Skip to main content
Top
Published in: European Journal of Medical Research 1/2017

Open Access 01-12-2017 | Research

Clinical and biometrical 12-month follow-up in patients after reconstruction of the sural nerve biopsy defect by the collagen-based nerve guide Neuromaix

Authors: Ahmet Bozkurt, Kristl G. Claeys, Simone Schrading, Jana V. Rödler, Haktan Altinova, Jörg B. Schulz, Joachim Weis, Norbert Pallua, Sabien G. A. van Neerven

Published in: European Journal of Medical Research | Issue 1/2017

Login to get access

Abstract

Many new strategies for the reconstruction of peripheral nerve injuries have been explored for their effectiveness in supporting nerve regeneration. However only a few of these materials were actually clinically evaluated and approved for human use. This open, mono-center, non-randomized clinical study summarizes the 12-month follow-up of patients receiving reconstruction of the sural nerve biopsy defect by the collagen-based nerve guide Neuromaix. Neuromaix was implanted as a micro-structured, two-component scaffold bridging 20–40 mm nerve defects after sural nerve biopsy in twenty patients (eighteen evaluated, two lost in follow-up). Safety of the material was evaluated by clinical examination of wound healing. Performance was assessed by sensory testing of modalities, pain assessment, and palpation for the Hoffmann–Tinel’s sign as well as demarcating the asensitive area at each follow-up visit. Every patient demonstrated uneventful wound healing during the complete 12-month time course of the study. Two patients reported complete return of sensation, whereas eleven out of eighteen patients reported a positive Hoffmann–Tinel’s sign at the lower leg with simultaneous reduction of the asensitive area by 12 months. Our data show that Neuromaix can be implanted safely in humans to bridge sural nerve gaps. No procedure-related, adverse events, or severe adverse events were reported. These first clinical data on Neuromaix provide promising perspectives for the bridging of larger nerve gaps in combined nerves, which should be investigated more through extensive, multi-center clinical trials in the near future.
Appendix
Available only for authorised users
Literature
1.
go back to reference Lundborg G. Alternatives to autologous nerve grafts. Handchir Mikrochir Plast Chir. 2004;36(1):1–7.PubMedCrossRef Lundborg G. Alternatives to autologous nerve grafts. Handchir Mikrochir Plast Chir. 2004;36(1):1–7.PubMedCrossRef
2.
go back to reference Rosén B, Lundborg G. A model instrument for the documentation of outcome after nerve repair. J Hand Surg. 2000;25A:535–43.CrossRef Rosén B, Lundborg G. A model instrument for the documentation of outcome after nerve repair. J Hand Surg. 2000;25A:535–43.CrossRef
3.
go back to reference Ciaramitaro P, Mondelli M, Logullo F, Grimaldi S, Battiston B, Sard A, Scarinzi C, Migliaretti G, Faccani G, Cocito D. Traumatic peripheral nerve injuries: epidemiological findings, neuropathic pain and quality of life in 158 patients. J Peripher Nerv Syst. 2010;15(2):120–7. doi:10.1111/j.15298027.2010.00260.x.PubMedCrossRef Ciaramitaro P, Mondelli M, Logullo F, Grimaldi S, Battiston B, Sard A, Scarinzi C, Migliaretti G, Faccani G, Cocito D. Traumatic peripheral nerve injuries: epidemiological findings, neuropathic pain and quality of life in 158 patients. J Peripher Nerv Syst. 2010;15(2):120–7. doi:10.​1111/​j.​15298027.​2010.​00260.​x.PubMedCrossRef
4.
5.
go back to reference Whitlock EL, Tuffaha SH, Luciano JP, Yan Y, Hunter DA, Magill CK, Moore AM, Tong AY, Mackinnon SE, Borschel GH. Processed allografts and type I collagen conduits for repair of peripheral nerve gaps. Muscle Nerve. 2009;39(6):787–99. doi:10.1002/mus.21220.PubMedCrossRef Whitlock EL, Tuffaha SH, Luciano JP, Yan Y, Hunter DA, Magill CK, Moore AM, Tong AY, Mackinnon SE, Borschel GH. Processed allografts and type I collagen conduits for repair of peripheral nerve gaps. Muscle Nerve. 2009;39(6):787–99. doi:10.​1002/​mus.​21220.PubMedCrossRef
7.
go back to reference Johnson PJ, Newton P, Hunter DA, Mackinnon SE. Nerve endoneurial microstructure facilitates uniform distribution of regenerative fibers: a post hoc comparison of midgraft nerve fiber densities. J Reconstr Microsurg. 2011;27(2):83–90. doi:10.1055/s-0030-1267834 (Epub 2010 Oct 13).PubMedCrossRef Johnson PJ, Newton P, Hunter DA, Mackinnon SE. Nerve endoneurial microstructure facilitates uniform distribution of regenerative fibers: a post hoc comparison of midgraft nerve fiber densities. J Reconstr Microsurg. 2011;27(2):83–90. doi:10.​1055/​s-0030-1267834 (Epub 2010 Oct 13).PubMedCrossRef
8.
go back to reference Lundborg G, Dahlin LB, Danielsen N, Gelberman RH, Longo FM, Powell HC, Varon S. Nerve regeneration in silicone chambers: influence of gap length and of distal stump components. Exp Neurol. 1982;76(2):361–75.PubMedCrossRef Lundborg G, Dahlin LB, Danielsen N, Gelberman RH, Longo FM, Powell HC, Varon S. Nerve regeneration in silicone chambers: influence of gap length and of distal stump components. Exp Neurol. 1982;76(2):361–75.PubMedCrossRef
12.
go back to reference Bozkurt A, Lassner F, O’Dey D, Deumens R, Böcker A, Schwendt T, Janzen C, Suschek CV, Tolba R, Kobayashi E, Sellhaus B, Tholl S, Eummelen L, Schügner F, Damink LO, Weis J, Brook GA, Pallua N. The role of microstructured and interconnected pore channels in a collagen-based nerve guide on axonal regeneration in peripheral nerves. Biomaterials. 2012;33(5):1363–75. doi:10.1016/j.biomaterials.2011.10.069.PubMedCrossRef Bozkurt A, Lassner F, O’Dey D, Deumens R, Böcker A, Schwendt T, Janzen C, Suschek CV, Tolba R, Kobayashi E, Sellhaus B, Tholl S, Eummelen L, Schügner F, Damink LO, Weis J, Brook GA, Pallua N. The role of microstructured and interconnected pore channels in a collagen-based nerve guide on axonal regeneration in peripheral nerves. Biomaterials. 2012;33(5):1363–75. doi:10.​1016/​j.​biomaterials.​2011.​10.​069.PubMedCrossRef
13.
go back to reference Bozkurt A, Boecker A, Tank J, Altinova H, Deumens R, Beckmann C, Tolba R, Weis J, Brook GA, Pallua N, van Neerven SGA. Efficient bridging of 20 mm rat sciatic nerve lesions with a longitudinally micro-structured collagen scaffold. Biomaterials. 2016;75:112–22. doi:10.1016/j.biomaterials.2015.10.009.PubMedCrossRef Bozkurt A, Boecker A, Tank J, Altinova H, Deumens R, Beckmann C, Tolba R, Weis J, Brook GA, Pallua N, van Neerven SGA. Efficient bridging of 20 mm rat sciatic nerve lesions with a longitudinally micro-structured collagen scaffold. Biomaterials. 2016;75:112–22. doi:10.​1016/​j.​biomaterials.​2015.​10.​009.PubMedCrossRef
14.
go back to reference Boecker AH, van Neerven SG, Scheffel J, Tank J, Altinova H, Seidensticker K, Deumens R, Tolba R, Weis J, Brook GA, Pallua N, Bozkurt A. Pre-differentiation of mesenchymal stromal cells in combination with a microstructured nerve guide supports peripheral nerve regeneration in the rat sciatic nerve model. Eur J Neurosci. 2015. doi:10.1111/ejn.13052.PubMed Boecker AH, van Neerven SG, Scheffel J, Tank J, Altinova H, Seidensticker K, Deumens R, Tolba R, Weis J, Brook GA, Pallua N, Bozkurt A. Pre-differentiation of mesenchymal stromal cells in combination with a microstructured nerve guide supports peripheral nerve regeneration in the rat sciatic nerve model. Eur J Neurosci. 2015. doi:10.​1111/​ejn.​13052.PubMed
15.
go back to reference Hadlock T, Sundback C, Hunter D, Cheney M, Vacanti JP. A polymer foam conduit seeded with Schwann cells promotes guided peripheral nerve regeneration. Tissue Eng. 2000;6(2):119–27.PubMedCrossRef Hadlock T, Sundback C, Hunter D, Cheney M, Vacanti JP. A polymer foam conduit seeded with Schwann cells promotes guided peripheral nerve regeneration. Tissue Eng. 2000;6(2):119–27.PubMedCrossRef
16.
go back to reference Zhang YG, Sheng QS, Qi FY, Hu XY, Zhao W, Wang YQ, Lan LF, Huang JH, Luo ZJ. Schwann cell seeded scaffold with longitudinally oriented micro-channels for reconstruction of sciatic nerve in rats. J Mater Sci Mater Med. 2013;24(7):1767–80. doi:10.1007/s10856-013-4917-2.PubMedCrossRef Zhang YG, Sheng QS, Qi FY, Hu XY, Zhao W, Wang YQ, Lan LF, Huang JH, Luo ZJ. Schwann cell seeded scaffold with longitudinally oriented micro-channels for reconstruction of sciatic nerve in rats. J Mater Sci Mater Med. 2013;24(7):1767–80. doi:10.​1007/​s10856-013-4917-2.PubMedCrossRef
17.
go back to reference Duda S, Dreyer L, Behrens P, Wienecke S, Chakradeo T, Glasmacher B, Haastert-Talini K. Outer electrospun polycaprolactone shell induces massive foreign body reaction and impairs axonal regeneration through 3D multichannel chitosan nerve guides. Biomed Res Int. 2014;2014:835269. doi:10.1155/2014/835269.PubMedPubMedCentralCrossRef Duda S, Dreyer L, Behrens P, Wienecke S, Chakradeo T, Glasmacher B, Haastert-Talini K. Outer electrospun polycaprolactone shell induces massive foreign body reaction and impairs axonal regeneration through 3D multichannel chitosan nerve guides. Biomed Res Int. 2014;2014:835269. doi:10.​1155/​2014/​835269.PubMedPubMedCentralCrossRef
18.
go back to reference Jha BS, Colello RJ, Bowman JR, Sell SA, Lee KD, Bigbee JW, Bowlin GL, Chow WN, Mathern BE, Simpson DG. Two pole air gap electrospinning: Fabrication of highly aligned, three-dimensional scaffolds for nerve reconstruction. Acta Biomater. 2011;7(1):203–15. doi:10.1016/j.actbio.2010.08.004.PubMedCrossRef Jha BS, Colello RJ, Bowman JR, Sell SA, Lee KD, Bigbee JW, Bowlin GL, Chow WN, Mathern BE, Simpson DG. Two pole air gap electrospinning: Fabrication of highly aligned, three-dimensional scaffolds for nerve reconstruction. Acta Biomater. 2011;7(1):203–15. doi:10.​1016/​j.​actbio.​2010.​08.​004.PubMedCrossRef
19.
go back to reference Schlosshauer B, Dreesmann L, Schaller HE, Sinis N. Synthetic nerve guide implants in humans: a comprehensive survey. Neurosurgery. 2006;59(4):740–7 (discussion 747–8).PubMedCrossRef Schlosshauer B, Dreesmann L, Schaller HE, Sinis N. Synthetic nerve guide implants in humans: a comprehensive survey. Neurosurgery. 2006;59(4):740–7 (discussion 747–8).PubMedCrossRef
20.
go back to reference Kaplan HM, Mishra P, Kohn J. The overwhelming use of rat models in nerve regeneration research may compromise designs of nerve guidance conduits for humans. J Mater Sci Mater Med. 2015;26(8):5558. doi:10.1007/s10856-015-5558-4 (Epub 2015 Aug 22).CrossRef Kaplan HM, Mishra P, Kohn J. The overwhelming use of rat models in nerve regeneration research may compromise designs of nerve guidance conduits for humans. J Mater Sci Mater Med. 2015;26(8):5558. doi:10.​1007/​s10856-015-5558-4 (Epub 2015 Aug 22).CrossRef
21.
go back to reference Zhang M, Yannas IV. Peripheral nerve regeneration. Adv Biochem Eng Biotechnol. 2005;94:67–89.PubMed Zhang M, Yannas IV. Peripheral nerve regeneration. Adv Biochem Eng Biotechnol. 2005;94:67–89.PubMed
22.
go back to reference Brooks DN, Weber RV, Chao JD, Rinker BD, Zoldos J, Robichaux MR, Ruggeri SB, Anderson KA, Bonatz EE, Wisotsky SM, Cho MS, Wilson C, Cooper EO, Ingari JV, Safa B, Parrett BM, Buncke GM. Processed nerve allografts for peripheral nerve reconstruction: a multicenter study of utilization and outcomes in sensory, mixed, and motor nerve reconstructions. Microsurgery. 2012;32(1):1–14. doi:10.1002/micr.20975 (Epub 2011 Nov 28).PubMedCrossRef Brooks DN, Weber RV, Chao JD, Rinker BD, Zoldos J, Robichaux MR, Ruggeri SB, Anderson KA, Bonatz EE, Wisotsky SM, Cho MS, Wilson C, Cooper EO, Ingari JV, Safa B, Parrett BM, Buncke GM. Processed nerve allografts for peripheral nerve reconstruction: a multicenter study of utilization and outcomes in sensory, mixed, and motor nerve reconstructions. Microsurgery. 2012;32(1):1–14. doi:10.​1002/​micr.​20975 (Epub 2011 Nov 28).PubMedCrossRef
25.
go back to reference Bozkurt A, van Neerven SG, Claeys KG, O’Dey DM, Sudhoff A, Brook GA, Sellhaus B, Schulz JB, Weis J, Pallua N. The proximal medial SN biopsy model: a standardized and reproducible baseline clinical model for the translational evaluation of bioengineered nerve guides. Biomed Res Int. 2014;2014:121452. doi:10.1155/2014/121452 (Epub 2014 Jun 2).PubMedPubMedCentralCrossRef Bozkurt A, van Neerven SG, Claeys KG, O’Dey DM, Sudhoff A, Brook GA, Sellhaus B, Schulz JB, Weis J, Pallua N. The proximal medial SN biopsy model: a standardized and reproducible baseline clinical model for the translational evaluation of bioengineered nerve guides. Biomed Res Int. 2014;2014:121452. doi:10.​1155/​2014/​121452 (Epub 2014 Jun 2).PubMedPubMedCentralCrossRef
26.
go back to reference Bozkurt A, Brook GA, Moellers S, Lassner F, Sellhaus B, Weis J, Woeltje M, Tank J, Beckmann C, Fuchs P, Damink LO, Schügner F, Heschel I, Pallua N. In vitro assessment of axonal growth using dorsal root ganglia explants in a novel three-dimensional collagen matrix. Tissue Eng. 2007;13(12):29719.CrossRef Bozkurt A, Brook GA, Moellers S, Lassner F, Sellhaus B, Weis J, Woeltje M, Tank J, Beckmann C, Fuchs P, Damink LO, Schügner F, Heschel I, Pallua N. In vitro assessment of axonal growth using dorsal root ganglia explants in a novel three-dimensional collagen matrix. Tissue Eng. 2007;13(12):29719.CrossRef
27.
go back to reference Bozkurt A, Deumens R, Beckmann C, Olde Damink L, Schügner F, Heschel I, Sellhaus B, Weis J, Jahnen-Dechent W, Brook GA, Pallua N. In vitro cell alignment obtained with a Schwann cell enriched microstructured nerve guide with longitudinal guidance channels. Biomaterials. 2009;30(2):169–79. doi:10.1016/j.biomaterials.2008.09.017.PubMedCrossRef Bozkurt A, Deumens R, Beckmann C, Olde Damink L, Schügner F, Heschel I, Sellhaus B, Weis J, Jahnen-Dechent W, Brook GA, Pallua N. In vitro cell alignment obtained with a Schwann cell enriched microstructured nerve guide with longitudinal guidance channels. Biomaterials. 2009;30(2):169–79. doi:10.​1016/​j.​biomaterials.​2008.​09.​017.PubMedCrossRef
28.
go back to reference Möllers S, Heschel I, Damink LH, Schügner F, Deumens R, Müller B, Bozkurt A, Nava JG, Noth J, Brook GA. Cytocompatibility of a novel, longitudinally microstructured collagen scaffold intended for nerve tissue repair. Tissue Eng Part A. 2009;15(3):461–72. doi:10.1089/ten.tea.2007.0107.PubMedCrossRef Möllers S, Heschel I, Damink LH, Schügner F, Deumens R, Müller B, Bozkurt A, Nava JG, Noth J, Brook GA. Cytocompatibility of a novel, longitudinally microstructured collagen scaffold intended for nerve tissue repair. Tissue Eng Part A. 2009;15(3):461–72. doi:10.​1089/​ten.​tea.​2007.​0107.PubMedCrossRef
30.
go back to reference van Neerven SG, Krings L, Haastert-Talini K, Vogt M, Tolba RH, Brook G, Pallua N, Bozkurt A. Human Schwann cells seeded on a novel collagen-based microstructured nerve guide survive, proliferate, and modify neurite outgrowth. Biomed Res Int. 2014;2014:493823. doi:10.1155/2014/493823.PubMedPubMedCentral van Neerven SG, Krings L, Haastert-Talini K, Vogt M, Tolba RH, Brook G, Pallua N, Bozkurt A. Human Schwann cells seeded on a novel collagen-based microstructured nerve guide survive, proliferate, and modify neurite outgrowth. Biomed Res Int. 2014;2014:493823. doi:10.​1155/​2014/​493823.PubMedPubMedCentral
31.
go back to reference van Neerven SG, Haastert-Talini K, Boecker A, Schriever T, Dabhi C, Claeys K, Deumens R, Brook GA, Weis J, Pallua N, Bozkurt A. Two-component collagen nerve guides support axonal regeneration in the rat peripheral nerve injury model. J Tissue Eng Regen Med. 2016. doi:10.1002/term.2248.PubMed van Neerven SG, Haastert-Talini K, Boecker A, Schriever T, Dabhi C, Claeys K, Deumens R, Brook GA, Weis J, Pallua N, Bozkurt A. Two-component collagen nerve guides support axonal regeneration in the rat peripheral nerve injury model. J Tissue Eng Regen Med. 2016. doi:10.​1002/​term.​2248.PubMed
32.
go back to reference Davis EN, Chung KC. The Tinel sign: a historical perspective. Plast Reconstr Surg. 2004;114(2):494–9.PubMedCrossRef Davis EN, Chung KC. The Tinel sign: a historical perspective. Plast Reconstr Surg. 2004;114(2):494–9.PubMedCrossRef
33.
go back to reference Yarnitsky D, Ochoa JL. The sign of Tinel can be mediated either by myelinated or unmyelinated primary afferents. Muscle Nerve. 1991;14(4):379–80.PubMed Yarnitsky D, Ochoa JL. The sign of Tinel can be mediated either by myelinated or unmyelinated primary afferents. Muscle Nerve. 1991;14(4):379–80.PubMed
34.
go back to reference Weinstein S. Fifty years of somatosensory research: from the Semmes–Weinstein monofilaments to the Weinstein Enhanced Sensory Test. J Hand Ther. 1993;6(1):11–22 (discussion 50).PubMedCrossRef Weinstein S. Fifty years of somatosensory research: from the Semmes–Weinstein monofilaments to the Weinstein Enhanced Sensory Test. J Hand Ther. 1993;6(1):11–22 (discussion 50).PubMedCrossRef
35.
go back to reference Thivolet C, el Farkh J, Petiot A, Simonet C, Tourniaire J. Measuring vibration sensations with graduated tuning fork. Simple and reliable means to detect diabetic patients at risk of neuropathic foot ulceration. Diabetes Care. 1990;13(10):1077–80.PubMedCrossRef Thivolet C, el Farkh J, Petiot A, Simonet C, Tourniaire J. Measuring vibration sensations with graduated tuning fork. Simple and reliable means to detect diabetic patients at risk of neuropathic foot ulceration. Diabetes Care. 1990;13(10):1077–80.PubMedCrossRef
36.
go back to reference Stoppel WL, Ghezzi CE, McNamara SL, Black LD 3rd, Kaplan DL. Clinical applications of naturally derived biopolymer-based scaffolds for regenerative medicine. Ann Biomed Eng. 2015;43(3):657–80. doi:10.1007/s10439-014-1206-2 (Epub 2014 Dec 24).PubMedCrossRef Stoppel WL, Ghezzi CE, McNamara SL, Black LD 3rd, Kaplan DL. Clinical applications of naturally derived biopolymer-based scaffolds for regenerative medicine. Ann Biomed Eng. 2015;43(3):657–80. doi:10.​1007/​s10439-014-1206-2 (Epub 2014 Dec 24).PubMedCrossRef
38.
go back to reference Neundörfer B, Grahmann F, Engelhardt A, Harte U. Postoperative effects and value of sural nerve biopsies: a retrospective study. Eur Neurol. 1990;30(6):350–2.PubMedCrossRef Neundörfer B, Grahmann F, Engelhardt A, Harte U. Postoperative effects and value of sural nerve biopsies: a retrospective study. Eur Neurol. 1990;30(6):350–2.PubMedCrossRef
39.
go back to reference Poburski R, Malin JP, Stark E. Sequelae of sural nerve biopsies. Clin Neurol Neurosurg. 1985;87(3):193–8.PubMedCrossRef Poburski R, Malin JP, Stark E. Sequelae of sural nerve biopsies. Clin Neurol Neurosurg. 1985;87(3):193–8.PubMedCrossRef
40.
go back to reference Schoeller T, Huemer GM, Shafighi M, Gurunluoglu R, Wechselberger G, Piza-Katzer H. Microsurgical repair of the sural nerve after nerve biopsy to avoid associated sensory morbidity: a preliminary report. Neurosurgery. 2004;54(4):897–900 (discussion 900–1).PubMedCrossRef Schoeller T, Huemer GM, Shafighi M, Gurunluoglu R, Wechselberger G, Piza-Katzer H. Microsurgical repair of the sural nerve after nerve biopsy to avoid associated sensory morbidity: a preliminary report. Neurosurgery. 2004;54(4):897–900 (discussion 900–1).PubMedCrossRef
42.
go back to reference Moss JP, Meckler RJ, Moss WE. Consistent, effective technique for muscle and nerve biopsy. Am J Surg. 1979;138(5):736–7.PubMedCrossRef Moss JP, Meckler RJ, Moss WE. Consistent, effective technique for muscle and nerve biopsy. Am J Surg. 1979;138(5):736–7.PubMedCrossRef
44.
go back to reference Dolenc V, Janko M. Nerve regeneration following primary repair. Acta Neurochir (Wien). 1976;34(1–4):223–34.PubMedCrossRef Dolenc V, Janko M. Nerve regeneration following primary repair. Acta Neurochir (Wien). 1976;34(1–4):223–34.PubMedCrossRef
45.
go back to reference Brown PW. Factors influencing the success of the surgical repair of peripheral nerves. Surg Clin North Am. 1972;52(5):1137–55.PubMedCrossRef Brown PW. Factors influencing the success of the surgical repair of peripheral nerves. Surg Clin North Am. 1972;52(5):1137–55.PubMedCrossRef
46.
go back to reference Verdú E, Ceballos D, Vilches JJ, Navarro X. Influence of aging on peripheral nerve function and regeneration. J Peripher Nerv Syst. 2000;5(4):191–208.PubMedCrossRef Verdú E, Ceballos D, Vilches JJ, Navarro X. Influence of aging on peripheral nerve function and regeneration. J Peripher Nerv Syst. 2000;5(4):191–208.PubMedCrossRef
48.
go back to reference Navarro X, Vivó M, Valero-Cabré A. Neural plasticity after peripheral nerve injury and regeneration. Prog Neurobiol. 2007;82(4):163–201.PubMedCrossRef Navarro X, Vivó M, Valero-Cabré A. Neural plasticity after peripheral nerve injury and regeneration. Prog Neurobiol. 2007;82(4):163–201.PubMedCrossRef
49.
go back to reference Decosterd I, Woolf CJ. Spared nerve injury: an animal model of persistent peripheral neuropathic pain. Pain. 2000;87(2):149–58.PubMedCrossRef Decosterd I, Woolf CJ. Spared nerve injury: an animal model of persistent peripheral neuropathic pain. Pain. 2000;87(2):149–58.PubMedCrossRef
Metadata
Title
Clinical and biometrical 12-month follow-up in patients after reconstruction of the sural nerve biopsy defect by the collagen-based nerve guide Neuromaix
Authors
Ahmet Bozkurt
Kristl G. Claeys
Simone Schrading
Jana V. Rödler
Haktan Altinova
Jörg B. Schulz
Joachim Weis
Norbert Pallua
Sabien G. A. van Neerven
Publication date
01-12-2017
Publisher
BioMed Central
Published in
European Journal of Medical Research / Issue 1/2017
Electronic ISSN: 2047-783X
DOI
https://doi.org/10.1186/s40001-017-0279-4

Other articles of this Issue 1/2017

European Journal of Medical Research 1/2017 Go to the issue