3251–3255PubMedPubMedCentralCrossRef
100.
go back to reference Wallis RS, Dawson R, Friedrich SO, Venter A, Paige D, Zhu T et al (2014) Mycobactericidal activity of sutezolid (PNU-100480) in sputum (EBA) and blood (WBA) of patients with pulmonary tuberculosis. PLoS ONE 9:e94462CrossRefPubMedPubMedCentral Wallis RS, Dawson R, Friedrich SO, Venter A, Paige D, Zhu T et al (2014) Mycobactericidal activity of sutezolid (PNU-100480) in sputum (EBA) and blood (WBA) of patients with pulmonary tuberculosis. PLoS ONE 9:e94462CrossRefPubMedPubMedCentral
Metadata
Title
Application of metabolomics to drug discovery and understanding the mechanisms of action of medicinal plants with anti-tuberculosis activity
Authors
Naasson Tuyiringire
Deusdedit Tusubira
Jean-Pierre Munyampundu
Casim Umba Tolo
Claude M. Muvunyi
Patrick Engeu Ogwang
Publication date
01-12-2018
Publisher
Springer Berlin Heidelberg
Published in
Clinical and Translational Medicine / Issue 1/2018
Electronic ISSN: 2001-1326
DOI
https://doi.org/10.1186/s40169-018-0208-3

Other articles of this Issue 1/2018

Clinical and Translational Medicine 1/2018 Go to the issue