Skip to main content
Top
Published in: European Journal of Medical Research 1/2019

Open Access 01-12-2019 | Cardiopulmonary Resuscitation | Research

The assessment of the kinematics of the rescuer in continuous chest compression during a 10-min simulation of cardiopulmonary resuscitation

Authors: Bogusław Bucki, Dariusz Waniczek, Robert Michnik, Jacek Karpe, Andrzej Bieniek, Arkadiusz Niczyporuk, Joanna Makarska, Tomasz Stepien, Dariusz Myrcik, Hanna Misiołek

Published in: European Journal of Medical Research | Issue 1/2019

Login to get access

Abstract

Background

In pursuit of improvement in cardiopulmonary resuscitation (CPR), new technologies for the measurement and assessment of CPR quality are implemented. In our study, we assessed the kinematics of the rescuer during continuous chest compression (CCC–CPR). The proper performance of the procedure is a survival predictor for patients with cardiac arrest (CA). The purpose of the study was a prospective assessment of the kinematics of the rescuer’s body with consideration given to the depth and rate of chest compression (CC) as the indicator of properly performed CC maneuver by professional and non-professional rescuers during a simulation of a 10-min CCC using a manikin.

Methods

Forty participants were enrolled in the study. CCC–CPR was performed in accordance with the 2015 AHA guidelines on a manikin positioned on the floor. Kinematic data on the movement were obtained from the measuring system (X-sens MVN Biomech) transmitting information from 17 inertial sensors. Measurement data were imported to the author’s program RKO-Kinemat written in the Matlab and C # environments. Two groups of results were distinguished: Group I—results of CC with the depth of ≥ 40 mm and Group 2—CC results with the depth of < 40 mm.

Results

The multiple regression model demonstrated that the path length, left knee flexion angle, and left elbow flexion angle were the essential elements of the rescuer’s kinematics that facilitated achieving and maintaining the normal depth of CC.

Conclusions

We believe that raising the rescuer’s hips by moving the center of the rescuer’s body over the point of sternal compression increases the value of the CC force vector, thereby increasing the depth of CC. In addition, we observed that, during an effective CC, the rescuer was unable to maintain arms straight and, in consequence, a slight elbow flexion was observed. It, however, did not influence the quality of the maneuver.
Literature
1.
go back to reference Neumar RW, Shuster M, Callaway CW, Gent LM, Atkins DL, Bhanji F, Brooks SC, Caen AR, Donnino MW, Ferrer JM, Kleinman ME, Kronick SL, Lavonas EJ, Link, Mancini ME, Morrison LJ, Connor RE, Samson RA, Schexnayder SM, Singletary EM, Sinz EH, Travers AH, Wyckoff MH, Hazinski MF. Part 1: executive summary: 2015 American Heart Association guidelines update for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation. 2015;132(18 S2):315–67.CrossRef Neumar RW, Shuster M, Callaway CW, Gent LM, Atkins DL, Bhanji F, Brooks SC, Caen AR, Donnino MW, Ferrer JM, Kleinman ME, Kronick SL, Lavonas EJ, Link, Mancini ME, Morrison LJ, Connor RE, Samson RA, Schexnayder SM, Singletary EM, Sinz EH, Travers AH, Wyckoff MH, Hazinski MF. Part 1: executive summary: 2015 American Heart Association guidelines update for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation. 2015;132(18 S2):315–67.CrossRef
2.
go back to reference Monsieurs KG, Nolan JP, Bossaert LL, Greif R, Maconochie IK, Nikolaou NI, Perkins GD, Soar J, Truhlář A, Wyllie J, Zideman DA, ERC Guidelines 2015 Writing Group. European resuscitation council guidelines for resuscitation 2015: section 1. Executive summary. Resuscitation. Resuscitation. 2015;95:1–80.CrossRef Monsieurs KG, Nolan JP, Bossaert LL, Greif R, Maconochie IK, Nikolaou NI, Perkins GD, Soar J, Truhlář A, Wyllie J, Zideman DA, ERC Guidelines 2015 Writing Group. European resuscitation council guidelines for resuscitation 2015: section 1. Executive summary. Resuscitation. Resuscitation. 2015;95:1–80.CrossRef
3.
go back to reference Mayrand KP, Fischer EJ, TenEyck RP. A simulation-based randomized controlled study of factors influencing chest compression depth. West J Emerg Med. 2015;16(7):1135–40.CrossRef Mayrand KP, Fischer EJ, TenEyck RP. A simulation-based randomized controlled study of factors influencing chest compression depth. West J Emerg Med. 2015;16(7):1135–40.CrossRef
4.
go back to reference John AR, Manivannan M, Ramakrishnan TV. Computer-based CPR simulation towards validation of AHA/ERC guidelines. Cardiovasc Eng Technol. 2017;2:229–35.CrossRef John AR, Manivannan M, Ramakrishnan TV. Computer-based CPR simulation towards validation of AHA/ERC guidelines. Cardiovasc Eng Technol. 2017;2:229–35.CrossRef
5.
go back to reference Ewy GA, Sanders AB. Alternative approach to improving survival of patients with out of hospital primary cardiac arrest. J Am Cool Cardiol. 2013;61(2):113–8.CrossRef Ewy GA, Sanders AB. Alternative approach to improving survival of patients with out of hospital primary cardiac arrest. J Am Cool Cardiol. 2013;61(2):113–8.CrossRef
6.
go back to reference Urban JI, Thode A, Stapleton E, Singer AJ. Current knowledge of and willingness to perform hands-only CPR in leypersons. Resuscitation. 2013;84(11):1574–8.CrossRef Urban JI, Thode A, Stapleton E, Singer AJ. Current knowledge of and willingness to perform hands-only CPR in leypersons. Resuscitation. 2013;84(11):1574–8.CrossRef
7.
go back to reference Kurz MC, Schmicker RH, Leroux B, et al. Advanced vs. basic life support in the treatment of out of hospital cardiopulmonary arrest in the resuscitation outcomes consortium. Resuscitation. 2018;128(30):132–7.CrossRef Kurz MC, Schmicker RH, Leroux B, et al. Advanced vs. basic life support in the treatment of out of hospital cardiopulmonary arrest in the resuscitation outcomes consortium. Resuscitation. 2018;128(30):132–7.CrossRef
9.
go back to reference Olsveengen TM, Wik L, Steen PA. Standard basic life support vs continuous chest compressions only in out-of-hospital. Resuscitation. 2008;52:914–9. Olsveengen TM, Wik L, Steen PA. Standard basic life support vs continuous chest compressions only in out-of-hospital. Resuscitation. 2008;52:914–9.
10.
go back to reference Nishiyama C, Iwami T, Kitamura T, Ando M, Sakamoto T, Mrukawa S, Kawamura T. Long term retention of cardiopulmonary resuscitation skills after shortened chest compression only training and conventional training: randomized trial. Acad Emerg Med. 2014;21(1):47–54.CrossRef Nishiyama C, Iwami T, Kitamura T, Ando M, Sakamoto T, Mrukawa S, Kawamura T. Long term retention of cardiopulmonary resuscitation skills after shortened chest compression only training and conventional training: randomized trial. Acad Emerg Med. 2014;21(1):47–54.CrossRef
11.
go back to reference Ko RJM, Lim SH, Wu VX, Leong TY, Liaw SY. Easy to learn cardiopulmonary resuscitation training programme: a randomised controlled trial on laypeople’s resuscitation performance. Singapore Med J. 2018;59(4):217–23.CrossRef Ko RJM, Lim SH, Wu VX, Leong TY, Liaw SY. Easy to learn cardiopulmonary resuscitation training programme: a randomised controlled trial on laypeople’s resuscitation performance. Singapore Med J. 2018;59(4):217–23.CrossRef
12.
go back to reference Baldi E, Contri E, Burkart R, Borrelli P, Ferraro OE, Tonani M, Cutuli A, Bertaia D, Iozzo P, Tinguely C, Lopez D, Boldarin S, Deiuri C, Dénéréaz S, Dénéréaz Y, Terrapon M, Tami C, Cereda C, Somaschini A, Cornara S, Cortegiani A. Protocol of a multicenter international randomized controlled manikin study on different protocols of cardiopulmonary resuscitation for laypeople (MANI-CPR). BMJ Open. 2018;8(4):e019723.PubMedPubMedCentral Baldi E, Contri E, Burkart R, Borrelli P, Ferraro OE, Tonani M, Cutuli A, Bertaia D, Iozzo P, Tinguely C, Lopez D, Boldarin S, Deiuri C, Dénéréaz S, Dénéréaz Y, Terrapon M, Tami C, Cereda C, Somaschini A, Cornara S, Cortegiani A. Protocol of a multicenter international randomized controlled manikin study on different protocols of cardiopulmonary resuscitation for laypeople (MANI-CPR). BMJ Open. 2018;8(4):e019723.PubMedPubMedCentral
13.
go back to reference Travers AH, Rea TD, Bobrow BJ, et al. Part 4: CPR overview: 2010 American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation. 2010;122(18):676–84.CrossRef Travers AH, Rea TD, Bobrow BJ, et al. Part 4: CPR overview: 2010 American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation. 2010;122(18):676–84.CrossRef
14.
go back to reference Sandroni C, Nolan J, European Resuscitation Council. ERC 2010 guidelines for adult and pediatric resuscitation: summary of major changes. Minerva Anestesiol. 2011;77(2):220–6.PubMed Sandroni C, Nolan J, European Resuscitation Council. ERC 2010 guidelines for adult and pediatric resuscitation: summary of major changes. Minerva Anestesiol. 2011;77(2):220–6.PubMed
15.
go back to reference Orkin AM. Push hard, push fast, if you’re downtown: a citation review of urban-centrism in American and European basic life support guidelines. Scand J Trauma Resusc Emerg Med. 2013;20:21–32. Orkin AM. Push hard, push fast, if you’re downtown: a citation review of urban-centrism in American and European basic life support guidelines. Scand J Trauma Resusc Emerg Med. 2013;20:21–32.
16.
go back to reference Lee KJ. Cardiopulmonary resuscitation: new concept. Tuberc Respir Dis. 2012;72(5):401–8.CrossRef Lee KJ. Cardiopulmonary resuscitation: new concept. Tuberc Respir Dis. 2012;72(5):401–8.CrossRef
17.
go back to reference Vadeboncoeur T, Stolz U, Panchal A, Silver A, Venuti M, Tobin J, Smith G, Nunez M, Karamooz M, Spaite D, Bobrow B. Chest compression depth and survival in out of hospital cardiac arrest. Resuscitation. 2014;85(2):182–8.CrossRef Vadeboncoeur T, Stolz U, Panchal A, Silver A, Venuti M, Tobin J, Smith G, Nunez M, Karamooz M, Spaite D, Bobrow B. Chest compression depth and survival in out of hospital cardiac arrest. Resuscitation. 2014;85(2):182–8.CrossRef
18.
go back to reference Jones CMI, Owen A, Thorne CJ, Hulme J. Comparison of the quality of basic life support provided by rescuers trained using the 2005 or 2010 ERC guidelines. Scand J Trauma Resusc Emerg Med. 2012;9(20):53.CrossRef Jones CMI, Owen A, Thorne CJ, Hulme J. Comparison of the quality of basic life support provided by rescuers trained using the 2005 or 2010 ERC guidelines. Scand J Trauma Resusc Emerg Med. 2012;9(20):53.CrossRef
19.
go back to reference Kim MJ, Park YS, Kim SW, Yoon YS, Lee KR, Lim TH, Lim H, Park HY, Park JM, Chung SP. Chest injury following cardiopulmonary resuscitation: a prospective computed tomography evaluation. Resuscitation. 2013;84(3):361–4.CrossRef Kim MJ, Park YS, Kim SW, Yoon YS, Lee KR, Lim TH, Lim H, Park HY, Park JM, Chung SP. Chest injury following cardiopulmonary resuscitation: a prospective computed tomography evaluation. Resuscitation. 2013;84(3):361–4.CrossRef
20.
go back to reference Ong EH. Improving the quality of CPR in the community. Singapore Med J. 2012;52(8):586–91. Ong EH. Improving the quality of CPR in the community. Singapore Med J. 2012;52(8):586–91.
21.
go back to reference Gzik-Zroska B, Wolański W, Gzik M. Engineering-aided treatment of chest deformities to improve the process of breathing. Int J Num Methods Biomed Eng. 2013;29(9):926–37.CrossRef Gzik-Zroska B, Wolański W, Gzik M. Engineering-aided treatment of chest deformities to improve the process of breathing. Int J Num Methods Biomed Eng. 2013;29(9):926–37.CrossRef
22.
go back to reference Wininger KL. Chest compressions: biomechanics and injury. Radiol Technol. 2007;78(4):269–74.PubMed Wininger KL. Chest compressions: biomechanics and injury. Radiol Technol. 2007;78(4):269–74.PubMed
23.
go back to reference Meamey PA, Bobow BJ, Mancini ME, et al. Cardiopulmonary resuscitation quality: improving cardiac resuscitation outcomes both inside and outside the hospital. a consensus statement from the American Heart Association. Circulation. 2013;128:417–35.CrossRef Meamey PA, Bobow BJ, Mancini ME, et al. Cardiopulmonary resuscitation quality: improving cardiac resuscitation outcomes both inside and outside the hospital. a consensus statement from the American Heart Association. Circulation. 2013;128:417–35.CrossRef
24.
go back to reference Nassar BS, Kerber R. Improving CPR performance. Chest. 2017;3692(17):30883–8. Nassar BS, Kerber R. Improving CPR performance. Chest. 2017;3692(17):30883–8.
25.
go back to reference Stiell IG, Brown SP, Christenson J, Cheskes S, Nichol G, Powell J, Bigham B, Morrison LJ, Larsen J, Hess E, Vaillancourt C, Davis DP, Callaway CW. What is the role of chest compression depth during out-of-hospital cardiac arrest resuscitation? Crit Care Med. 2012;40(4):1192–8.CrossRef Stiell IG, Brown SP, Christenson J, Cheskes S, Nichol G, Powell J, Bigham B, Morrison LJ, Larsen J, Hess E, Vaillancourt C, Davis DP, Callaway CW. What is the role of chest compression depth during out-of-hospital cardiac arrest resuscitation? Crit Care Med. 2012;40(4):1192–8.CrossRef
26.
go back to reference Bucki B, Karpe J, Michnik R, Niczyporuk A, Makarska J, Waniczek D, Bieniek A, Misiołek H. Depth and rate of chest compression in CPR simulation during 10-min continuous external cardiac compression. Ann Acad Med Siles. 2017;71:1–6.CrossRef Bucki B, Karpe J, Michnik R, Niczyporuk A, Makarska J, Waniczek D, Bieniek A, Misiołek H. Depth and rate of chest compression in CPR simulation during 10-min continuous external cardiac compression. Ann Acad Med Siles. 2017;71:1–6.CrossRef
27.
go back to reference Tomoyuki H, Rie D, Shin S, Yayoi S. Relationship between weight of rescuer and quality of chest compression during cardiopulmonary resuscitation. J Physiol Anthropol. 2014;33:16.CrossRef Tomoyuki H, Rie D, Shin S, Yayoi S. Relationship between weight of rescuer and quality of chest compression during cardiopulmonary resuscitation. J Physiol Anthropol. 2014;33:16.CrossRef
28.
go back to reference Yang Z, Li H, Yu T, Chen C, Xu J, Chu Y, Zhou T, Jiang L, Huang Z. Quality of chest compressions during compression-only CPR: a comparative analysis following the 2005 and 2010 American Heart Association guidelines. Am J Emerg Med. 2014;32(1):50–4.CrossRef Yang Z, Li H, Yu T, Chen C, Xu J, Chu Y, Zhou T, Jiang L, Huang Z. Quality of chest compressions during compression-only CPR: a comparative analysis following the 2005 and 2010 American Heart Association guidelines. Am J Emerg Med. 2014;32(1):50–4.CrossRef
29.
go back to reference McDonald CH, Heggie J, Jones CM, Thorne CJ, Hulme J. Rescuer fatigue under the 2010 ERC guidelines, and its effect on cardiopulmonary resuscitation (CPR) performance. Emerg Med J. 2013;30(8):623–7.CrossRef McDonald CH, Heggie J, Jones CM, Thorne CJ, Hulme J. Rescuer fatigue under the 2010 ERC guidelines, and its effect on cardiopulmonary resuscitation (CPR) performance. Emerg Med J. 2013;30(8):623–7.CrossRef
30.
go back to reference Jo CH, Cho GC, Ahn JH, Park YS, Lee CH. Rescuer-limited cardiopulmonary resuscitation as an alternative to 2-min switched CPR in the setting of in-hospital cardiac arrest: a randomised cross-over study. Emerg Med J. 2015;32(7):539–43.CrossRef Jo CH, Cho GC, Ahn JH, Park YS, Lee CH. Rescuer-limited cardiopulmonary resuscitation as an alternative to 2-min switched CPR in the setting of in-hospital cardiac arrest: a randomised cross-over study. Emerg Med J. 2015;32(7):539–43.CrossRef
31.
go back to reference Kampmeier TG, Lukas RP, Steffler C, Sauerland C, Weber TP, Van Aachen H, Bohn A. Chest compression depth after change in CPR guidelines—improved but not sufficient. Resuscitation. 2014;85(4):503–8.CrossRef Kampmeier TG, Lukas RP, Steffler C, Sauerland C, Weber TP, Van Aachen H, Bohn A. Chest compression depth after change in CPR guidelines—improved but not sufficient. Resuscitation. 2014;85(4):503–8.CrossRef
32.
go back to reference Oh JH, Kim CW. Relationship between chest compression depth and novice rescuer body weight during cardiopulmonary resuscitation. Am J Emerg Med. 2016;34(12):2411–3.CrossRef Oh JH, Kim CW. Relationship between chest compression depth and novice rescuer body weight during cardiopulmonary resuscitation. Am J Emerg Med. 2016;34(12):2411–3.CrossRef
33.
go back to reference Lin CC, Kuo CW, Ng CJ, Li WC, Weng YM, Chen JC. Rescuer factors predict high-quality CPR -a manikin-based study of health care providers. Am J Emerg Med. 2016;34(1):20–4.CrossRef Lin CC, Kuo CW, Ng CJ, Li WC, Weng YM, Chen JC. Rescuer factors predict high-quality CPR -a manikin-based study of health care providers. Am J Emerg Med. 2016;34(1):20–4.CrossRef
34.
go back to reference Chi CH, Tsou JY, Su FC. Effects of rescuer position on the kinematics of cardiopulmonary resuscitation (CPR) and the force of delivered compressions. Resuscitation. 2008;76(1):69–75.CrossRef Chi CH, Tsou JY, Su FC. Effects of rescuer position on the kinematics of cardiopulmonary resuscitation (CPR) and the force of delivered compressions. Resuscitation. 2008;76(1):69–75.CrossRef
35.
go back to reference Chi CH, Tsou JY, Su FC. Comparison of chest compression kinematics associated with over-the-head and standard cardiopulmonary resuscitation. Am J Emerg Med. 2009;27(9):1112–26.CrossRef Chi CH, Tsou JY, Su FC. Comparison of chest compression kinematics associated with over-the-head and standard cardiopulmonary resuscitation. Am J Emerg Med. 2009;27(9):1112–26.CrossRef
Metadata
Title
The assessment of the kinematics of the rescuer in continuous chest compression during a 10-min simulation of cardiopulmonary resuscitation
Authors
Bogusław Bucki
Dariusz Waniczek
Robert Michnik
Jacek Karpe
Andrzej Bieniek
Arkadiusz Niczyporuk
Joanna Makarska
Tomasz Stepien
Dariusz Myrcik
Hanna Misiołek
Publication date
01-12-2019
Publisher
BioMed Central
Published in
European Journal of Medical Research / Issue 1/2019
Electronic ISSN: 2047-783X
DOI
https://doi.org/10.1186/s40001-019-0369-6

Other articles of this Issue 1/2019

European Journal of Medical Research 1/2019 Go to the issue