Skip to main content
Top
Published in: European Journal of Medical Research 1/2018

Open Access 01-12-2018 | Research

Correlation of serum levels of fibroblast growth factor 23 and Klotho protein levels with bone mineral density in maintenance hemodialysis patients

Authors: Shubei Zheng, Yan Chen, Yu Zheng, Zhihong Zhou, Zhanyuan Li

Published in: European Journal of Medical Research | Issue 1/2018

Login to get access

Abstract

Objective

The correlation of serum fibroblast growth factor 23 (FGF-23) and Klotho protein levels with bone mineral density (BMD) in maintenance hemodialysis (MHD) patients was analyzed.

Methods

Between January 2015 and November 2015, 125 MHD patients in our hospital were enrolled. Dual-energy X-ray absorptiometry was used to examine the BMD in the femoral neck and lumbar spine of MHD patients. The patients were divided into three groups: a normal bone mass group, an osteopenia group, and an osteoporosis group. An ELISA was performed to measure serum FGF-23, Klotho protein, and 1,25(OH)2VitD3 levels. Other parameters, including calcium (Ca), phosphorus (P), and parathyroid hormone, were also measured.

Results

Of the 125 MHD patients, 82.40% of patients had femoral neck osteopenia, and 56.00% of patients had lumbar spinal osteopenia. The serum FGF-23 level was highest in the osteoporosis group. However, there was no significant difference in serum FGF-23 levels among the three groups, depending on femoral neck and lumbar spinal BMD (P > 0.05). Spearman’s correlation analysis also pointed to a lack of correlation between serum FGF-23 levels and BMD. Among the three groups, there were significant differences in serum Klotho protein levels and femoral neck BMD (P < 0.05). Serum Klotho protein levels in the osteoporosis group were clearly lower than those in the normal bone mass group and osteopenia group (P < 0.05). Similarly, serum Klotho protein levels were significantly lower in those with lumbar spinal osteopenia as compared with those in the normal group. There was a positive correlation between serum Klotho protein levels and BMD and T values for the femoral neck and lumbar spine. The results of a multiple linear regression analysis revealed that the serum Klotho protein level was one of the main factors affecting BMD in MHD patients.

Conclusions

The serum level of FGF-23 was not correlated with a change in BMD of MHD patients, whereas the serum Klotho protein level was associated with the degree of BMD. A high Klotho protein level may decrease the severity of chronic kidney disease and mineral bone disorder (CKD-MBD) in MHD patients with low BMD.
Literature
1.
go back to reference Qureshi R, Dhrolia MF, Nasir K, et al. Comparison of total direct cost of conventional single use and mechanical reuse of dialyzers in patients of end-stage renal disease on maintenance hemodialysis: a single center study. Saudi J Kidney Dis Transp. 2016;27:774–80.CrossRef Qureshi R, Dhrolia MF, Nasir K, et al. Comparison of total direct cost of conventional single use and mechanical reuse of dialyzers in patients of end-stage renal disease on maintenance hemodialysis: a single center study. Saudi J Kidney Dis Transp. 2016;27:774–80.CrossRef
2.
go back to reference Markaki A, Gkouskou K, Stylianou K, et al. Relationship between adiposity, adipokines, inflammatory markers and lipid profile in hemodialysis patients. Eur Rev Med Pharmacol Sci. 2014;18:1496–8.PubMed Markaki A, Gkouskou K, Stylianou K, et al. Relationship between adiposity, adipokines, inflammatory markers and lipid profile in hemodialysis patients. Eur Rev Med Pharmacol Sci. 2014;18:1496–8.PubMed
3.
go back to reference Group KDIGOC-MW. KDIGO clinical practice guideline for the diagnosis, evaluation, prevention, and treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD). Kidney Int Suppl. 2009;113:S1–130. Group KDIGOC-MW. KDIGO clinical practice guideline for the diagnosis, evaluation, prevention, and treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD). Kidney Int Suppl. 2009;113:S1–130.
4.
go back to reference Carrillo-López N, Panizo S, Alonso-Montes C, et al. Direct inhibition of osteoblastic Wnt pathway byfibroblast growth factor 23 contributes to bone loss in chronic kidney disease. Kidney Int. 2016;90:77–89.CrossRefPubMed Carrillo-López N, Panizo S, Alonso-Montes C, et al. Direct inhibition of osteoblastic Wnt pathway byfibroblast growth factor 23 contributes to bone loss in chronic kidney disease. Kidney Int. 2016;90:77–89.CrossRefPubMed
5.
go back to reference Gattineni J, Alphonse P, Zhang Q, et al. Regulation of renal phosphate transport by FGF23 is mediated by FGFR1 and FGFR4. Am J Physiol Renal Physiol. 2014;306:F351–8.CrossRefPubMed Gattineni J, Alphonse P, Zhang Q, et al. Regulation of renal phosphate transport by FGF23 is mediated by FGFR1 and FGFR4. Am J Physiol Renal Physiol. 2014;306:F351–8.CrossRefPubMed
6.
go back to reference Lavi MV, Wasserman G, Meir T, et al. PTH increases FGF23 gene expression and mediates the high-FGF23 levels of experimental kidney failure: a bone parathyroid feedback loop. Am J Physiol Renal Physiol. 2010;299:F882–9.CrossRef Lavi MV, Wasserman G, Meir T, et al. PTH increases FGF23 gene expression and mediates the high-FGF23 levels of experimental kidney failure: a bone parathyroid feedback loop. Am J Physiol Renal Physiol. 2010;299:F882–9.CrossRef
7.
go back to reference Prasad N, Jaiswal A, Agarwal V, et al. FGF23 is associated with early post-transplant hypophosphataemia and normalizes faster than iPTH in living donor renal transplant recipients: a longitudinal follow-up study. Clin Kidney J. 2016;9:669–76.CrossRefPubMedPubMedCentral Prasad N, Jaiswal A, Agarwal V, et al. FGF23 is associated with early post-transplant hypophosphataemia and normalizes faster than iPTH in living donor renal transplant recipients: a longitudinal follow-up study. Clin Kidney J. 2016;9:669–76.CrossRefPubMedPubMedCentral
8.
go back to reference Shigematsu T, Kazama JJ, Yamashita T, et al. Possible involvement of circulating fibroblast growth factor 23 in the development of secondary hyperparathyroidism associated with renal insufficiency. Am J Kidney Dis. 2004;44:250–6.CrossRefPubMed Shigematsu T, Kazama JJ, Yamashita T, et al. Possible involvement of circulating fibroblast growth factor 23 in the development of secondary hyperparathyroidism associated with renal insufficiency. Am J Kidney Dis. 2004;44:250–6.CrossRefPubMed
9.
go back to reference Krieger NS, Culbertson CD, Kykersnowman K, Bushinsky DA. Metabolic acidosis increases fibroblast growth factor 23 in neonatal mouse bone. Am J Physiol Renel Physiol. 2012;303:F431–6.CrossRef Krieger NS, Culbertson CD, Kykersnowman K, Bushinsky DA. Metabolic acidosis increases fibroblast growth factor 23 in neonatal mouse bone. Am J Physiol Renel Physiol. 2012;303:F431–6.CrossRef
11.
go back to reference Carrillo-López N, Román-García P, Rodríguez-Rebollar A, et al. Indirect regulation of PTH by estrogens may require FGF23. J Am Soc Nephrol. 2009;20:2009–17.CrossRefPubMedPubMedCentral Carrillo-López N, Román-García P, Rodríguez-Rebollar A, et al. Indirect regulation of PTH by estrogens may require FGF23. J Am Soc Nephrol. 2009;20:2009–17.CrossRefPubMedPubMedCentral
12.
go back to reference Lane NE, Parimi N, Corr M, et al. Association of serum fibroblast growth factor 23 (FGF23) and incident fractures in older men: the osteoporotic fractures in men (MrOS) study. J Bone Miner Res. 2013;28:2325–32.CrossRefPubMedPubMedCentral Lane NE, Parimi N, Corr M, et al. Association of serum fibroblast growth factor 23 (FGF23) and incident fractures in older men: the osteoporotic fractures in men (MrOS) study. J Bone Miner Res. 2013;28:2325–32.CrossRefPubMedPubMedCentral
13.
go back to reference Wang H, Yoshiko Y, Yamamoto R, et al. Overexpression of fibroblast growth factor 23 suppresses osteoblast differentiation and matrix mineralization in vitro. J Bone Miner Res. 2008;23:939–48.CrossRefPubMed Wang H, Yoshiko Y, Yamamoto R, et al. Overexpression of fibroblast growth factor 23 suppresses osteoblast differentiation and matrix mineralization in vitro. J Bone Miner Res. 2008;23:939–48.CrossRefPubMed
14.
go back to reference Urena Torres P, Friedlander G, de Vernejoul MC, et al. Bone mass does not correlate with the serum fibroblast growth factor 23 in hemodialysis patients. Kidney Int. 2008;73:102–7.CrossRefPubMed Urena Torres P, Friedlander G, de Vernejoul MC, et al. Bone mass does not correlate with the serum fibroblast growth factor 23 in hemodialysis patients. Kidney Int. 2008;73:102–7.CrossRefPubMed
15.
go back to reference Coskun Y, Paydas S, Balal M, et al. Bone disease and serum fibroblast growth factor-23 levels in renal transplant recipients. Transplant Proc. 2016;48:2040–5.CrossRefPubMed Coskun Y, Paydas S, Balal M, et al. Bone disease and serum fibroblast growth factor-23 levels in renal transplant recipients. Transplant Proc. 2016;48:2040–5.CrossRefPubMed
16.
go back to reference Fukumoto S. FGF23-FGF receptor/Klotho pathway as a new drug target for disorders of bone and mineral metabolism. Calcif Tissue Int. 2016;98:334–40.CrossRefPubMed Fukumoto S. FGF23-FGF receptor/Klotho pathway as a new drug target for disorders of bone and mineral metabolism. Calcif Tissue Int. 2016;98:334–40.CrossRefPubMed
17.
go back to reference Koh N, Fujimori T, Nishiguchi S, et al. Severely reduced production of klotho in human chronic renal failure kidney. Biochem Biophys Res Commun. 2001;280:1015–20.CrossRefPubMed Koh N, Fujimori T, Nishiguchi S, et al. Severely reduced production of klotho in human chronic renal failure kidney. Biochem Biophys Res Commun. 2001;280:1015–20.CrossRefPubMed
18.
go back to reference Kuro-O M. Klotho as a regulator of fibroblast growth factor signaling and phosphate/calcium metabolism. Curr Opin Nephrol Hypertens. 2006;15:437–41.CrossRefPubMed Kuro-O M. Klotho as a regulator of fibroblast growth factor signaling and phosphate/calcium metabolism. Curr Opin Nephrol Hypertens. 2006;15:437–41.CrossRefPubMed
19.
go back to reference Maruyama N, Shibata Y, Mochizuki A, et al. Bone micro-fragility caused by the mimetic aging processes in α-klotho deficient mice: in situ nanoindentation assessment of dilatational bands. Biomaterials. 2015;47:62–71.CrossRefPubMed Maruyama N, Shibata Y, Mochizuki A, et al. Bone micro-fragility caused by the mimetic aging processes in α-klotho deficient mice: in situ nanoindentation assessment of dilatational bands. Biomaterials. 2015;47:62–71.CrossRefPubMed
20.
go back to reference Nabeshima Y. Regulation of calcium homeostasis by α-Klotho and FGF23. Clin Calcium. 2010;20:1677–85.PubMed Nabeshima Y. Regulation of calcium homeostasis by α-Klotho and FGF23. Clin Calcium. 2010;20:1677–85.PubMed
21.
go back to reference Wolf MT, An SW, Nie M, et al. Klotho up-regulates renal calcium channel transient receptor potential vanilloid 5 (TRPV5) by intra- and extracellular N-glycosylation-dependent mechanisms. J Biol Chem. 2014;289:35849–57.CrossRefPubMedPubMedCentral Wolf MT, An SW, Nie M, et al. Klotho up-regulates renal calcium channel transient receptor potential vanilloid 5 (TRPV5) by intra- and extracellular N-glycosylation-dependent mechanisms. J Biol Chem. 2014;289:35849–57.CrossRefPubMedPubMedCentral
22.
go back to reference Olauson H, Lindberg K, Amin R, et al. Parathyroid-specific deletion of klotho unravels a novel calcineurin-dependent FGF23 signaling pathway that regulates PTH secretion. PLoS Genet. 2013;9:e1003975.CrossRefPubMedPubMedCentral Olauson H, Lindberg K, Amin R, et al. Parathyroid-specific deletion of klotho unravels a novel calcineurin-dependent FGF23 signaling pathway that regulates PTH secretion. PLoS Genet. 2013;9:e1003975.CrossRefPubMedPubMedCentral
23.
go back to reference Maeda R, Imura A, Nabeshima Y. Complex regulation and diverse functions of alpha-Klotho. Contrib Nephrol. 2013;180:25–46.CrossRefPubMed Maeda R, Imura A, Nabeshima Y. Complex regulation and diverse functions of alpha-Klotho. Contrib Nephrol. 2013;180:25–46.CrossRefPubMed
24.
go back to reference Kurz DJ, Decary S, Hong Y, et al. Chronic oxidative stress compromises telomere integrity and accelerates the onset of senescence in human endothelial cells. J Cell Sci. 2004;117:2417–26.CrossRefPubMed Kurz DJ, Decary S, Hong Y, et al. Chronic oxidative stress compromises telomere integrity and accelerates the onset of senescence in human endothelial cells. J Cell Sci. 2004;117:2417–26.CrossRefPubMed
Metadata
Title
Correlation of serum levels of fibroblast growth factor 23 and Klotho protein levels with bone mineral density in maintenance hemodialysis patients
Authors
Shubei Zheng
Yan Chen
Yu Zheng
Zhihong Zhou
Zhanyuan Li
Publication date
01-12-2018
Publisher
BioMed Central
Published in
European Journal of Medical Research / Issue 1/2018
Electronic ISSN: 2047-783X
DOI
https://doi.org/10.1186/s40001-018-0315-z

Other articles of this Issue 1/2018

European Journal of Medical Research 1/2018 Go to the issue