Skip to main content
Top
Published in: European Journal of Medical Research 1/2018

Open Access 01-12-2018 | Research

Ingenol mebutate induces a tumor cell-directed inflammatory response and antimicrobial peptides thereby promoting rapid tumor destruction and wound healing

Authors: Stephan Alexander Braun, Julia Baran, Holger Schrumpf, Bettina Alexandra Buhren, Edwin Bölke, Bernhard Homey, Peter Arne Gerber

Published in: European Journal of Medical Research | Issue 1/2018

Login to get access

Abstract

Background

Ingenol mebutat (IM)-gel is effective for the topical treatment of epithelial tumors, including actinic keratoses (AKs) or anogenital warts (AGW). AK patients treated with IM develop intensified inflammatory reactions on sights of prior clinical visible or palpable AKs as compared to the surrounding actinically damaged skin, suggesting the induction of a tumor cell-directed inflammation. AGW patients treated with IM develop even stronger inflammatory reactions with large erosions, suggesting a directed inflammatory response against HPV-infected keratinocytes. Of note, even widespread erosions heal very fast without any superinfections. Here, we set out to elucidate underlying molecular and cellular mechanisms of these clinical observations.

Methods

The effects of IM (10−9–10−5 M) on the expression and translation of a comprehensive set of chemokines (CXCL1, CXCL8, CXCL9, CXCL10, CXCL11, CXCL14, CCL2, CCL5, CCL20, CCL27) and antimicrobial peptides (AMP) (HBD1, HBD2, HBD3, LL37, RNase7) were analyzed in primary human epithelial keratinocytes (HEK) and a set of epithelial cancer cell lines by RT-qPCR and ELISA in vitro. To study the possible effects of different concentrations of IM on migratory, respectively wound healing responses, an in vitro scratch assay was conducted on HEK.

Results

Ingenol mebutat significantly and dose-dependently induced the expression of proinflammatory chemokines (CXCL8, CCL2) and AMP (RNase7, HBD3) in HEK and epithelial cancer cell lines. A significantly stronger induction of CXCL8 and CCL2 was observed in our tested tumor cells as compared to HEK. We did not observe any significant effect of IM on HEK migration, respectively wound healing responses in vitro for any tested concentration (10−9, 10−8, 10−6 M) except 10−7 M, which induced a significant inhibition.

Conclusions

Our data suggest that tumor cells are more susceptible to IM as compared to differentiated HEK. This is evident by a stronger IM-mediated induction of proinflammatory chemokines in tumor cells, which may result in a tumor cell-directed inflammatory response and rapid tumor destruction. In addition, IM induces AMP in keratinocytes and seems not to severely interfere with keratinocyte migration, which contributes to a fast and uncomplicated wound healing. Surprising is a selective inhibition of keratinocyte migration by IM at the concentration of 10−7 M pointing to very dose depending biological effects, induced by IM.
Literature
1.
go back to reference Lebwohl M, Swanson N, Anderson LL, Melgaard A, Xu Z, Berman B. Ingenol mebutate gel for actinic keratosis. N Engl J Med. 2012;366:1010–9.CrossRef Lebwohl M, Swanson N, Anderson LL, Melgaard A, Xu Z, Berman B. Ingenol mebutate gel for actinic keratosis. N Engl J Med. 2012;366:1010–9.CrossRef
2.
go back to reference Rosen RH, Gupta AK, Tyring SK. Dual mechanism of action of ingenol mebutate gel for topical treatment of actinic keratoses: rapid lesion necrosis followed by lesion-specific immune response. J Am Acad Dermatol. 2012;66:486–93.CrossRef Rosen RH, Gupta AK, Tyring SK. Dual mechanism of action of ingenol mebutate gel for topical treatment of actinic keratoses: rapid lesion necrosis followed by lesion-specific immune response. J Am Acad Dermatol. 2012;66:486–93.CrossRef
3.
go back to reference Gillespie SK, Zhang XD, Hersey P. Ingenol 3-angelate induces dual modes of cell death and differentially regulates tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in melanoma cells. Mol Cancer Ther. 2004;3:1651–8.PubMed Gillespie SK, Zhang XD, Hersey P. Ingenol 3-angelate induces dual modes of cell death and differentially regulates tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in melanoma cells. Mol Cancer Ther. 2004;3:1651–8.PubMed
4.
go back to reference Ogbourne SM, Suhrbier A, Jones B, Cozzi SJ, Boyle GM, Morris M, McAlpine D, Johns J, Scott TM, Sutherland KP, et al. Antitumor activity of 3-ingenyl angelate: plasma membrane and mitochondrial disruption and necrotic cell death. Cancer Res. 2004;64:2833–9.CrossRef Ogbourne SM, Suhrbier A, Jones B, Cozzi SJ, Boyle GM, Morris M, McAlpine D, Johns J, Scott TM, Sutherland KP, et al. Antitumor activity of 3-ingenyl angelate: plasma membrane and mitochondrial disruption and necrotic cell death. Cancer Res. 2004;64:2833–9.CrossRef
5.
go back to reference Stahlhut M, Bertelsen M, Hoyer-Hansen M, Svendsen N, Eriksson AH, Lord JM, Scheel-Toellner D, Young SP, Zibert JR. Ingenol mebutate: induced cell death patterns in normal and cancer epithelial cells. J Drugs Dermatol. 2012;11:1181–92.PubMed Stahlhut M, Bertelsen M, Hoyer-Hansen M, Svendsen N, Eriksson AH, Lord JM, Scheel-Toellner D, Young SP, Zibert JR. Ingenol mebutate: induced cell death patterns in normal and cancer epithelial cells. J Drugs Dermatol. 2012;11:1181–92.PubMed
6.
go back to reference Challacombe JM, Suhrbier A, Parsons PG, Jones B, Hampson P, Kavanagh D, Rainger GE, Morris M, Lord JM, Le TT, et al. Neutrophils are a key component of the antitumor efficacy of topical chemotherapy with ingenol-3-angelate. J Immunol. 2006;177:8123–32.CrossRef Challacombe JM, Suhrbier A, Parsons PG, Jones B, Hampson P, Kavanagh D, Rainger GE, Morris M, Lord JM, Le TT, et al. Neutrophils are a key component of the antitumor efficacy of topical chemotherapy with ingenol-3-angelate. J Immunol. 2006;177:8123–32.CrossRef
7.
go back to reference Emmert S, Haenssle HA, Zibert JR, Schon M, Hald A, Hansen MH, Litman T, Schon MP. Tumor-preferential induction of immune responses and epidermal cell death in actinic keratoses by ingenol mebutate. PLoS ONE. 2016;11:e0160096.CrossRef Emmert S, Haenssle HA, Zibert JR, Schon M, Hald A, Hansen MH, Litman T, Schon MP. Tumor-preferential induction of immune responses and epidermal cell death in actinic keratoses by ingenol mebutate. PLoS ONE. 2016;11:e0160096.CrossRef
8.
go back to reference Hampson P, Chahal H, Khanim F, Hayden R, Mulder A, Assi LK, Bunce CM, Lord JM. PEP005, a selective small-molecule activator of protein kinase C, has potent antileukemic activity mediated via the delta isoform of PKC. Blood. 2005;106:1362–8.CrossRef Hampson P, Chahal H, Khanim F, Hayden R, Mulder A, Assi LK, Bunce CM, Lord JM. PEP005, a selective small-molecule activator of protein kinase C, has potent antileukemic activity mediated via the delta isoform of PKC. Blood. 2005;106:1362–8.CrossRef
9.
go back to reference Hampson P, Kavanagh D, Smith E, Wang K, Lord JM, Ed Rainger G. The anti-tumor agent, ingenol-3-angelate (PEP005), promotes the recruitment of cytotoxic neutrophils by activation of vascular endothelial cells in a PKC-delta dependent manner. Cancer Immunol Immunother. 2008;57:1241–51.CrossRef Hampson P, Kavanagh D, Smith E, Wang K, Lord JM, Ed Rainger G. The anti-tumor agent, ingenol-3-angelate (PEP005), promotes the recruitment of cytotoxic neutrophils by activation of vascular endothelial cells in a PKC-delta dependent manner. Cancer Immunol Immunother. 2008;57:1241–51.CrossRef
10.
go back to reference Kedei N, Lundberg DJ, Toth A, Welburn P, Garfield SH, Blumberg PM. Characterization of the interaction of ingenol 3-angelate with protein kinase C. Cancer Res. 2004;64:3243–55.CrossRef Kedei N, Lundberg DJ, Toth A, Welburn P, Garfield SH, Blumberg PM. Characterization of the interaction of ingenol 3-angelate with protein kinase C. Cancer Res. 2004;64:3243–55.CrossRef
11.
go back to reference Li L, Shukla S, Lee A, Garfield SH, Maloney DJ, Ambudkar SV, Yuspa SH. The skin cancer chemotherapeutic agent ingenol-3-angelate (PEP005) is a substrate for the epidermal multidrug transporter (ABCB1) and targets tumor vasculature. Cancer Res. 2010;70:4509–19.CrossRef Li L, Shukla S, Lee A, Garfield SH, Maloney DJ, Ambudkar SV, Yuspa SH. The skin cancer chemotherapeutic agent ingenol-3-angelate (PEP005) is a substrate for the epidermal multidrug transporter (ABCB1) and targets tumor vasculature. Cancer Res. 2010;70:4509–19.CrossRef
12.
go back to reference Braun SA, Gerber PA. Successful treatment of perianal condylomata acuminata with ingenol mebutate gel. J Dtsch Dermatol Ges. 2016;14:616–7.PubMed Braun SA, Gerber PA. Successful treatment of perianal condylomata acuminata with ingenol mebutate gel. J Dtsch Dermatol Ges. 2016;14:616–7.PubMed
13.
go back to reference Braun SA, Gerber PA. Ingenol mebutate for the management of genital warts in sensitive anatomic locations. J Am Acad Dermatol. 2017;77:e9–10.CrossRef Braun SA, Gerber PA. Ingenol mebutate for the management of genital warts in sensitive anatomic locations. J Am Acad Dermatol. 2017;77:e9–10.CrossRef
14.
go back to reference Braun SA, Jansen TM, Homey B, Gerber PA. Successful therapy of condylomata acuminata with ingenol mebutate. Hautarzt. 2015;66:223–5.CrossRef Braun SA, Jansen TM, Homey B, Gerber PA. Successful therapy of condylomata acuminata with ingenol mebutate. Hautarzt. 2015;66:223–5.CrossRef
15.
go back to reference Schopf RE. Ingenol mebutate gel is effective against anogenital warts—a case series in 17 patients. J Eur Acad Dermatol Venereol. 2015;30:1041–3.CrossRef Schopf RE. Ingenol mebutate gel is effective against anogenital warts—a case series in 17 patients. J Eur Acad Dermatol Venereol. 2015;30:1041–3.CrossRef
16.
go back to reference Gerber PA, Hevezi P, Buhren BA, Martinez C, Schrumpf H, Gasis M, Grether-Beck S, Krutmann J, Homey B, Zlotnik A. Systematic identification and characterization of novel human skin-associated genes encoding membrane and secreted proteins. PLoS ONE. 2013;8:e63949.CrossRef Gerber PA, Hevezi P, Buhren BA, Martinez C, Schrumpf H, Gasis M, Grether-Beck S, Krutmann J, Homey B, Zlotnik A. Systematic identification and characterization of novel human skin-associated genes encoding membrane and secreted proteins. PLoS ONE. 2013;8:e63949.CrossRef
17.
go back to reference Twarock S, Freudenberger T, Poscher E, Dai G, Jannasch K, Dullin C, Alves F, Prenzel K, Knoefel WT, Stoecklein NH, et al. Inhibition of oesophageal squamous cell carcinoma progression by in vivo targeting of hyaluronan synthesis. Mol Cancer. 2011;10:30.CrossRef Twarock S, Freudenberger T, Poscher E, Dai G, Jannasch K, Dullin C, Alves F, Prenzel K, Knoefel WT, Stoecklein NH, et al. Inhibition of oesophageal squamous cell carcinoma progression by in vivo targeting of hyaluronan synthesis. Mol Cancer. 2011;10:30.CrossRef
18.
go back to reference Homey B, Wang W, Soto H, Buchanan ME, Wiesenborn A, Catron D, Muller A, McClanahan TK, Dieu-Nosjean MC, Orozco R, et al. Cutting edge: the orphan chemokine receptor G protein-coupled receptor-2 (GPR-2, CCR10) binds the skin-associated chemokine CCL27 (CTACK/ALP/ILC). J Immunol. 2000;164:3465–70.CrossRef Homey B, Wang W, Soto H, Buchanan ME, Wiesenborn A, Catron D, Muller A, McClanahan TK, Dieu-Nosjean MC, Orozco R, et al. Cutting edge: the orphan chemokine receptor G protein-coupled receptor-2 (GPR-2, CCR10) binds the skin-associated chemokine CCL27 (CTACK/ALP/ILC). J Immunol. 2000;164:3465–70.CrossRef
19.
go back to reference Zlotnik A, Yoshie O, Nomiyama H. The chemokine and chemokine receptor superfamilies and their molecular evolution. Genome Biol. 2006;7:243.CrossRef Zlotnik A, Yoshie O, Nomiyama H. The chemokine and chemokine receptor superfamilies and their molecular evolution. Genome Biol. 2006;7:243.CrossRef
20.
go back to reference Carr MW, Roth SJ, Luther E, Rose SS, Springer TA. Monocyte chemoattractant protein 1 acts as a T-lymphocyte chemoattractant. Proc Natl Acad Sci USA. 1994;91:3652–6.CrossRef Carr MW, Roth SJ, Luther E, Rose SS, Springer TA. Monocyte chemoattractant protein 1 acts as a T-lymphocyte chemoattractant. Proc Natl Acad Sci USA. 1994;91:3652–6.CrossRef
21.
go back to reference Yan W, Wistuba II, Emmert-Buck MR, Erickson HS. Squamous cell carcinoma—similarities and differences among anatomical sites. Am J Cancer Res. 2011;1:275–300.CrossRef Yan W, Wistuba II, Emmert-Buck MR, Erickson HS. Squamous cell carcinoma—similarities and differences among anatomical sites. Am J Cancer Res. 2011;1:275–300.CrossRef
22.
go back to reference Wang G. Human antimicrobial peptides and proteins. Pharmaceuticals (Basel). 2014;7:545–94.CrossRef Wang G. Human antimicrobial peptides and proteins. Pharmaceuticals (Basel). 2014;7:545–94.CrossRef
23.
go back to reference Harder J, Bartels J, Christophers E, Schroder JM. Isolation and characterization of human beta-defensin-3, a novel human inducible peptide antibiotic. J Biol Chem. 2001;276:5707–13.CrossRef Harder J, Bartels J, Christophers E, Schroder JM. Isolation and characterization of human beta-defensin-3, a novel human inducible peptide antibiotic. J Biol Chem. 2001;276:5707–13.CrossRef
24.
go back to reference Harder J, Schroder JM. RNase 7, a novel innate immune defense antimicrobial protein of healthy human skin. J Biol Chem. 2002;277:46779–84.CrossRef Harder J, Schroder JM. RNase 7, a novel innate immune defense antimicrobial protein of healthy human skin. J Biol Chem. 2002;277:46779–84.CrossRef
25.
go back to reference Niyonsaba F, Ushio H, Nakano N, Ng W, Sayama K, Hashimoto K, Nagaoka I, Okumura K, Ogawa H. Antimicrobial peptides human beta-defensins stimulate epidermal keratinocyte migration, proliferation and production of proinflammatory cytokines and chemokines. J Invest Dermatol. 2007;127:594–604.CrossRef Niyonsaba F, Ushio H, Nakano N, Ng W, Sayama K, Hashimoto K, Nagaoka I, Okumura K, Ogawa H. Antimicrobial peptides human beta-defensins stimulate epidermal keratinocyte migration, proliferation and production of proinflammatory cytokines and chemokines. J Invest Dermatol. 2007;127:594–604.CrossRef
26.
go back to reference Kreuter A, Skrygan M, Gambichler T, Brockmeyer NH, Stucker M, Herzler C, Potthoff A, Altmeyer P, Pfister H, Wieland U. Human papillomavirus-associated induction of human beta-defensins in anal intraepithelial neoplasia. Br J Dermatol. 2009;160:1197–205.CrossRef Kreuter A, Skrygan M, Gambichler T, Brockmeyer NH, Stucker M, Herzler C, Potthoff A, Altmeyer P, Pfister H, Wieland U. Human papillomavirus-associated induction of human beta-defensins in anal intraepithelial neoplasia. Br J Dermatol. 2009;160:1197–205.CrossRef
27.
go back to reference Freiberger SN, Cheng PF, Iotzova-Weiss G, Neu J, Liu Q, Dziunycz P, Zibert JR, Dummer R, Skak K, Levesque MP, Hofbauer GF. Ingenol mebutate signals via PKC/MEK/ERK in keratinocytes and induces interleukin decoy receptors IL1R2 and IL13RA2. Mol Cancer Ther. 2015;14:2132–42.CrossRef Freiberger SN, Cheng PF, Iotzova-Weiss G, Neu J, Liu Q, Dziunycz P, Zibert JR, Dummer R, Skak K, Levesque MP, Hofbauer GF. Ingenol mebutate signals via PKC/MEK/ERK in keratinocytes and induces interleukin decoy receptors IL1R2 and IL13RA2. Mol Cancer Ther. 2015;14:2132–42.CrossRef
28.
go back to reference Ando Y, Lazarus GS, Jensen PJ. Activation of protein kinase C inhibits human keratinocyte migration. J Cell Physiol. 1993;156:487–96.CrossRef Ando Y, Lazarus GS, Jensen PJ. Activation of protein kinase C inhibits human keratinocyte migration. J Cell Physiol. 1993;156:487–96.CrossRef
29.
go back to reference Kontny E, Ziolkowska M, Ryzewska A, Maslinski W. Protein kinase c-dependent pathway is critical for the production of pro-inflammatory cytokines (TNF-alpha, IL-1beta, IL-6). Cytokine. 1999;11:839–48.CrossRef Kontny E, Ziolkowska M, Ryzewska A, Maslinski W. Protein kinase c-dependent pathway is critical for the production of pro-inflammatory cytokines (TNF-alpha, IL-1beta, IL-6). Cytokine. 1999;11:839–48.CrossRef
30.
go back to reference Schon MP, Schon M. Imiquimod: mode of action. Br J Dermatol. 2007;157(Suppl 2):8–13.CrossRef Schon MP, Schon M. Imiquimod: mode of action. Br J Dermatol. 2007;157(Suppl 2):8–13.CrossRef
31.
go back to reference Dougherty TJ, Gomer CJ, Henderson BW, Jori G, Kessel D, Korbelik M, Moan J, Peng Q. Photodynamic therapy. J Natl Cancer Inst. 1998;90:889–905.CrossRef Dougherty TJ, Gomer CJ, Henderson BW, Jori G, Kessel D, Korbelik M, Moan J, Peng Q. Photodynamic therapy. J Natl Cancer Inst. 1998;90:889–905.CrossRef
32.
go back to reference Nerurkar L, McColl A, Graham G, Cavanagh J. The systemic response to Topical Aldara treatment is mediated through direct TLR7 stimulation as imiquimod enters the circulation. Sci Rep. 2017;7:16570.CrossRef Nerurkar L, McColl A, Graham G, Cavanagh J. The systemic response to Topical Aldara treatment is mediated through direct TLR7 stimulation as imiquimod enters the circulation. Sci Rep. 2017;7:16570.CrossRef
33.
go back to reference Gollnick SO, Evans SS, Baumann H, Owczarczak B, Maier P, Vaughan L, Wang WC, Unger E, Henderson BW. Role of cytokines in photodynamic therapy-induced local and systemic inflammation. Br J Cancer. 2003;88:1772–9.CrossRef Gollnick SO, Evans SS, Baumann H, Owczarczak B, Maier P, Vaughan L, Wang WC, Unger E, Henderson BW. Role of cytokines in photodynamic therapy-induced local and systemic inflammation. Br J Cancer. 2003;88:1772–9.CrossRef
34.
go back to reference Stockfleth E, Meyer T, Benninghoff B, Salasche S, Papadopoulos L, Ulrich C, Christophers E. A randomized, double-blind, vehicle-controlled study to assess 5% imiquimod cream for the treatment of multiple actinic keratoses. Arch Dermatol. 2002;138:1498–502.CrossRef Stockfleth E, Meyer T, Benninghoff B, Salasche S, Papadopoulos L, Ulrich C, Christophers E. A randomized, double-blind, vehicle-controlled study to assess 5% imiquimod cream for the treatment of multiple actinic keratoses. Arch Dermatol. 2002;138:1498–502.CrossRef
Metadata
Title
Ingenol mebutate induces a tumor cell-directed inflammatory response and antimicrobial peptides thereby promoting rapid tumor destruction and wound healing
Authors
Stephan Alexander Braun
Julia Baran
Holger Schrumpf
Bettina Alexandra Buhren
Edwin Bölke
Bernhard Homey
Peter Arne Gerber
Publication date
01-12-2018
Publisher
BioMed Central
Published in
European Journal of Medical Research / Issue 1/2018
Electronic ISSN: 2047-783X
DOI
https://doi.org/10.1186/s40001-018-0343-8

Other articles of this Issue 1/2018

European Journal of Medical Research 1/2018 Go to the issue