Skip to main content
Top
Published in: Clinical and Translational Medicine 1/2018

Open Access 01-12-2018 | Research

Viral antigens detectable in CSF exosomes from patients with retrovirus associated neurologic disease: functional role of exosomes

Authors: Monique R. Anderson, Michelle L. Pleet, Yoshimi Enose-Akahata, James Erickson, Maria Chiara Monaco, Yao Akpamagbo, Ashley Velluci, Yuetsu Tanaka, Shila Azodi, Ben Lepene, Jennifer Jones, Fatah Kashanchi, Steven Jacobson

Published in: Clinical and Translational Medicine | Issue 1/2018

Login to get access

Abstract

Background

HTLV-1 infects over 20 million people worldwide and causes a progressive neuroinflammatory disorder in a subset of infected individuals called HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP). The detection of HTLV-1 specific T cells in the cerebrospinal fluid (CSF) suggests this disease is immunopathologically mediated and that it may be driven by viral antigens. Exosomes are microvesicles originating from the endosomal compartment that are shed into the extracellular space by various cell types. It is now understood that several viruses take advantage of this mode of intercellular communication for packaging of viral components as well. We sought to understand if this is the case in HTLV-1 infection, and specifically if HTLV-1 proteins can be found in the CSF of HAM/TSP patients where we know free virus is absent, and furthermore, if exosomes containing HTLV-1 Tax have functional consequences.

Results

Exosomes that were positive for HTLV-1 Tax by Western blot were isolated from HAM/TSP patient PBMCs (25/36) in ex vivo cultures by trapping exosomes from culture supernatants. HTLV-1 seronegative PBMCs did not have exosomes with Tax (0/12), (Fisher exact test, p = 0.0001). We were able to observe HAM/TSP patient CSF (12/20) containing Tax+ exosomes but not in HTLV-1 seronegative MS donors (0/5), despite the absence of viral detection in the CSF supernatant (Fisher exact test p = 0.0391). Furthermore, exosomes cultivated from HAM/TSP PBMCs were capable of sensitizing target cells for HTLV-1 specific CTL lysis.

Conclusion

Cumulatively, these results show that there are HTLV-1 proteins present in exosomes found in virus-free CSF. HAM/TSP PBMCs, particularly CD4+CD25+ T cells, can excrete these exosomes containing HTLV-1 Tax and may be a source of the exosomes found in patient CSF. Importantly, these exosomes are capable of sensitizing an HTLV-1 specific immune response, suggesting that they may play a role in the immunopathology observed in HAM/TSP. Given the infiltration of HTLV-1 Tax-specific CTLs into the CNS of HAM/TSP patients, it is likely that exosomes may also contribute to the continuous activation and inflammation observed in HAM/TSP, and may suggest future targeted therapies in this disorder.
Appendix
Available only for authorised users
Literature
1.
go back to reference Koyanagi Y, Itoyama Y, Nakamura N, Takamatsu K, Kira J, Iwamasa T et al (1993) In vivo infection of human T-cell leukemia virus type I in non-T cells. Virology 196(1):25–33CrossRefPubMed Koyanagi Y, Itoyama Y, Nakamura N, Takamatsu K, Kira J, Iwamasa T et al (1993) In vivo infection of human T-cell leukemia virus type I in non-T cells. Virology 196(1):25–33CrossRefPubMed
2.
go back to reference Satou Y, Matsuoka M (2010) HTLV-1 and the host immune system: how the virus disrupts immune regulation, leading to HTLV-1 associated diseases. J Clin Exp Hematopathol 50(1):1–8CrossRef Satou Y, Matsuoka M (2010) HTLV-1 and the host immune system: how the virus disrupts immune regulation, leading to HTLV-1 associated diseases. J Clin Exp Hematopathol 50(1):1–8CrossRef
3.
go back to reference Proietti FA, Carneiro-Proietti AB, Catalan-Soares BC, Murphy EL (2005) Global epidemiology of HTLV-I infection and associated diseases. Oncogene 24(39):6058–6068CrossRefPubMed Proietti FA, Carneiro-Proietti AB, Catalan-Soares BC, Murphy EL (2005) Global epidemiology of HTLV-I infection and associated diseases. Oncogene 24(39):6058–6068CrossRefPubMed
4.
go back to reference Evangelou IE, Massoud R, Jacobson S (2014) HTLV-I-associated myelopathy/tropical spastic paraparesis: semiautomatic quantification of spinal cord atrophy from 3-dimensional MR images. J Neuroimaging 24(1):74–78CrossRefPubMed Evangelou IE, Massoud R, Jacobson S (2014) HTLV-I-associated myelopathy/tropical spastic paraparesis: semiautomatic quantification of spinal cord atrophy from 3-dimensional MR images. J Neuroimaging 24(1):74–78CrossRefPubMed
5.
go back to reference Yamano Y, Takenouchi N, Li HC, Tomaru U, Yao K, Grant CW et al (2005) Virus-induced dysfunction of CD4+CD25+ T cells in patients with HTLV-I-associated neuroimmunological disease. J Clin Invest 115(5):1361–1368CrossRefPubMedPubMedCentral Yamano Y, Takenouchi N, Li HC, Tomaru U, Yao K, Grant CW et al (2005) Virus-induced dysfunction of CD4+CD25+ T cells in patients with HTLV-I-associated neuroimmunological disease. J Clin Invest 115(5):1361–1368CrossRefPubMedPubMedCentral
6.
go back to reference Satou Y, Matsuoka M (2013) Virological and immunological mechanisms in the pathogenesis of human T-cell leukemia virus type 1. Rev Med Virol 23(5):269–280CrossRefPubMed Satou Y, Matsuoka M (2013) Virological and immunological mechanisms in the pathogenesis of human T-cell leukemia virus type 1. Rev Med Virol 23(5):269–280CrossRefPubMed
7.
go back to reference Izumo S (2010) Neuropathology of HTLV-1-associated myelopathy (HAM/TSP): the 50th anniversary of Japanese society of neuropathology. Neuropathology 30(5):480–485PubMed Izumo S (2010) Neuropathology of HTLV-1-associated myelopathy (HAM/TSP): the 50th anniversary of Japanese society of neuropathology. Neuropathology 30(5):480–485PubMed
8.
go back to reference Grant C, Barmak K, Alefantis T, Yao J, Jacobson S, Wigdahl B (2002) Human T cell leukemia virus type I and neurologic disease: events in bone marrow, peripheral blood, and central nervous system during normal immune surveillance and neuroinflammation. J Cell Physiol 190(2):133–159CrossRefPubMed Grant C, Barmak K, Alefantis T, Yao J, Jacobson S, Wigdahl B (2002) Human T cell leukemia virus type I and neurologic disease: events in bone marrow, peripheral blood, and central nervous system during normal immune surveillance and neuroinflammation. J Cell Physiol 190(2):133–159CrossRefPubMed
9.
go back to reference Lepoutre V, Jain P, Quann K, Wigdahl B, Khan ZK (2009) Role of resident CNS cell populations in HTLV-1-associated neuroinflammatory disease. Front Biosci 14:1152–1168CrossRefPubMedCentral Lepoutre V, Jain P, Quann K, Wigdahl B, Khan ZK (2009) Role of resident CNS cell populations in HTLV-1-associated neuroinflammatory disease. Front Biosci 14:1152–1168CrossRefPubMedCentral
10.
go back to reference Richardson JH, Edwards AJ, Cruickshank JK, Rudge P, Dalgleish AG (1990) In vivo cellular tropism of human T-cell leukemia virus type 1. J Virol 64(11):5682–5687PubMedPubMedCentral Richardson JH, Edwards AJ, Cruickshank JK, Rudge P, Dalgleish AG (1990) In vivo cellular tropism of human T-cell leukemia virus type 1. J Virol 64(11):5682–5687PubMedPubMedCentral
11.
go back to reference Rende F, Cavallari I, Corradin A, Silic-Benussi M, Toulza F, Toffolo GM et al (2011) Kinetics and intracellular compartmentalization of HTLV-1 gene expression: nuclear retention of HBZ mRNAs. Blood 117(18):4855–4859CrossRefPubMedPubMedCentral Rende F, Cavallari I, Corradin A, Silic-Benussi M, Toulza F, Toffolo GM et al (2011) Kinetics and intracellular compartmentalization of HTLV-1 gene expression: nuclear retention of HBZ mRNAs. Blood 117(18):4855–4859CrossRefPubMedPubMedCentral
12.
go back to reference Miyazato P, Matsuo M, Katsuya H, Satou Y. Transcriptional and Epigenetic Regulatory Mechanisms Affecting HTLV-1 Provirus. Viruses. 2016;8(6) Miyazato P, Matsuo M, Katsuya H, Satou Y. Transcriptional and Epigenetic Regulatory Mechanisms Affecting HTLV-1 Provirus. Viruses. 2016;8(6)
13.
go back to reference Alefantis T, Mostoller K, Jain P, Harhaj E, Grant C, Wigdahl B (2005) Secretion of the human T cell leukemia virus type I transactivator protein tax. J Biol Chem 280(17):17353–17362CrossRefPubMed Alefantis T, Mostoller K, Jain P, Harhaj E, Grant C, Wigdahl B (2005) Secretion of the human T cell leukemia virus type I transactivator protein tax. J Biol Chem 280(17):17353–17362CrossRefPubMed
14.
go back to reference Ferrucci A, Nonnemacher MR, Wigdahl B (2013) Extracellular HIV-1 viral protein R affects astrocytic glyceraldehyde 3-phosphate dehydrogenase activity and neuronal survival. J Neurovirol 19(3):239–253CrossRefPubMedPubMedCentral Ferrucci A, Nonnemacher MR, Wigdahl B (2013) Extracellular HIV-1 viral protein R affects astrocytic glyceraldehyde 3-phosphate dehydrogenase activity and neuronal survival. J Neurovirol 19(3):239–253CrossRefPubMedPubMedCentral
15.
go back to reference Secchiero P, Zella D, Capitani S, Gallo RC, Zauli G (1999) Extracellular HIV-1 tat protein up-regulates the expression of surface CXC-chemokine receptor 4 in resting CD4+ T cells. J Immunol 162(4):2427–2431PubMed Secchiero P, Zella D, Capitani S, Gallo RC, Zauli G (1999) Extracellular HIV-1 tat protein up-regulates the expression of surface CXC-chemokine receptor 4 in resting CD4+ T cells. J Immunol 162(4):2427–2431PubMed
17.
go back to reference Matsuura E, Kubota R, Tanaka Y, Takashima H, Izumo S (2015) Visualization of HTLV-1-specific cytotoxic T lymphocytes in the spinal cords of patients with HTLV-1-associated myelopathy/tropical spastic paraparesis. J Neuropathol Exp Neurol 74(1):2–14CrossRefPubMed Matsuura E, Kubota R, Tanaka Y, Takashima H, Izumo S (2015) Visualization of HTLV-1-specific cytotoxic T lymphocytes in the spinal cords of patients with HTLV-1-associated myelopathy/tropical spastic paraparesis. J Neuropathol Exp Neurol 74(1):2–14CrossRefPubMed
18.
go back to reference Greten TF, Slansky JE, Kubota R, Soldan SS, Jaffee EM, Leist TP et al (1998) Direct visualization of antigen-specific T cells: hTLV-1 Tax11-19-specific CD8(+) T cells are activated in peripheral blood and accumulate in cerebrospinal fluid from HAM/TSP patients. Proc Natl Acad Sci USA 95(13):7568–7573CrossRefPubMed Greten TF, Slansky JE, Kubota R, Soldan SS, Jaffee EM, Leist TP et al (1998) Direct visualization of antigen-specific T cells: hTLV-1 Tax11-19-specific CD8(+) T cells are activated in peripheral blood and accumulate in cerebrospinal fluid from HAM/TSP patients. Proc Natl Acad Sci USA 95(13):7568–7573CrossRefPubMed
19.
go back to reference van der Pol E, Boing AN, Harrison P, Sturk A, Nieuwland R (2012) Classification, functions, and clinical relevance of extracellular vesicles. Pharmacol Rev 64(3):676–705CrossRefPubMed van der Pol E, Boing AN, Harrison P, Sturk A, Nieuwland R (2012) Classification, functions, and clinical relevance of extracellular vesicles. Pharmacol Rev 64(3):676–705CrossRefPubMed
22.
go back to reference Lai FW, Lichty BD, Bowdish DM (2015) Microvesicles: ubiquitous contributors to infection and immunity. J Leukoc Biol 97(2):237–245CrossRefPubMed Lai FW, Lichty BD, Bowdish DM (2015) Microvesicles: ubiquitous contributors to infection and immunity. J Leukoc Biol 97(2):237–245CrossRefPubMed
25.
go back to reference Vlassov AV, Magdaleno S, Setterquist R, Conrad R (2012) Exosomes: current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials. Biochem Biophys Acta 1820(7):940–948CrossRefPubMed Vlassov AV, Magdaleno S, Setterquist R, Conrad R (2012) Exosomes: current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials. Biochem Biophys Acta 1820(7):940–948CrossRefPubMed
26.
go back to reference Lane RE, Korbie D, Anderson W, Vaidyanathan R, Trau M (2015) Analysis of exosome purification methods using a model liposome system and tunable-resistive pulse sensing. Sci Rep 5:7639CrossRefPubMedPubMedCentral Lane RE, Korbie D, Anderson W, Vaidyanathan R, Trau M (2015) Analysis of exosome purification methods using a model liposome system and tunable-resistive pulse sensing. Sci Rep 5:7639CrossRefPubMedPubMedCentral
27.
go back to reference Helwa I, Cai J, Drewry MD, Zimmerman A, Dinkins MB, Khaled ML et al (2017) A comparative study of serum exosome isolation using differential ultracentrifugation and three commercial reagents. PLoS ONE 12(1):e0170628CrossRefPubMedPubMedCentral Helwa I, Cai J, Drewry MD, Zimmerman A, Dinkins MB, Khaled ML et al (2017) A comparative study of serum exosome isolation using differential ultracentrifugation and three commercial reagents. PLoS ONE 12(1):e0170628CrossRefPubMedPubMedCentral
28.
go back to reference Yanez-Mo M, Siljander PR, Andreu Z, Zavec AB, Borras FE, Buzas EI et al (2015) Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles 4:27066CrossRefPubMed Yanez-Mo M, Siljander PR, Andreu Z, Zavec AB, Borras FE, Buzas EI et al (2015) Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles 4:27066CrossRefPubMed
29.
go back to reference Ludwig AK, Giebel B (2012) Exosomes: small vesicles participating in intercellular communication. Int J Biochem Cell Biol 44(1):11–15CrossRefPubMed Ludwig AK, Giebel B (2012) Exosomes: small vesicles participating in intercellular communication. Int J Biochem Cell Biol 44(1):11–15CrossRefPubMed
30.
go back to reference Thery C, Duban L, Segura E, Veron P, Lantz O, Amigorena S (2002) Indirect activation of naive CD4+ T cells by dendritic cell-derived exosomes. Nat Immunol 3(12):1156–1162CrossRefPubMed Thery C, Duban L, Segura E, Veron P, Lantz O, Amigorena S (2002) Indirect activation of naive CD4+ T cells by dendritic cell-derived exosomes. Nat Immunol 3(12):1156–1162CrossRefPubMed
31.
go back to reference Admyre C, Johansson SM, Paulie S, Gabrielsson S (2006) Direct exosome stimulation of peripheral human T cells detected by ELISPOT. Eur J Immunol 36(7):1772–1781CrossRefPubMed Admyre C, Johansson SM, Paulie S, Gabrielsson S (2006) Direct exosome stimulation of peripheral human T cells detected by ELISPOT. Eur J Immunol 36(7):1772–1781CrossRefPubMed
32.
go back to reference Segura E, Guerin C, Hogg N, Amigorena S, Thery C (2007) CD8+ dendritic cells use LFA-1 to capture MHC-peptide complexes from exosomes in vivo. J Immunol 179(3):1489–1496CrossRefPubMed Segura E, Guerin C, Hogg N, Amigorena S, Thery C (2007) CD8+ dendritic cells use LFA-1 to capture MHC-peptide complexes from exosomes in vivo. J Immunol 179(3):1489–1496CrossRefPubMed
33.
go back to reference Xie Y, Zhang H, Li W, Deng Y, Munegowda MA, Chibbar R et al (2010) Dendritic cells recruit T cell exosomes via exosomal LFA-1 leading to inhibition of CD8+ CTL responses through downregulation of peptide/MHC class I and Fas ligand-mediated cytotoxicity. J Immunol 185(9):5268–5278CrossRefPubMed Xie Y, Zhang H, Li W, Deng Y, Munegowda MA, Chibbar R et al (2010) Dendritic cells recruit T cell exosomes via exosomal LFA-1 leading to inhibition of CD8+ CTL responses through downregulation of peptide/MHC class I and Fas ligand-mediated cytotoxicity. J Immunol 185(9):5268–5278CrossRefPubMed
34.
go back to reference Okoye IS, Coomes SM, Pelly VS, Czieso S, Papayannopoulos V, Tolmachova T et al (2014) MicroRNA-containing T-regulatory-cell-derived exosomes suppress pathogenic T helper 1 cells. Immunity 41(1):89–103CrossRefPubMedPubMedCentral Okoye IS, Coomes SM, Pelly VS, Czieso S, Papayannopoulos V, Tolmachova T et al (2014) MicroRNA-containing T-regulatory-cell-derived exosomes suppress pathogenic T helper 1 cells. Immunity 41(1):89–103CrossRefPubMedPubMedCentral
35.
go back to reference Smyth LA, Ratnasothy K, Tsang JY, Boardman D, Warley A, Lechler R et al (2013) CD73 expression on extracellular vesicles derived from CD4+CD25+Foxp3+ T cells contributes to their regulatory function. Eur J Immunol 43(9):2430–2440CrossRefPubMed Smyth LA, Ratnasothy K, Tsang JY, Boardman D, Warley A, Lechler R et al (2013) CD73 expression on extracellular vesicles derived from CD4+CD25+Foxp3+ T cells contributes to their regulatory function. Eur J Immunol 43(9):2430–2440CrossRefPubMed
36.
go back to reference Yamano Y, Cohen CJ, Takenouchi N, Yao K, Tomaru U, Li HC et al (2004) Increased expression of human T lymphocyte virus type I (HTLV-I) Tax11-19 peptide-human histocompatibility leukocyte antigen A*201 complexes on CD4+CD25+ T Cells detected by peptide-specific, major histocompatibility complex-restricted antibodies in patients with HTLV-I-associated neurologic disease. J Exp Med 199(10):1367–1377CrossRefPubMedPubMedCentral Yamano Y, Cohen CJ, Takenouchi N, Yao K, Tomaru U, Li HC et al (2004) Increased expression of human T lymphocyte virus type I (HTLV-I) Tax11-19 peptide-human histocompatibility leukocyte antigen A*201 complexes on CD4+CD25+ T Cells detected by peptide-specific, major histocompatibility complex-restricted antibodies in patients with HTLV-I-associated neurologic disease. J Exp Med 199(10):1367–1377CrossRefPubMedPubMedCentral
37.
go back to reference Li S, Gowans EJ, Chougnet C, Plebanski M, Dittmer U (2008) Natural regulatory T cells and persistent viral infection. J Virol 82(1):21–30CrossRefPubMed Li S, Gowans EJ, Chougnet C, Plebanski M, Dittmer U (2008) Natural regulatory T cells and persistent viral infection. J Virol 82(1):21–30CrossRefPubMed
38.
go back to reference Anderson MR, Enose-Akahata Y, Massoud R, Ngouth N, Tanaka Y, Oh U et al (2014) Epigenetic modification of the FoxP3 TSDR in HAM/TSP decreases the functional suppression of Tregs. J Neuroimmune Pharmacol 9(4):522–532CrossRefPubMedPubMedCentral Anderson MR, Enose-Akahata Y, Massoud R, Ngouth N, Tanaka Y, Oh U et al (2014) Epigenetic modification of the FoxP3 TSDR in HAM/TSP decreases the functional suppression of Tregs. J Neuroimmune Pharmacol 9(4):522–532CrossRefPubMedPubMedCentral
39.
go back to reference Jones KS, Petrow-Sadowski C, Huang YK, Bertolette DC, Ruscetti FW (2008) Cell-free HTLV-1 infects dendritic cells leading to transmission and transformation of CD4(+) T cells. Nat Med 14(4):429–436CrossRefPubMed Jones KS, Petrow-Sadowski C, Huang YK, Bertolette DC, Ruscetti FW (2008) Cell-free HTLV-1 infects dendritic cells leading to transmission and transformation of CD4(+) T cells. Nat Med 14(4):429–436CrossRefPubMed
40.
go back to reference de Castro-Amarante MF, Pise-Masison CA, McKinnon K, Washington Parks R, Galli V, Omsland M et al (2015) Human T cell leukemia virus type 1 infection of the three monocyte subsets contributes to viral burden in humans. J Virol 90(5):2195–2207CrossRefPubMed de Castro-Amarante MF, Pise-Masison CA, McKinnon K, Washington Parks R, Galli V, Omsland M et al (2015) Human T cell leukemia virus type 1 infection of the three monocyte subsets contributes to viral burden in humans. J Virol 90(5):2195–2207CrossRefPubMed
41.
go back to reference Nagai M, Yamano Y, Brennan MB, Mora CA, Jacobson S (2001) Increased HTLV-I proviral load and preferential expansion of HTLV-I Tax-specific CD8+ T cells in cerebrospinal fluid from patients with HAM/TSP. Ann Neurol 50(6):807–812CrossRefPubMed Nagai M, Yamano Y, Brennan MB, Mora CA, Jacobson S (2001) Increased HTLV-I proviral load and preferential expansion of HTLV-I Tax-specific CD8+ T cells in cerebrospinal fluid from patients with HAM/TSP. Ann Neurol 50(6):807–812CrossRefPubMed
42.
go back to reference Li XB, Zhang ZR, Schluesener HJ, Xu SQ (2006) Role of exosomes in immune regulation. J Cell Mol Med 10(2):364–375CrossRefPubMed Li XB, Zhang ZR, Schluesener HJ, Xu SQ (2006) Role of exosomes in immune regulation. J Cell Mol Med 10(2):364–375CrossRefPubMed
43.
go back to reference Longatti A, Boyd B, Chisari FV (2015) Virion-independent transfer of replication-competent hepatitis C virus RNA between permissive cells. J Virol 89(5):2956–2961CrossRefPubMed Longatti A, Boyd B, Chisari FV (2015) Virion-independent transfer of replication-competent hepatitis C virus RNA between permissive cells. J Virol 89(5):2956–2961CrossRefPubMed
44.
go back to reference Wiley RD, Gummuluru S (2006) Immature dendritic cell-derived exosomes can mediate HIV-1 trans infection. Proc Natl Acad Sci USA 103(3):738–743CrossRefPubMed Wiley RD, Gummuluru S (2006) Immature dendritic cell-derived exosomes can mediate HIV-1 trans infection. Proc Natl Acad Sci USA 103(3):738–743CrossRefPubMed
45.
go back to reference Mori Y, Koike M, Moriishi E, Kawabata A, Tang H, Oyaizu H et al (2008) Human herpesvirus-6 induces MVB formation, and virus egress occurs by an exosomal release pathway. Traffic 9(10):1728–1742CrossRefPubMedPubMedCentral Mori Y, Koike M, Moriishi E, Kawabata A, Tang H, Oyaizu H et al (2008) Human herpesvirus-6 induces MVB formation, and virus egress occurs by an exosomal release pathway. Traffic 9(10):1728–1742CrossRefPubMedPubMedCentral
46.
go back to reference Rowe RK, Suszko JW, Pekosz A (2008) Roles for the recycling endosome, Rab8, and Rab11 in hantavirus release from epithelial cells. Virology 382(2):239–249CrossRefPubMedPubMedCentral Rowe RK, Suszko JW, Pekosz A (2008) Roles for the recycling endosome, Rab8, and Rab11 in hantavirus release from epithelial cells. Virology 382(2):239–249CrossRefPubMedPubMedCentral
47.
go back to reference Jaworski E, Narayanan A, Van Duyne R, Shabbeer-Meyering S, Iordanskiy S, Saifuddin M et al (2014) Human T-lymphotropic virus type 1-infected cells secrete exosomes that contain Tax protein. J Biol Chem 289(32):22284–22305CrossRefPubMedPubMedCentral Jaworski E, Narayanan A, Van Duyne R, Shabbeer-Meyering S, Iordanskiy S, Saifuddin M et al (2014) Human T-lymphotropic virus type 1-infected cells secrete exosomes that contain Tax protein. J Biol Chem 289(32):22284–22305CrossRefPubMedPubMedCentral
48.
go back to reference Yang T, Martin P, Fogarty B, Brown A, Schurman K, Phipps R et al (2015) Exosome delivered anticancer drugs across the blood-brain barrier for brain cancer therapy in Danio rerio. Pharm Res 32(6):2003–2014CrossRefPubMedPubMedCentral Yang T, Martin P, Fogarty B, Brown A, Schurman K, Phipps R et al (2015) Exosome delivered anticancer drugs across the blood-brain barrier for brain cancer therapy in Danio rerio. Pharm Res 32(6):2003–2014CrossRefPubMedPubMedCentral
49.
go back to reference El Andaloussi S, Lakhal S, Mager I, Wood MJ (2013) Exosomes for targeted siRNA delivery across biological barriers. Adv Drug Deliv Rev 65(3):391–397CrossRefPubMed El Andaloussi S, Lakhal S, Mager I, Wood MJ (2013) Exosomes for targeted siRNA delivery across biological barriers. Adv Drug Deliv Rev 65(3):391–397CrossRefPubMed
50.
go back to reference Gupta A, Pulliam L (2014) Exosomes as mediators of neuroinflammation. J Neuroinflam 11:68CrossRef Gupta A, Pulliam L (2014) Exosomes as mediators of neuroinflammation. J Neuroinflam 11:68CrossRef
51.
go back to reference Barclay RA, Schwab A, DeMarino C, Akpamagbo Y, Lepene B, Kassaye S et al (2017) Exosomes from uninfected cells activate transcription of latent HIV-1. J Biol Chem 292(28):11682–11701CrossRefPubMedPubMedCentral Barclay RA, Schwab A, DeMarino C, Akpamagbo Y, Lepene B, Kassaye S et al (2017) Exosomes from uninfected cells activate transcription of latent HIV-1. J Biol Chem 292(28):11682–11701CrossRefPubMedPubMedCentral
52.
go back to reference Sampey GC, Saifuddin M, Schwab A, Barclay R, Punya S, Chung MC et al (2016) Exosomes from HIV-1-infected cells stimulate production of pro-inflammatory cytokines through trans-activating response (TAR) RNA. J Biol Chem 291(3):1251–1266CrossRefPubMed Sampey GC, Saifuddin M, Schwab A, Barclay R, Punya S, Chung MC et al (2016) Exosomes from HIV-1-infected cells stimulate production of pro-inflammatory cytokines through trans-activating response (TAR) RNA. J Biol Chem 291(3):1251–1266CrossRefPubMed
53.
go back to reference Jaworski E, Saifuddin M, Sampey G, Shafagati N, Van Duyne R, Iordanskiy S et al (2014) The use of nanotrap particles technology in capturing HIV-1 virions and viral proteins from infected cells. PLoS ONE 9(5):e96778CrossRefPubMedPubMedCentral Jaworski E, Saifuddin M, Sampey G, Shafagati N, Van Duyne R, Iordanskiy S et al (2014) The use of nanotrap particles technology in capturing HIV-1 virions and viral proteins from infected cells. PLoS ONE 9(5):e96778CrossRefPubMedPubMedCentral
54.
go back to reference Johnstone RM, Bianchini A, Teng K (1989) Reticulocyte maturation and exosome release: transferrin receptor containing exosomes shows multiple plasma membrane functions. Blood 74(5):1844–1851PubMed Johnstone RM, Bianchini A, Teng K (1989) Reticulocyte maturation and exosome release: transferrin receptor containing exosomes shows multiple plasma membrane functions. Blood 74(5):1844–1851PubMed
55.
go back to reference Cantin R, Diou J, Belanger D, Tremblay AM, Gilbert C (2008) Discrimination between exosomes and HIV-1: purification of both vesicles from cell-free supernatants. J Immunol Methods 338(1–2):21–30CrossRefPubMed Cantin R, Diou J, Belanger D, Tremblay AM, Gilbert C (2008) Discrimination between exosomes and HIV-1: purification of both vesicles from cell-free supernatants. J Immunol Methods 338(1–2):21–30CrossRefPubMed
56.
go back to reference Danielson KM, Estanislau J, Tigges J, Toxavidis V, Camacho V, Felton EJ et al (2016) Diurnal variations of circulating extracellular vesicles measured by nano flow cytometry. PLoS ONE 11(1):e0144678CrossRefPubMedPubMedCentral Danielson KM, Estanislau J, Tigges J, Toxavidis V, Camacho V, Felton EJ et al (2016) Diurnal variations of circulating extracellular vesicles measured by nano flow cytometry. PLoS ONE 11(1):e0144678CrossRefPubMedPubMedCentral
57.
go back to reference Sibon D, Gabet AS, Zandecki M, Pinatel C, Thete J, Delfau-Larue MH et al (2006) HTLV-1 propels untransformed CD4 lymphocytes into the cell cycle while protecting CD8 cells from death. J Clin Invest 116(4):974–983CrossRefPubMedPubMedCentral Sibon D, Gabet AS, Zandecki M, Pinatel C, Thete J, Delfau-Larue MH et al (2006) HTLV-1 propels untransformed CD4 lymphocytes into the cell cycle while protecting CD8 cells from death. J Clin Invest 116(4):974–983CrossRefPubMedPubMedCentral
58.
go back to reference Miyano-Kurosaki N, Kira J, Barnor JS, Maeda N, Misawa N, Kawano Y et al (2007) Autonomous proliferation of HTLV-CD4 + T cell clones derived from human T cell leukemia virus type I (HTLV-I)-associated myelopathy patients. Microbiol Immunol 51(2):235–242CrossRefPubMed Miyano-Kurosaki N, Kira J, Barnor JS, Maeda N, Misawa N, Kawano Y et al (2007) Autonomous proliferation of HTLV-CD4 + T cell clones derived from human T cell leukemia virus type I (HTLV-I)-associated myelopathy patients. Microbiol Immunol 51(2):235–242CrossRefPubMed
59.
go back to reference Sakai JA, Nagai M, Brennan MB, Mora CA, Jacobson S (2001) In vitro spontaneous lymphoproliferation in patients with human T-cell lymphotropic virus type I-associated neurologic disease: predominant expansion of CD8+ T cells. Blood 98(5):1506–1511CrossRefPubMed Sakai JA, Nagai M, Brennan MB, Mora CA, Jacobson S (2001) In vitro spontaneous lymphoproliferation in patients with human T-cell lymphotropic virus type I-associated neurologic disease: predominant expansion of CD8+ T cells. Blood 98(5):1506–1511CrossRefPubMed
60.
go back to reference Blanchard N, Lankar D, Faure F, Regnault A, Dumont C, Raposo G et al (2002) TCR activation of human T cells induces the production of exosomes bearing the TCR/CD3/zeta complex. J Immunoll 168(7):3235–3241CrossRef Blanchard N, Lankar D, Faure F, Regnault A, Dumont C, Raposo G et al (2002) TCR activation of human T cells induces the production of exosomes bearing the TCR/CD3/zeta complex. J Immunoll 168(7):3235–3241CrossRef
61.
go back to reference Wodarz D, Nowak MA, Bangham CR (1999) The dynamics of HTLV-I and the CTL response. Immunol Today 20(5):220–227CrossRefPubMed Wodarz D, Nowak MA, Bangham CR (1999) The dynamics of HTLV-I and the CTL response. Immunol Today 20(5):220–227CrossRefPubMed
62.
go back to reference Elovaara I, Koenig S, Brewah AY, Woods RM, Lehky T, Jacobson S (1993) High human T cell lymphotropic virus type 1 (HTLV-1)-specific precursor cytotoxic T lymphocyte frequencies in patients with HTLV-1-associated neurological disease. J Exp Med 177(6):1567–1573CrossRefPubMed Elovaara I, Koenig S, Brewah AY, Woods RM, Lehky T, Jacobson S (1993) High human T cell lymphotropic virus type 1 (HTLV-1)-specific precursor cytotoxic T lymphocyte frequencies in patients with HTLV-1-associated neurological disease. J Exp Med 177(6):1567–1573CrossRefPubMed
63.
go back to reference Nagai M, Kubota R, Greten TF, Schneck JP, Leist TP, Jacobson S (2001) Increased activated human T cell lymphotropic virus type I (HTLV-I) Tax11-19-specific memory and effector CD8 + cells in patients with HTLV-I-associated myelopathy/tropical spastic paraparesis: correlation with HTLV-I provirus load. J Infect Dis 183(2):197–205CrossRefPubMed Nagai M, Kubota R, Greten TF, Schneck JP, Leist TP, Jacobson S (2001) Increased activated human T cell lymphotropic virus type I (HTLV-I) Tax11-19-specific memory and effector CD8 + cells in patients with HTLV-I-associated myelopathy/tropical spastic paraparesis: correlation with HTLV-I provirus load. J Infect Dis 183(2):197–205CrossRefPubMed
64.
go back to reference Kubota R, Soldan SS, Martin R, Jacobson S (2002) Selected cytotoxic T lymphocytes with high specificity for HTLV-I in cerebrospinal fluid from a HAM/TSP patient. J Neurovirol 8(1):53–57CrossRefPubMed Kubota R, Soldan SS, Martin R, Jacobson S (2002) Selected cytotoxic T lymphocytes with high specificity for HTLV-I in cerebrospinal fluid from a HAM/TSP patient. J Neurovirol 8(1):53–57CrossRefPubMed
65.
go back to reference Hausmann S, Biddison WE, Smith KJ, Ding YH, Garboczi DN, Utz U et al (1999) Peptide recognition by two HLA-A2/Tax11-19-specific T cell clones in relationship to their MHC/peptide/TCR crystal structures. J Immunol 162(9):5389–5397PubMed Hausmann S, Biddison WE, Smith KJ, Ding YH, Garboczi DN, Utz U et al (1999) Peptide recognition by two HLA-A2/Tax11-19-specific T cell clones in relationship to their MHC/peptide/TCR crystal structures. J Immunol 162(9):5389–5397PubMed
66.
go back to reference Kubota R, Nagai M, Kawanishi T, Osame M, Jacobson S (2000) Increased HTLV type 1 tax specific CD8+ cells in HTLV type 1-asociated myelopathy/tropical spastic paraparesis: correlation with HTLV type 1 proviral load. AIDS Res Hum Retroviruses 16(16):1705–1709CrossRefPubMed Kubota R, Nagai M, Kawanishi T, Osame M, Jacobson S (2000) Increased HTLV type 1 tax specific CD8+ cells in HTLV type 1-asociated myelopathy/tropical spastic paraparesis: correlation with HTLV type 1 proviral load. AIDS Res Hum Retroviruses 16(16):1705–1709CrossRefPubMed
67.
go back to reference Kalamvoki M, Du T, Roizman B (2014) Cells infected with herpes simplex virus 1 export to uninfected cells exosomes containing STING, viral mRNAs, and microRNAs. Proc Natl Acad Sci USA 111(46):E4991–E4996CrossRefPubMed Kalamvoki M, Du T, Roizman B (2014) Cells infected with herpes simplex virus 1 export to uninfected cells exosomes containing STING, viral mRNAs, and microRNAs. Proc Natl Acad Sci USA 111(46):E4991–E4996CrossRefPubMed
68.
go back to reference Dukers DF, Meij P, Vervoort MB, Vos W, Scheper RJ, Meijer CJ et al (2000) Direct immunosuppressive effects of EBV-encoded latent membrane protein 1. J Immunol 165(2):663–670CrossRefPubMed Dukers DF, Meij P, Vervoort MB, Vos W, Scheper RJ, Meijer CJ et al (2000) Direct immunosuppressive effects of EBV-encoded latent membrane protein 1. J Immunol 165(2):663–670CrossRefPubMed
69.
go back to reference Nagai M, Usuku K, Matsumoto W, Kodama D, Takenouchi N, Moritoyo T et al (1998) Analysis of HTLV-I proviral load in 202 HAM/TSP patients and 243 asymptomatic HTLV-I carriers: high proviral load strongly predisposes to HAM/TSP. J Neurovirol 4(6):586–593CrossRefPubMed Nagai M, Usuku K, Matsumoto W, Kodama D, Takenouchi N, Moritoyo T et al (1998) Analysis of HTLV-I proviral load in 202 HAM/TSP patients and 243 asymptomatic HTLV-I carriers: high proviral load strongly predisposes to HAM/TSP. J Neurovirol 4(6):586–593CrossRefPubMed
70.
go back to reference Jacobson S (1996) Cellular immune responses to HTLV-I: immunopathogenic role in HTLV-I-associated neurologic disease. J Acquir Immune Defic Syndr Hum Retrovirol 13(Suppl 1):S100–S106CrossRefPubMed Jacobson S (1996) Cellular immune responses to HTLV-I: immunopathogenic role in HTLV-I-associated neurologic disease. J Acquir Immune Defic Syndr Hum Retrovirol 13(Suppl 1):S100–S106CrossRefPubMed
71.
go back to reference Currer R, Van Duyne R, Jaworski E, Guendel I, Sampey G, Das R et al (2012) HTLV tax: a fascinating multifunctional co-regulator of viral and cellular pathways. Front Microbiol 3:406CrossRefPubMedPubMedCentral Currer R, Van Duyne R, Jaworski E, Guendel I, Sampey G, Das R et al (2012) HTLV tax: a fascinating multifunctional co-regulator of viral and cellular pathways. Front Microbiol 3:406CrossRefPubMedPubMedCentral
72.
go back to reference Sagar D, Masih S, Schell T, Jacobson S, Comber JD, Philip R et al (2014) In vivo immunogenicity of Tax(11-19) epitope in HLA-A2/DTR transgenic mice: implication for dendritic cell-based anti-HTLV-1 vaccine. Vaccine 32(26):3274–3284CrossRefPubMedPubMedCentral Sagar D, Masih S, Schell T, Jacobson S, Comber JD, Philip R et al (2014) In vivo immunogenicity of Tax(11-19) epitope in HLA-A2/DTR transgenic mice: implication for dendritic cell-based anti-HTLV-1 vaccine. Vaccine 32(26):3274–3284CrossRefPubMedPubMedCentral
73.
go back to reference Goon PK, Biancardi A, Fast N, Igakura T, Hanon E, Mosley AJ et al (2004) Human T cell lymphotropic virus (HTLV) type-1-specific CD8+ T cells: frequency and immunodominance hierarchy. J Infect Dis 189(12):2294–2298CrossRefPubMed Goon PK, Biancardi A, Fast N, Igakura T, Hanon E, Mosley AJ et al (2004) Human T cell lymphotropic virus (HTLV) type-1-specific CD8+ T cells: frequency and immunodominance hierarchy. J Infect Dis 189(12):2294–2298CrossRefPubMed
74.
go back to reference Koenig S, Woods RM, Brewah YA, Newell AJ, Jones GM, Boone E et al (1993) Characterization of MHC class I restricted cytotoxic T cell responses to tax in HTLV-1 infected patients with neurologic disease. J Immunol 151(7):3874–3883PubMed Koenig S, Woods RM, Brewah YA, Newell AJ, Jones GM, Boone E et al (1993) Characterization of MHC class I restricted cytotoxic T cell responses to tax in HTLV-1 infected patients with neurologic disease. J Immunol 151(7):3874–3883PubMed
75.
go back to reference Yamano Y, Nagai M, Brennan M, Mora CA, Soldan SS, Tomaru U et al (2002) Correlation of human T-cell lymphotropic virus type 1 (HTLV-1) mRNA with proviral DNA load, virus-specific CD8(+) T cells, and disease severity in HTLV-1-associated myelopathy (HAM/TSP). Blood 99(1):88–94CrossRefPubMed Yamano Y, Nagai M, Brennan M, Mora CA, Soldan SS, Tomaru U et al (2002) Correlation of human T-cell lymphotropic virus type 1 (HTLV-1) mRNA with proviral DNA load, virus-specific CD8(+) T cells, and disease severity in HTLV-1-associated myelopathy (HAM/TSP). Blood 99(1):88–94CrossRefPubMed
76.
go back to reference Lezin A, Olindo S, Oliere S, Varrin-Doyer M, Marlin R, Cabre P et al (2005) Human T lymphotropic virus type I (HTLV-I) proviral load in cerebrospinal fluid: a new criterion for the diagnosis of HTLV-I-associated myelopathy/tropical spastic paraparesis? J Infect Dis 191(11):1830–1834CrossRefPubMed Lezin A, Olindo S, Oliere S, Varrin-Doyer M, Marlin R, Cabre P et al (2005) Human T lymphotropic virus type I (HTLV-I) proviral load in cerebrospinal fluid: a new criterion for the diagnosis of HTLV-I-associated myelopathy/tropical spastic paraparesis? J Infect Dis 191(11):1830–1834CrossRefPubMed
77.
go back to reference Bangham CR, Araujo A, Yamano Y, Taylor GP (2015) HTLV-1-associated myelopathy/tropical spastic paraparesis. Nat Rev Dis Primers 1:15012CrossRefPubMed Bangham CR, Araujo A, Yamano Y, Taylor GP (2015) HTLV-1-associated myelopathy/tropical spastic paraparesis. Nat Rev Dis Primers 1:15012CrossRefPubMed
79.
go back to reference Wen C, Seeger RC, Fabbri M, Wang L, Wayne AS, Jong AY (2017) Biological roles and potential applications of immune cell-derived extracellular vesicles. J Extracell Vesicles 6(1):1400370CrossRefPubMedPubMedCentral Wen C, Seeger RC, Fabbri M, Wang L, Wayne AS, Jong AY (2017) Biological roles and potential applications of immune cell-derived extracellular vesicles. J Extracell Vesicles 6(1):1400370CrossRefPubMedPubMedCentral
80.
go back to reference Wang J, Yao Y, Wu J, Li G (2015) Identification and analysis of exosomes secreted from macrophages extracted by different methods. Int J Clin Exp Pathol 8(6):6135–6142PubMedPubMedCentral Wang J, Yao Y, Wu J, Li G (2015) Identification and analysis of exosomes secreted from macrophages extracted by different methods. Int J Clin Exp Pathol 8(6):6135–6142PubMedPubMedCentral
81.
go back to reference Williamson PR, Nash TE, Williamson KC, Nath A (2016) CNS infections in 2015: emerging catastrophic infections and new insights into neuroimmunological host damage. Lancet Neurol 15(1):17–19CrossRefPubMed Williamson PR, Nash TE, Williamson KC, Nath A (2016) CNS infections in 2015: emerging catastrophic infections and new insights into neuroimmunological host damage. Lancet Neurol 15(1):17–19CrossRefPubMed
82.
go back to reference Billioux BJ, Nath A, Stavale EJ, Dorbor J, Fallah MP, Sneller MC et al (2017) Cerebrospinal fluid examination in survivors of Ebola virus disease. JAMA Neurol 74(9):1141–1143CrossRefPubMedPubMedCentral Billioux BJ, Nath A, Stavale EJ, Dorbor J, Fallah MP, Sneller MC et al (2017) Cerebrospinal fluid examination in survivors of Ebola virus disease. JAMA Neurol 74(9):1141–1143CrossRefPubMedPubMedCentral
83.
go back to reference Pleet ML, Mathiesen A, DeMarino C, Akpamagbo YA, Barclay RA, Schwab A et al. (2016) Ebola VP40 in exosomes can cause immune cell dysfunction. Front Microbiol 7:1765CrossRefPubMedPubMedCentral Pleet ML, Mathiesen A, DeMarino C, Akpamagbo YA, Barclay RA, Schwab A et al. (2016) Ebola VP40 in exosomes can cause immune cell dysfunction. Front Microbiol 7:1765CrossRefPubMedPubMedCentral
84.
go back to reference Kanninen KM, Bister N, Koistinaho J, Malm T (2016) Exosomes as new diagnostic tools in CNS diseases. Biochem Biophys Acta 1862(3):403–410PubMed Kanninen KM, Bister N, Koistinaho J, Malm T (2016) Exosomes as new diagnostic tools in CNS diseases. Biochem Biophys Acta 1862(3):403–410PubMed
85.
go back to reference De Toro J, Herschlik L, Waldner C, Mongini C (2015) Emerging roles of exosomes in normal and pathological conditions: new insights for diagnosis and therapeutic applications. Front Immunol 6:203CrossRefPubMedPubMedCentral De Toro J, Herschlik L, Waldner C, Mongini C (2015) Emerging roles of exosomes in normal and pathological conditions: new insights for diagnosis and therapeutic applications. Front Immunol 6:203CrossRefPubMedPubMedCentral
86.
go back to reference Jarrin I, Sellier P, Lopes A, Morgand M, Makovec T, Delcey V et al (2016) Etiologies and management of aseptic meningitis in patients admitted to an internal medicine department. Medicine (Baltimore) 95(2):e2372CrossRef Jarrin I, Sellier P, Lopes A, Morgand M, Makovec T, Delcey V et al (2016) Etiologies and management of aseptic meningitis in patients admitted to an internal medicine department. Medicine (Baltimore) 95(2):e2372CrossRef
87.
go back to reference Tunkel AR, Glaser CA, Bloch KC, Sejvar JJ, Marra CM, Roos KL et al (2008) The management of encephalitis: clinical practice guidelines by the infectious diseases society of America. Clin Infect Dis 47(3):303–327CrossRefPubMed Tunkel AR, Glaser CA, Bloch KC, Sejvar JJ, Marra CM, Roos KL et al (2008) The management of encephalitis: clinical practice guidelines by the infectious diseases society of America. Clin Infect Dis 47(3):303–327CrossRefPubMed
88.
go back to reference Narayanan A, Iordanskiy S, Das R, Van Duyne R, Santos S, Jaworski E et al (2013) Exosomes derived from HIV-1-infected cells contain trans-activation response element RNA. J Biol Chem 288(27):20014–20033CrossRefPubMedPubMedCentral Narayanan A, Iordanskiy S, Das R, Van Duyne R, Santos S, Jaworski E et al (2013) Exosomes derived from HIV-1-infected cells contain trans-activation response element RNA. J Biol Chem 288(27):20014–20033CrossRefPubMedPubMedCentral
Metadata
Title
Viral antigens detectable in CSF exosomes from patients with retrovirus associated neurologic disease: functional role of exosomes
Authors
Monique R. Anderson
Michelle L. Pleet
Yoshimi Enose-Akahata
James Erickson
Maria Chiara Monaco
Yao Akpamagbo
Ashley Velluci
Yuetsu Tanaka
Shila Azodi
Ben Lepene
Jennifer Jones
Fatah Kashanchi
Steven Jacobson
Publication date
01-12-2018
Publisher
Springer Berlin Heidelberg
Published in
Clinical and Translational Medicine / Issue 1/2018
Electronic ISSN: 2001-1326
DOI
https://doi.org/10.1186/s40169-018-0204-7

Other articles of this Issue 1/2018

Clinical and Translational Medicine 1/2018 Go to the issue