Skip to main content
Top
Published in: European Journal of Medical Research 1/2019

Open Access 01-12-2019 | Back Pain | Research

Distribution of Modic changes in patients with low back pain and its related factors

Authors: Yufeng Chen, Jie Bao, Qi Yan, Cenhao Wu, Huilin Yang, Jun Zou

Published in: European Journal of Medical Research | Issue 1/2019

Login to get access

Abstract

Background

To summarize the clinical distribution of Modic changes in patients with low back pain and explore the related factors.

Methods

A total of 153 patients were enrolled. Gender, age, disk degeneration, herniation, involved segments, lumbar lordosis angle, and endplate concave angle were recorded, respectively. Patients were divided into two or more groups according to a different classification. The relevant factors were studied with a multivariate logistic regression analysis to analyze their correlation.

Results

A total of 35 patients with type I changes, 110 patients with type II changes, and 8 patients with type III changes. In total, 204 disks were found with Modic changes, L1/2 (10 disks), L2/3 (18 disks), L3/4 (17 disks), L4/5 (76 disks), and L5/S1 (81 disks). Type I changes were distributed mainly under the age of 50. Multivariate regression showed that gender, age, disk degeneration, lumbar lordosis, L4/5 segment lordosis angle, and L5 lower endplate concave angle were related with different types of Modic changes. The regression equation Y = 2.410 − 1.361S − 0.633A − 0.654P + 1.106L − 0.990D (Y means type I changes, S means gender, A means age, P means disk degeneration, L means L4/5 segment lordosis angle, and D means L5 upper endplate concave angle). The OR values were S = 0.256, A = 0.531, P = 0.520, L = 3.022, D = 0.372, respectively.

Conclusions

Type II changes are the most common, followed by type I. Modic changes mostly occur in L4/5 and L5/S1; young, male, lower-grade disk degeneration, normal physiological curvature of the lumbar spine, and normal endplate concave angle were associated with type I changes; gender and lumbar curvature were the most relevant factors for different types.
Literature
2.
go back to reference Albert HB, Kjaer P, Jensen TS, et al. Modic changes, possible causes and relation to low back pain. Med Hypotheses. 2008;70(2):361–8.CrossRefPubMed Albert HB, Kjaer P, Jensen TS, et al. Modic changes, possible causes and relation to low back pain. Med Hypotheses. 2008;70(2):361–8.CrossRefPubMed
3.
go back to reference Luoma K, Vehmas T, Kerttula L, et al. Chronic low back pain in relation to Modic changes, bony endplate lesions, and disc degeneration in a prospective MRI study. Eur Spine J. 2016;25(9):2873–81.CrossRefPubMed Luoma K, Vehmas T, Kerttula L, et al. Chronic low back pain in relation to Modic changes, bony endplate lesions, and disc degeneration in a prospective MRI study. Eur Spine J. 2016;25(9):2873–81.CrossRefPubMed
4.
go back to reference Kleinstück F, Dvorak J, Mannion AF. Are “structural abnormalities” on magnetic resonance imaging a contraindication to the successful conservative treatment of chronic nonspecific low back pain? Spine (Phila Pa 1976). 2006;31(19):2250–7.CrossRef Kleinstück F, Dvorak J, Mannion AF. Are “structural abnormalities” on magnetic resonance imaging a contraindication to the successful conservative treatment of chronic nonspecific low back pain? Spine (Phila Pa 1976). 2006;31(19):2250–7.CrossRef
6.
go back to reference Mok FP, Samartzis D, Karppinen J, et al. Modic changes of the lumbar spine: prevalence, risk factors, and association with disc degeneration and low back pain in a large-scale population-based cohort. Spine J. 2016;16(1):32–41.CrossRefPubMed Mok FP, Samartzis D, Karppinen J, et al. Modic changes of the lumbar spine: prevalence, risk factors, and association with disc degeneration and low back pain in a large-scale population-based cohort. Spine J. 2016;16(1):32–41.CrossRefPubMed
7.
go back to reference Toyone T, Takahashi K, Kitahara H, et al. Vertebral bone marrow changes in degenerative lumbar disc disease. An MRI study of 74 patients with low back pain. J Bone Join Surg Br. 1994;76(5):757–64.CrossRef Toyone T, Takahashi K, Kitahara H, et al. Vertebral bone marrow changes in degenerative lumbar disc disease. An MRI study of 74 patients with low back pain. J Bone Join Surg Br. 1994;76(5):757–64.CrossRef
8.
go back to reference Ohtori S, Inoue G, Ho T, et al. Tumor necrosis factor-immunoreactive cells and PGP 9.5-immunoreactive nerve fibers in vertebral endplates of patients with discogenic low back pain and Modic type 1 or type 2 changes on MRI. Spine. 2006;31(9):1026–31.CrossRefPubMed Ohtori S, Inoue G, Ho T, et al. Tumor necrosis factor-immunoreactive cells and PGP 9.5-immunoreactive nerve fibers in vertebral endplates of patients with discogenic low back pain and Modic type 1 or type 2 changes on MRI. Spine. 2006;31(9):1026–31.CrossRefPubMed
9.
go back to reference Rahme R, Moussa R, Bou-Nassif R, et al. What happens to Modic changes following lumbar discectomy? Analysis of a cohort of 41 patients with a 3- to 5-year follow-up period. J Neurosurg Spine. 2010;13(5):562–7.CrossRefPubMed Rahme R, Moussa R, Bou-Nassif R, et al. What happens to Modic changes following lumbar discectomy? Analysis of a cohort of 41 patients with a 3- to 5-year follow-up period. J Neurosurg Spine. 2010;13(5):562–7.CrossRefPubMed
10.
go back to reference Ohtori S, Yamashita M, Yamauchi K, et al. Low back pain after lumbar discectomy in patients showing endplate Modic type 1 change. Spine. 2010;35(13):E596–600.CrossRefPubMed Ohtori S, Yamashita M, Yamauchi K, et al. Low back pain after lumbar discectomy in patients showing endplate Modic type 1 change. Spine. 2010;35(13):E596–600.CrossRefPubMed
11.
go back to reference Chin KR, Tomlinson D, Deirmengian C, et al. Success of lumbar microdiscectomy in patients with Modic changes and low-back pain. A Prospective Pilot Study. Spine J. 2006;6(5):139–44. Chin KR, Tomlinson D, Deirmengian C, et al. Success of lumbar microdiscectomy in patients with Modic changes and low-back pain. A Prospective Pilot Study. Spine J. 2006;6(5):139–44.
12.
go back to reference Modic MT, Steinberg PM, Ross JS, et al. Degenerative disk disease: assessment of changes in vertebral body marrow with MR imaging. Radiology. 1988;166(1 Pt 1):193–9.CrossRefPubMed Modic MT, Steinberg PM, Ross JS, et al. Degenerative disk disease: assessment of changes in vertebral body marrow with MR imaging. Radiology. 1988;166(1 Pt 1):193–9.CrossRefPubMed
13.
go back to reference Pfirrmann CWA, Metzdorf A, Zanetti M, et al. Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine. 2001;26(17):1873–8.CrossRefPubMed Pfirrmann CWA, Metzdorf A, Zanetti M, et al. Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine. 2001;26(17):1873–8.CrossRefPubMed
14.
go back to reference Kuisma M, Karppinen J, Niinimaki J, et al. A three years follow-up of lumbar spine endplate (Modic) changes. Spine. 2006;31(15):1714–8.CrossRefPubMed Kuisma M, Karppinen J, Niinimaki J, et al. A three years follow-up of lumbar spine endplate (Modic) changes. Spine. 2006;31(15):1714–8.CrossRefPubMed
15.
go back to reference Urban JP, Smith S, Falrbank JC, et al. Nutrition of the intervertebral disc. Spine (Phila Pa 1976). 2004;29:2700–9.CrossRef Urban JP, Smith S, Falrbank JC, et al. Nutrition of the intervertebral disc. Spine (Phila Pa 1976). 2004;29:2700–9.CrossRef
16.
go back to reference Jensen TS, Karppinen J, Sorensen JS, et al. Vertebral endplate signal changes(Modic change): a systematic literature review of prevalence and association with non-specific low back pain. Eur Spine J. 2008;17(11):1407–22.CrossRefPubMedPubMedCentral Jensen TS, Karppinen J, Sorensen JS, et al. Vertebral endplate signal changes(Modic change): a systematic literature review of prevalence and association with non-specific low back pain. Eur Spine J. 2008;17(11):1407–22.CrossRefPubMedPubMedCentral
17.
go back to reference Braithwaite I, White J, Saifuddin J, et al. Vertebral end-plate (Modic) changes on lumbar spine MRI: correlation with pain reproduction at lumbar discography. Eur Spine J. 1998;7(5):363–8.CrossRefPubMedPubMedCentral Braithwaite I, White J, Saifuddin J, et al. Vertebral end-plate (Modic) changes on lumbar spine MRI: correlation with pain reproduction at lumbar discography. Eur Spine J. 1998;7(5):363–8.CrossRefPubMedPubMedCentral
18.
go back to reference Kleinstuck E, Dvorak J, Mannion AF. Are “structural abnormalities” on magnetic resonance imaging a contraindication to the successful conservative treatment of chronic nonspecific low back pain? Spine. 2006;31(19):2250–7.CrossRefPubMed Kleinstuck E, Dvorak J, Mannion AF. Are “structural abnormalities” on magnetic resonance imaging a contraindication to the successful conservative treatment of chronic nonspecific low back pain? Spine. 2006;31(19):2250–7.CrossRefPubMed
19.
go back to reference Marshman LA, Trewhella M, Friesem T, et al. Reverse transformation of Modic type 2 changes to Modic type 1 changes during sustained chronic low-back pain severity. Report of two cases and review of the literature. J Neurosurg Spine. 2007;6(2):152–5.CrossRefPubMed Marshman LA, Trewhella M, Friesem T, et al. Reverse transformation of Modic type 2 changes to Modic type 1 changes during sustained chronic low-back pain severity. Report of two cases and review of the literature. J Neurosurg Spine. 2007;6(2):152–5.CrossRefPubMed
21.
go back to reference Jensen RK, Leboeuf-Yde C, Wedderkopp N, et al. Rest versus exercise as treatment for patients with low back pain and Modic changes. A randomized controlled clinical trial. BMC Med. 2012;10:22.CrossRefPubMedPubMedCentral Jensen RK, Leboeuf-Yde C, Wedderkopp N, et al. Rest versus exercise as treatment for patients with low back pain and Modic changes. A randomized controlled clinical trial. BMC Med. 2012;10:22.CrossRefPubMedPubMedCentral
22.
go back to reference Holm S, Holm AK, Ekström L, et al. Experimental disc degeneration due to endplate injury. J Spinal Disord Tech. 2004;17(1):64–71.CrossRefPubMed Holm S, Holm AK, Ekström L, et al. Experimental disc degeneration due to endplate injury. J Spinal Disord Tech. 2004;17(1):64–71.CrossRefPubMed
23.
go back to reference Cinotti G, Della Rocca C, Romeo S, et al. Degenerative changes of porcine intervertebral disc induced by vertebral endplate injuries. Spine (Phila Pa 1976). 2005;30(2):174–80.CrossRef Cinotti G, Della Rocca C, Romeo S, et al. Degenerative changes of porcine intervertebral disc induced by vertebral endplate injuries. Spine (Phila Pa 1976). 2005;30(2):174–80.CrossRef
24.
go back to reference Keller TS, Colloca CJ, Harison DE, et al. Influence of spine morphology on intervertebral disc loads and stresses in asymptomatic adults: implications for the ideal spine. Spine J. 2005;5(3):297–309.CrossRefPubMed Keller TS, Colloca CJ, Harison DE, et al. Influence of spine morphology on intervertebral disc loads and stresses in asymptomatic adults: implications for the ideal spine. Spine J. 2005;5(3):297–309.CrossRefPubMed
25.
go back to reference Tanaka N, An HS, Lim TH, et al. The relationship between disc degeneration and flexibility of the lumbar spine. Spine J. 2001;1(1):47–56.CrossRefPubMed Tanaka N, An HS, Lim TH, et al. The relationship between disc degeneration and flexibility of the lumbar spine. Spine J. 2001;1(1):47–56.CrossRefPubMed
26.
go back to reference Lao LF, Daubs MD, Scott TP, et al. Effect of disc degeneration on lumbar segmental mobility analyzed by kinetic magnetic resonance imaging. Spine. 2015;40(5):316–22.CrossRefPubMed Lao LF, Daubs MD, Scott TP, et al. Effect of disc degeneration on lumbar segmental mobility analyzed by kinetic magnetic resonance imaging. Spine. 2015;40(5):316–22.CrossRefPubMed
27.
go back to reference Wang Y, Battié MC, Videman T. A morphological study of lumbar vertebral endplates: radiographic, visual and digital measurements. Eur Spine J. 2012;21(11):2316–23.CrossRefPubMedPubMedCentral Wang Y, Battié MC, Videman T. A morphological study of lumbar vertebral endplates: radiographic, visual and digital measurements. Eur Spine J. 2012;21(11):2316–23.CrossRefPubMedPubMedCentral
28.
go back to reference Fazzalari NL, Manthey B, Parkinson LH. Intervertebral disc disorganisation and its relationship to age adjusted vertebral body morphometry and vertebral bone architecture. Anat Rec. 2001;262:331–4.CrossRefPubMed Fazzalari NL, Manthey B, Parkinson LH. Intervertebral disc disorganisation and its relationship to age adjusted vertebral body morphometry and vertebral bone architecture. Anat Rec. 2001;262:331–4.CrossRefPubMed
Metadata
Title
Distribution of Modic changes in patients with low back pain and its related factors
Authors
Yufeng Chen
Jie Bao
Qi Yan
Cenhao Wu
Huilin Yang
Jun Zou
Publication date
01-12-2019
Publisher
BioMed Central
Published in
European Journal of Medical Research / Issue 1/2019
Electronic ISSN: 2047-783X
DOI
https://doi.org/10.1186/s40001-019-0393-6

Other articles of this Issue 1/2019

European Journal of Medical Research 1/2019 Go to the issue