Skip to main content
Top
Published in: European Journal of Medical Research 1/2018

Open Access 01-12-2018 | Research

Screening breast magnetic resonance imaging in women with hormone replacement therapy

Authors: Feng Zhang, Qingjing Feng, Zhiyong Zhang, Yanjun Hu, Zhifeng Zhang

Published in: European Journal of Medical Research | Issue 1/2018

Login to get access

Abstract

Objective

The objective of this study was to compare the performance of screening mammography versus magnetic resonance imaging (MRI) in hormone replacement therapy (HRT) users.

Methods

We performed a retrospective review of 4628 women who had mammography or breast MRI screening from the beginning of HRT use at three institutions from April 2005 to December 2015. Information of demographics, number of biopsies performed and pathologic outcomes were collected. Sensitivity, specificity, negative predictive value (NPV) and positive predictive value (PPV) of screening mammography and MRI were compared.

Results

Totally 11,540 screening studies were collected, including 9580 mammography studies and 1960 MRI studies. Breast cancer was diagnosed in 26 patients. Of the 26 cancers, MRI detected 24 and mammography detected 15. For mammography, the sensitivity, specificity, PPV, and NPV were 57.7%, 99.1%, 14.6%, and 99.9%, respectively; for MRI, those values were 92%, 92.5%, 14.2%, and 99.9%, respectively. MRI screening was much more sensitive than mammography screening (p < 0.05, 92% vs 57.7%). There was no difference of specificity, PPV and NPV between two modalities.

Conclusions

Our data showed that screening breast MRI may be a useful adjunct modality of mammography in HRT users.
Literature
1.
go back to reference Wang Y, Yang X, Li X, He X, Zhao Y. Knowledge and personal use of menopausal hormone therapy among Chinese obstetrician-gynecologists: results of a survey. Menopause. 2014;21(11):1190–6.CrossRef Wang Y, Yang X, Li X, He X, Zhao Y. Knowledge and personal use of menopausal hormone therapy among Chinese obstetrician-gynecologists: results of a survey. Menopause. 2014;21(11):1190–6.CrossRef
2.
go back to reference Rossouw JE, Anderson GL, Prentice RL, Writing Group for the Women’s Health Initiative Investigators, et al. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results from the Women’s Health Initiative randomized controlled trial. JAMA. 2002;288(3):321–33.CrossRef Rossouw JE, Anderson GL, Prentice RL, Writing Group for the Women’s Health Initiative Investigators, et al. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results from the Women’s Health Initiative randomized controlled trial. JAMA. 2002;288(3):321–33.CrossRef
3.
go back to reference Zbuk K, Anand SS. Declining incidence of breast cancer after decreased use of hormone-replacement therapy: magnitude and time lags in different countries. J Epidemiol Community Health. 2012;66(1):17.CrossRef Zbuk K, Anand SS. Declining incidence of breast cancer after decreased use of hormone-replacement therapy: magnitude and time lags in different countries. J Epidemiol Community Health. 2012;66(1):17.CrossRef
4.
go back to reference Rudolph A, Hein R, Lindström S, Breast Cancer Association Consortium, et al. Genetic modifiers of menopausal hormone replacement therapy and breast cancer risk: a genome-wide interaction study. Endocr Relat Cancer. 2013;20(6):875–87.CrossRef Rudolph A, Hein R, Lindström S, Breast Cancer Association Consortium, et al. Genetic modifiers of menopausal hormone replacement therapy and breast cancer risk: a genome-wide interaction study. Endocr Relat Cancer. 2013;20(6):875–87.CrossRef
6.
go back to reference Saslow D, Boetes C, Burke W, on behalf of the American Cancer Society Breast Cancer Advisory Group, et al. American Cancer Society guidelines for breast screening with MRI as an adjunct to mammography. CA Cancer J Clin. 2007;57(2):75–89.CrossRef Saslow D, Boetes C, Burke W, on behalf of the American Cancer Society Breast Cancer Advisory Group, et al. American Cancer Society guidelines for breast screening with MRI as an adjunct to mammography. CA Cancer J Clin. 2007;57(2):75–89.CrossRef
7.
go back to reference Moskowitz CS, Pepe MS. Comparing the predictive values of diagnostic tests: sample size and analysis for paired study designs. Clin Trials. 2006;3(3):272–9.CrossRef Moskowitz CS, Pepe MS. Comparing the predictive values of diagnostic tests: sample size and analysis for paired study designs. Clin Trials. 2006;3(3):272–9.CrossRef
9.
go back to reference Beral V, Million Women Study Collaborators. Breast cancer and hormone-replacement therapy in the Million Women Study. Lancet. 2003;362(9382):419–27.CrossRef Beral V, Million Women Study Collaborators. Breast cancer and hormone-replacement therapy in the Million Women Study. Lancet. 2003;362(9382):419–27.CrossRef
10.
go back to reference Collaborative Group on Hormonal Factors in Breast Cancer. Breast cancer and hormone replacement therapy: collaborative reanalysis of data from 51 epidemiological studies of 52,705 women with breast cancer and 108,411 women without breast cancer. Lancet 1997;350(9084):1047–59.CrossRef Collaborative Group on Hormonal Factors in Breast Cancer. Breast cancer and hormone replacement therapy: collaborative reanalysis of data from 51 epidemiological studies of 52,705 women with breast cancer and 108,411 women without breast cancer. Lancet 1997;350(9084):1047–59.CrossRef
11.
go back to reference Lee SA, Ross RK, Pike MC. An overview of menopausal oestrogen-progestin hormone therapy and breast cancer risk. Br J Cancer. 2005;92(11):2049–58.CrossRef Lee SA, Ross RK, Pike MC. An overview of menopausal oestrogen-progestin hormone therapy and breast cancer risk. Br J Cancer. 2005;92(11):2049–58.CrossRef
12.
go back to reference Kumle M. Declining breast cancer incidence and decreased HRT use. Lancet. 2008;372(9639):608–10.CrossRef Kumle M. Declining breast cancer incidence and decreased HRT use. Lancet. 2008;372(9639):608–10.CrossRef
13.
go back to reference Ewertz M, Mellemkjaer L, Poulsen AH, et al. Hormone use for menopausal symptoms and risk of breast cancer. A Danish cohort study. Br J Cancer. 2005;92(7):1293–7.CrossRef Ewertz M, Mellemkjaer L, Poulsen AH, et al. Hormone use for menopausal symptoms and risk of breast cancer. A Danish cohort study. Br J Cancer. 2005;92(7):1293–7.CrossRef
14.
go back to reference Saeki T, Sano M, Komoike Y, et al. No increase of breast cancer incidence in Japanese women who received hormone replacement therapy: overview of a case–control study of breast cancer risk in Japan. Int J Clin Oncol. 2008;13(1):8–11.CrossRef Saeki T, Sano M, Komoike Y, et al. No increase of breast cancer incidence in Japanese women who received hormone replacement therapy: overview of a case–control study of breast cancer risk in Japan. Int J Clin Oncol. 2008;13(1):8–11.CrossRef
15.
go back to reference Bae JM, Kim EH. Hormone replacement therapy and risk of breast cancer in korean women: a quantitative systematic review. J Prev Med Public Health. 2015;48(5):225–30.CrossRef Bae JM, Kim EH. Hormone replacement therapy and risk of breast cancer in korean women: a quantitative systematic review. J Prev Med Public Health. 2015;48(5):225–30.CrossRef
16.
go back to reference Hou N, Hong S, Wang W, Olopade OI, Dignam JJ, Huo D. Hormone replacement therapy and breast cancer: heterogeneous risks by race, weight, and breast density. J Natl Cancer Inst. 2013;105(18):1365–72.CrossRef Hou N, Hong S, Wang W, Olopade OI, Dignam JJ, Huo D. Hormone replacement therapy and breast cancer: heterogeneous risks by race, weight, and breast density. J Natl Cancer Inst. 2013;105(18):1365–72.CrossRef
17.
go back to reference Hofvind S, Moller B, Thoresen S, Ursin G. Use of hormone therapy and risk of breast cancer detected at screening and between mammographic screens. Int J Cancer. 2006;118(12):3112–7.CrossRef Hofvind S, Moller B, Thoresen S, Ursin G. Use of hormone therapy and risk of breast cancer detected at screening and between mammographic screens. Int J Cancer. 2006;118(12):3112–7.CrossRef
18.
go back to reference Roman R, Sala M, Salas D, Ascunce N, Zubizarreta R, Castells X. Effect of protocol-related variables and women’s characteristics on the cumulative false-positive risk in breast cancer screening. Ann Oncol. 2012;23(1):104–11.CrossRef Roman R, Sala M, Salas D, Ascunce N, Zubizarreta R, Castells X. Effect of protocol-related variables and women’s characteristics on the cumulative false-positive risk in breast cancer screening. Ann Oncol. 2012;23(1):104–11.CrossRef
19.
go back to reference Kriege M, Brekelmans CT, Boetes C, Magnetic Resonance Imaging Screening Study Group, et al. Efficacy of MRI and mammography for breast-cancer screening in women with a familial or genetic predisposition. N Engl J Med. 2004;351(5):427–37.CrossRef Kriege M, Brekelmans CT, Boetes C, Magnetic Resonance Imaging Screening Study Group, et al. Efficacy of MRI and mammography for breast-cancer screening in women with a familial or genetic predisposition. N Engl J Med. 2004;351(5):427–37.CrossRef
20.
go back to reference Warner E, Causer PA, Wong JW, et al. Improvement in DCIS detection rates by MRI over time in a high-risk breast screening study. Breast J. 2011;17(1):9–17.CrossRef Warner E, Causer PA, Wong JW, et al. Improvement in DCIS detection rates by MRI over time in a high-risk breast screening study. Breast J. 2011;17(1):9–17.CrossRef
21.
go back to reference Gajdos C, Tartter PI, Bleiweiss IJ, et al. Mammographic appearance of nonpalpable breast cancer reflects pathologic characteristics. Ann Surg. 2002;235(2):246–51.CrossRef Gajdos C, Tartter PI, Bleiweiss IJ, et al. Mammographic appearance of nonpalpable breast cancer reflects pathologic characteristics. Ann Surg. 2002;235(2):246–51.CrossRef
22.
go back to reference Berg WA, Blume JD, Cormack JB, ACRIN 6666 Investigators, et al. Combined screening with ultrasound and mammography vs mammography alone in women at elevated risk of breast cancer. JAMA. 2008;299(18):2151–63.CrossRef Berg WA, Blume JD, Cormack JB, ACRIN 6666 Investigators, et al. Combined screening with ultrasound and mammography vs mammography alone in women at elevated risk of breast cancer. JAMA. 2008;299(18):2151–63.CrossRef
23.
go back to reference Leach MO, Boggis C, Dixon A, MARIBS Study Group, et al. Screening with magnetic resonance imaging and mammography of a UK population at high familial risk of breast cancer: a prospective multicentre cohort study (MARIBS). Lancet. 2005;365(9473):1769–78.CrossRef Leach MO, Boggis C, Dixon A, MARIBS Study Group, et al. Screening with magnetic resonance imaging and mammography of a UK population at high familial risk of breast cancer: a prospective multicentre cohort study (MARIBS). Lancet. 2005;365(9473):1769–78.CrossRef
Metadata
Title
Screening breast magnetic resonance imaging in women with hormone replacement therapy
Authors
Feng Zhang
Qingjing Feng
Zhiyong Zhang
Yanjun Hu
Zhifeng Zhang
Publication date
01-12-2018
Publisher
BioMed Central
Published in
European Journal of Medical Research / Issue 1/2018
Electronic ISSN: 2047-783X
DOI
https://doi.org/10.1186/s40001-018-0351-8

Other articles of this Issue 1/2018

European Journal of Medical Research 1/2018 Go to the issue