Skip to main content
Top
Published in: Antimicrobial Resistance & Infection Control 1/2017

Open Access 01-12-2017 | Research

Genome sequencing and analysis of the first spontaneous Nanosilver resistant bacterium Proteus mirabilis strain SCDR1

Authors: Amr T. M. Saeb, Khalid A. Al-Rubeaan, Mohamed Abouelhoda, Manojkumar Selvaraju, Hamsa T. Tayeb

Published in: Antimicrobial Resistance & Infection Control | Issue 1/2017

Login to get access

Abstract

Background

P. mirabilis is a common uropathogenic bacterium that can cause major complications in patients with long-standing indwelling catheters or patients with urinary tract anomalies. In addition, P. mirabilis is a common cause of chronic osteomyelitis in Diabetic foot ulcer (DFU) patients. We isolated P. mirabilis SCDR1 from a Diabetic ulcer patient. We examined P. mirabilis SCDR1 levels of resistance against Nanosilver colloids, the commercial Nanosilver and silver containing bandages and commonly used antibiotics. We utilized next generation sequencing techniques (NGS), bioinformatics, phylogenetic analysis and pathogenomics in the characterization of the infectious pathogen.

Results

P. mirabilis SCDR1 was the first Nanosilver resistant isolate collected from a diabetic patient polyclonal infection. P. mirabilis SCDR1 showed high levels of resistance against Nanosilver colloids, Nanosilver chitosan composite and the commercially available Nanosilver and silver bandages. The P. mirabilis -SCDR1 genome size is 3,815,621 bp. with G + C content of 38.44%. P. mirabilis-SCDR1 genome contains a total of 3533 genes, 3414 coding DNA sequence genes, 11, 10, 18 rRNAs (5S, 16S, and 23S), and 76 tRNAs. Our isolate contains all the required pathogenicity and virulence factors to establish a successful infection. P. mirabilis SCDR1 isolate is a potential virulent pathogen that despite its original isolation site, the wound, can establish kidney infection and its associated complications. P. mirabilis SCDR1 contains several mechanisms for antibiotics and metals resistance, including, biofilm formation, swarming mobility, efflux systems, and enzymatic detoxification.

Conclusion

P. mirabilis SCDR1 is the first reported spontaneous Nanosilver resistant bacterial strain. P. mirabilis SCDR1 possesses several mechanisms that may lead to the observed Nanosilver resistance.
Appendix
Available only for authorised users
Literature
1.
go back to reference Chen X, Schluesener HJ. Nanosilver: a nanoproduct in medical application. Toxicol Lett. 2008;176:1–12.CrossRefPubMed Chen X, Schluesener HJ. Nanosilver: a nanoproduct in medical application. Toxicol Lett. 2008;176:1–12.CrossRefPubMed
2.
go back to reference Dunn K, Edwards-Jones V. The role of Acticoat with nanocrystalline silver in the management of burns. Burns J. Int. Soc. Burn Inj 2004;30 Suppl 1:S1–9. Dunn K, Edwards-Jones V. The role of Acticoat with nanocrystalline silver in the management of burns. Burns J. Int. Soc. Burn Inj 2004;30 Suppl 1:S1–9.
3.
go back to reference Franci G, Falanga A, Galdiero S, Palomba L, Rai M, Morelli G, et al. Silver nanoparticles as potential antibacterial agents. Mol. Basel Switz. 2015;20:8856–74. Franci G, Falanga A, Galdiero S, Palomba L, Rai M, Morelli G, et al. Silver nanoparticles as potential antibacterial agents. Mol. Basel Switz. 2015;20:8856–74.
4.
go back to reference Lu L, Sun RW-Y, Chen R, Hui C-K, Ho C-M, Luk JM, et al. Silver nanoparticles inhibit hepatitis B virus replication. Antivir Ther. 2008;13:253–62.PubMed Lu L, Sun RW-Y, Chen R, Hui C-K, Ho C-M, Luk JM, et al. Silver nanoparticles inhibit hepatitis B virus replication. Antivir Ther. 2008;13:253–62.PubMed
6.
go back to reference Oyanedel-Craver VA, Smith JA. Sustainable colloidal-silver-impregnated ceramic filter for point-of-use water treatment. Environ Sci Technol. 2008;42:927–33.CrossRefPubMed Oyanedel-Craver VA, Smith JA. Sustainable colloidal-silver-impregnated ceramic filter for point-of-use water treatment. Environ Sci Technol. 2008;42:927–33.CrossRefPubMed
7.
go back to reference Prabhu S, Poulose EK. Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int. Nano Lett. 2012;2:32.CrossRef Prabhu S, Poulose EK. Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int. Nano Lett. 2012;2:32.CrossRef
8.
go back to reference Samuel U, Guggenbichler JP. Prevention of catheter-related infections: the potential of a new nano-silver impregnated catheter. Int J Antimicrob Agents. 2004;23(Suppl 1):S75–8.CrossRefPubMed Samuel U, Guggenbichler JP. Prevention of catheter-related infections: the potential of a new nano-silver impregnated catheter. Int J Antimicrob Agents. 2004;23(Suppl 1):S75–8.CrossRefPubMed
9.
go back to reference Saeb ATM, Alshammari AS, Al-Brahim H, Al-Rubeaan KA. Production of silver nanoparticles with strong and stable antimicrobial activity against highly pathogenic and multidrug resistant bacteria. ScientificWorldJournal. 2014;2014:704708.CrossRefPubMedPubMedCentral Saeb ATM, Alshammari AS, Al-Brahim H, Al-Rubeaan KA. Production of silver nanoparticles with strong and stable antimicrobial activity against highly pathogenic and multidrug resistant bacteria. ScientificWorldJournal. 2014;2014:704708.CrossRefPubMedPubMedCentral
10.
go back to reference Velázquez-Velázquez JL, Santos-Flores A, Araujo-Meléndez J, Sánchez-Sánchez R, Velasquillo C, González C, et al. Anti-biofilm and cytotoxicity activity of impregnated dressings with silver nanoparticles. Mater Sci Eng C Mater Biol Appl. 2015;49:604–11.CrossRefPubMed Velázquez-Velázquez JL, Santos-Flores A, Araujo-Meléndez J, Sánchez-Sánchez R, Velasquillo C, González C, et al. Anti-biofilm and cytotoxicity activity of impregnated dressings with silver nanoparticles. Mater Sci Eng C Mater Biol Appl. 2015;49:604–11.CrossRefPubMed
11.
go back to reference Lullove EJ, Bernstein B. Use of SilvrSTAT® in lower extremity wounds: a two center case series « Journal of Diabetic Foot Complications 2015;7:13–16. Lullove EJ, Bernstein B. Use of SilvrSTAT® in lower extremity wounds: a two center case series « Journal of Diabetic Foot Complications 2015;7:13–16.
12.
go back to reference Hendry AT, Stewart IO. Silver-resistant Enterobacteriaceae from hospital patients. Can J Microbiol. 1979;25:915–21.CrossRefPubMed Hendry AT, Stewart IO. Silver-resistant Enterobacteriaceae from hospital patients. Can J Microbiol. 1979;25:915–21.CrossRefPubMed
13.
go back to reference McHugh GL, Moellering RC, Hopkins CC, Swartz MN. Salmonella typhimurium resistant to silver nitrate, chloramphenicol, and ampicillin. Lancet Lond Engl. 1975;1:235–40.CrossRef McHugh GL, Moellering RC, Hopkins CC, Swartz MN. Salmonella typhimurium resistant to silver nitrate, chloramphenicol, and ampicillin. Lancet Lond Engl. 1975;1:235–40.CrossRef
14.
go back to reference Gunawan C, Teoh WY, Marquis CP. Amal R. Induced adaptation of Bacillus sp to antimicrobial nanosilver Small Weinh Bergstr Ger. 2013;9:3554–60. Gunawan C, Teoh WY, Marquis CP. Amal R. Induced adaptation of Bacillus sp to antimicrobial nanosilver Small Weinh Bergstr Ger. 2013;9:3554–60.
15.
go back to reference Jansen AM, Lockatell CV, Johnson DE, Mobley HLT. Visualization of Proteus Mirabilis morphotypes in the urinary tract: the elongated swarmer cell is rarely observed in ascending urinary tract infection. Infect Immun. 2003;71:3607–13.CrossRefPubMedPubMedCentral Jansen AM, Lockatell CV, Johnson DE, Mobley HLT. Visualization of Proteus Mirabilis morphotypes in the urinary tract: the elongated swarmer cell is rarely observed in ascending urinary tract infection. Infect Immun. 2003;71:3607–13.CrossRefPubMedPubMedCentral
16.
go back to reference Mobley HL, Belas R. Swarming and pathogenicity of Proteus Mirabilis in the urinary tract. Trends Microbiol. 1995;3:280–4.CrossRefPubMed Mobley HL, Belas R. Swarming and pathogenicity of Proteus Mirabilis in the urinary tract. Trends Microbiol. 1995;3:280–4.CrossRefPubMed
17.
go back to reference Mathur S, Sabbuba NA, Suller MTE, Stickler DJ, Feneley RCL. Genotyping of urinary and fecal Proteus Mirabilis isolates from individuals with long-term urinary catheters. Eur. J. Clin. Microbiol. Infect. Dis. Off. Publ. Eur. Soc. Clin. Microbiol. 2005;24:643–4.CrossRef Mathur S, Sabbuba NA, Suller MTE, Stickler DJ, Feneley RCL. Genotyping of urinary and fecal Proteus Mirabilis isolates from individuals with long-term urinary catheters. Eur. J. Clin. Microbiol. Infect. Dis. Off. Publ. Eur. Soc. Clin. Microbiol. 2005;24:643–4.CrossRef
19.
20.
go back to reference Jacobsen SM, Stickler DJ, Mobley HLT, Shirtliff ME. Complicated catheter-associated urinary tract infections due to Escherichia Coli and Proteus Mirabilis. Clin Microbiol Rev. 2008;21:26–59.CrossRefPubMedPubMedCentral Jacobsen SM, Stickler DJ, Mobley HLT, Shirtliff ME. Complicated catheter-associated urinary tract infections due to Escherichia Coli and Proteus Mirabilis. Clin Microbiol Rev. 2008;21:26–59.CrossRefPubMedPubMedCentral
21.
go back to reference Rózalski A, Sidorczyk Z, Kotełko K. Potential virulence factors of Proteus bacilli. Microbiol Mol Biol Rev MMBR. 1997;61:65–89.PubMed Rózalski A, Sidorczyk Z, Kotełko K. Potential virulence factors of Proteus bacilli. Microbiol Mol Biol Rev MMBR. 1997;61:65–89.PubMed
24.
go back to reference Pearson MM, Sebaihia M, Churcher C, Quail MA, Seshasayee AS, Luscombe NM, et al. Complete genome sequence of uropathogenic Proteus Mirabilis, a master of both adherence and motility. J Bacteriol. 2008;190:4027–37.CrossRefPubMedPubMedCentral Pearson MM, Sebaihia M, Churcher C, Quail MA, Seshasayee AS, Luscombe NM, et al. Complete genome sequence of uropathogenic Proteus Mirabilis, a master of both adherence and motility. J Bacteriol. 2008;190:4027–37.CrossRefPubMedPubMedCentral
25.
go back to reference Habibi M, Asadi Karam MR, Bouzari S. In silico design of fusion protein of FimH from uropathogenic Escherichia Coli and MrpH from Proteus Mirabilis against urinary tract infections. Adv. Biomed Res. 2015;4:217.PubMedPubMedCentral Habibi M, Asadi Karam MR, Bouzari S. In silico design of fusion protein of FimH from uropathogenic Escherichia Coli and MrpH from Proteus Mirabilis against urinary tract infections. Adv. Biomed Res. 2015;4:217.PubMedPubMedCentral
26.
go back to reference Baldo C, Rocha SPD. Virulence factors of Uropathogenic Proteus Mirabilis - a mini review. Int. J. Technol. Enhanc. Emerg. Eng. Res. 2014;3:24–7. Baldo C, Rocha SPD. Virulence factors of Uropathogenic Proteus Mirabilis - a mini review. Int. J. Technol. Enhanc. Emerg. Eng. Res. 2014;3:24–7.
27.
go back to reference Bush K. Alarming β-lactamase-mediated resistance in multidrug-resistant Enterobacteriaceae. Curr Opin Microbiol. 2010;13:558–64.CrossRefPubMed Bush K. Alarming β-lactamase-mediated resistance in multidrug-resistant Enterobacteriaceae. Curr Opin Microbiol. 2010;13:558–64.CrossRefPubMed
29.
go back to reference Horner CS, Abberley N, Denton M, Wilcox MH. Surveillance of antibiotic susceptibility of Enterobacteriaceae isolated from urine samples collected from community patients in a large metropolitan area, 2010-2012. Epidemiol Infect. 2014;142:399–403.CrossRefPubMed Horner CS, Abberley N, Denton M, Wilcox MH. Surveillance of antibiotic susceptibility of Enterobacteriaceae isolated from urine samples collected from community patients in a large metropolitan area, 2010-2012. Epidemiol Infect. 2014;142:399–403.CrossRefPubMed
30.
go back to reference Miró E, Agüero J, Larrosa MN, Fernández A, Conejo MC, Bou G, et al. Prevalence and molecular epidemiology of acquired AmpC β-lactamases and carbapenemases in Enterobacteriaceae isolates from 35 hospitals in Spain. Eur J Clin Microbiol Infect Dis Off Publ Eur Soc Clin Microbiol. 2013;32:253–9.CrossRef Miró E, Agüero J, Larrosa MN, Fernández A, Conejo MC, Bou G, et al. Prevalence and molecular epidemiology of acquired AmpC β-lactamases and carbapenemases in Enterobacteriaceae isolates from 35 hospitals in Spain. Eur J Clin Microbiol Infect Dis Off Publ Eur Soc Clin Microbiol. 2013;32:253–9.CrossRef
31.
go back to reference Sheng W-H, Badal RE, Hsueh P-R, Program SMART. Distribution of extended-spectrum β-lactamases, AmpC β-lactamases, and carbapenemases among Enterobacteriaceae isolates causing intra-abdominal infections in the Asia-Pacific region: results of the study for monitoring antimicrobial resistance trends (SMART). Antimicrob Agents Chemother. 2013;57:2981–8.CrossRefPubMedPubMedCentral Sheng W-H, Badal RE, Hsueh P-R, Program SMART. Distribution of extended-spectrum β-lactamases, AmpC β-lactamases, and carbapenemases among Enterobacteriaceae isolates causing intra-abdominal infections in the Asia-Pacific region: results of the study for monitoring antimicrobial resistance trends (SMART). Antimicrob Agents Chemother. 2013;57:2981–8.CrossRefPubMedPubMedCentral
32.
go back to reference Bouchillon SK, Badal RE, Hoban DJ, Hawser SP. Antimicrobial susceptibility of inpatient urinary tract isolates of gram-negative bacilli in the United States: results from the study for monitoring antimicrobial resistance trends (SMART) program: 2009-2011. Clin Ther. 2013;35:872–7.CrossRefPubMed Bouchillon SK, Badal RE, Hoban DJ, Hawser SP. Antimicrobial susceptibility of inpatient urinary tract isolates of gram-negative bacilli in the United States: results from the study for monitoring antimicrobial resistance trends (SMART) program: 2009-2011. Clin Ther. 2013;35:872–7.CrossRefPubMed
33.
go back to reference Hawser SP, Badal RE, Bouchillon SK, Hoban DJ, Hackel MA, Biedenbach DJ, et al. Susceptibility of gram-negative aerobic bacilli from intra-abdominal pathogens to antimicrobial agents collected in the United States during 2011. J Inf Secur. 2014;68:71–6. Hawser SP, Badal RE, Bouchillon SK, Hoban DJ, Hackel MA, Biedenbach DJ, et al. Susceptibility of gram-negative aerobic bacilli from intra-abdominal pathogens to antimicrobial agents collected in the United States during 2011. J Inf Secur. 2014;68:71–6.
34.
go back to reference Karlowsky JA, Adam HJ, Baxter MR, Lagacé-Wiens PRS, Walkty AJ, Hoban DJ, et al. Vitro activity of ceftaroline-avibactam against gram-negative and gram-positive pathogens isolated from patients in Canadian hospitals from 2010 to 2012: results from the CANWARD surveillance study. Antimicrob Agents Chemother. 2013;57:5600–11.CrossRefPubMedPubMedCentral Karlowsky JA, Adam HJ, Baxter MR, Lagacé-Wiens PRS, Walkty AJ, Hoban DJ, et al. Vitro activity of ceftaroline-avibactam against gram-negative and gram-positive pathogens isolated from patients in Canadian hospitals from 2010 to 2012: results from the CANWARD surveillance study. Antimicrob Agents Chemother. 2013;57:5600–11.CrossRefPubMedPubMedCentral
35.
go back to reference Sader HS, Farrell DJ, Flamm RK, Jones RN. Antimicrobial susceptibility of gram-negative organisms isolated from patients hospitalized in intensive care units in United States and European hospitals (2009-2011). Diagn Microbiol Infect Dis. 2014;78:443–8.CrossRefPubMed Sader HS, Farrell DJ, Flamm RK, Jones RN. Antimicrobial susceptibility of gram-negative organisms isolated from patients hospitalized in intensive care units in United States and European hospitals (2009-2011). Diagn Microbiol Infect Dis. 2014;78:443–8.CrossRefPubMed
36.
go back to reference Chen L, Al Laham N, Chavda KD, Mediavilla JR, Jacobs MR, Bonomo RA, et al. First report of an OXA-48-producing multidrug-resistant Proteus Mirabilis strain from Gaza, Palestine. Antimicrob Agents Chemother. 2015;59:4305–7.CrossRefPubMedPubMedCentral Chen L, Al Laham N, Chavda KD, Mediavilla JR, Jacobs MR, Bonomo RA, et al. First report of an OXA-48-producing multidrug-resistant Proteus Mirabilis strain from Gaza, Palestine. Antimicrob Agents Chemother. 2015;59:4305–7.CrossRefPubMedPubMedCentral
37.
go back to reference Latif U, Al-Rubeaan K, Saeb ATM. A review on antimicrobial chitosan-silver nanocomposites: a roadmap toward pathogen targeted synthesis. Int J Polym Mater Polym Biomater. 2015;64:448–58.CrossRef Latif U, Al-Rubeaan K, Saeb ATM. A review on antimicrobial chitosan-silver nanocomposites: a roadmap toward pathogen targeted synthesis. Int J Polym Mater Polym Biomater. 2015;64:448–58.CrossRef
38.
go back to reference Matuschek E, Brown DFJ, Kahlmeter G. Development of the EUCAST disk diffusion antimicrobial susceptibility testing method and its implementation in routine microbiology laboratories. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect Dis. 2014;20:O255–66. Matuschek E, Brown DFJ, Kahlmeter G. Development of the EUCAST disk diffusion antimicrobial susceptibility testing method and its implementation in routine microbiology laboratories. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect Dis. 2014;20:O255–66.
39.
go back to reference Holla G, Yeluri R, Munshi AK. Evaluation of minimum inhibitory and minimum bactericidal concentration of nano-silver base inorganic anti-microbial agent (Novaron(®)) against streptococcus mutans. Contemp. Clin Dent. 2012;3:288–93.CrossRefPubMedPubMedCentral Holla G, Yeluri R, Munshi AK. Evaluation of minimum inhibitory and minimum bactericidal concentration of nano-silver base inorganic anti-microbial agent (Novaron(®)) against streptococcus mutans. Contemp. Clin Dent. 2012;3:288–93.CrossRefPubMedPubMedCentral
40.
go back to reference Yassien M, Khardori N. Interaction between biofilms formed by Staphylococcus Epidermidis and quinolones. Diagn Microbiol Infect Dis. 2001;40:79–89.CrossRefPubMed Yassien M, Khardori N. Interaction between biofilms formed by Staphylococcus Epidermidis and quinolones. Diagn Microbiol Infect Dis. 2001;40:79–89.CrossRefPubMed
42.
go back to reference Darling ACE, Mau B, Blattner FR, Perna NT. Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res. 2004;14:1394–403.CrossRefPubMedPubMedCentral Darling ACE, Mau B, Blattner FR, Perna NT. Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res. 2004;14:1394–403.CrossRefPubMedPubMedCentral
43.
44.
go back to reference Wattam AR, Abraham D, Dalay O, Disz TL, Driscoll T, Gabbard JL, et al. PATRIC, the bacterial bioinformatics database and analysis resource. Nucleic Acids Res. 2014;42:D581–91.CrossRefPubMed Wattam AR, Abraham D, Dalay O, Disz TL, Driscoll T, Gabbard JL, et al. PATRIC, the bacterial bioinformatics database and analysis resource. Nucleic Acids Res. 2014;42:D581–91.CrossRefPubMed
45.
go back to reference Cosentino S, Voldby Larsen M, Møller Aarestrup F, Lund O. PathogenFinder--distinguishing friend from foe using bacterial whole genome sequence data. PLoS One. 2013;8:e77302.CrossRefPubMedPubMedCentral Cosentino S, Voldby Larsen M, Møller Aarestrup F, Lund O. PathogenFinder--distinguishing friend from foe using bacterial whole genome sequence data. PLoS One. 2013;8:e77302.CrossRefPubMedPubMedCentral
47.
48.
go back to reference McArthur AG, Wright GD. Bioinformatics of antimicrobial resistance in the age of molecular epidemiology. Curr Opin Microbiol. 2015;27:45–50.CrossRefPubMed McArthur AG, Wright GD. Bioinformatics of antimicrobial resistance in the age of molecular epidemiology. Curr Opin Microbiol. 2015;27:45–50.CrossRefPubMed
49.
go back to reference McArthur AG, Waglechner N, Nizam F, Yan A, Azad MA, Baylay AJ, et al. The comprehensive antibiotic resistance database. Antimicrob Agents Chemother. 2013;57:3348–57.CrossRefPubMedPubMedCentral McArthur AG, Waglechner N, Nizam F, Yan A, Azad MA, Baylay AJ, et al. The comprehensive antibiotic resistance database. Antimicrob Agents Chemother. 2013;57:3348–57.CrossRefPubMedPubMedCentral
50.
go back to reference Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S, Lund O, et al. Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother. 2012;67:2640–4.CrossRefPubMedPubMedCentral Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S, Lund O, et al. Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother. 2012;67:2640–4.CrossRefPubMedPubMedCentral
51.
go back to reference Pal C, Bengtsson-Palme J, Rensing C, Kristiansson E, Larsson DGJ. BacMet: antibacterial biocide and metal resistance genes database. Nucleic Acids Res. 2014;42:D737–43.CrossRefPubMed Pal C, Bengtsson-Palme J, Rensing C, Kristiansson E, Larsson DGJ. BacMet: antibacterial biocide and metal resistance genes database. Nucleic Acids Res. 2014;42:D737–43.CrossRefPubMed
52.
53.
go back to reference Magiorakos A-P, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 2012;18:268–81. Magiorakos A-P, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 2012;18:268–81.
55.
go back to reference Tang Z, Liu S, Dong S, Wang E. Electrochemical synthesis of ag nanoparticles on functional carbon surfaces. J Electroanal Chem. 502:146–51. Tang Z, Liu S, Dong S, Wang E. Electrochemical synthesis of ag nanoparticles on functional carbon surfaces. J Electroanal Chem. 502:146–51.
56.
go back to reference Park H-J, Kim JY, Kim J, Lee J-H, Hahn J-S, MB G, et al. Silver-ion-mediated reactive oxygen species generation affecting bactericidal activity. Water Res. 2009;43:1027–32.CrossRefPubMed Park H-J, Kim JY, Kim J, Lee J-H, Hahn J-S, MB G, et al. Silver-ion-mediated reactive oxygen species generation affecting bactericidal activity. Water Res. 2009;43:1027–32.CrossRefPubMed
58.
go back to reference Vaaje-Kolstad G, Horn SJ, van Aalten DMF, Synstad B, Eijsink VGH. The non-catalytic chitin-binding protein CBP21 from Serratia Marcescens is essential for chitin degradation. J Biol Chem. 2005;280:28492–7.CrossRefPubMed Vaaje-Kolstad G, Horn SJ, van Aalten DMF, Synstad B, Eijsink VGH. The non-catalytic chitin-binding protein CBP21 from Serratia Marcescens is essential for chitin degradation. J Biol Chem. 2005;280:28492–7.CrossRefPubMed
59.
go back to reference Svitil AL, Chadhain S, Moore JA, Kirchman DL. Chitin degradation proteins produced by the marine bacterium Vibrio Harveyi growing on different forms of chitin. Appl Environ Microbiol. 1997;63:408–13.PubMedPubMedCentral Svitil AL, Chadhain S, Moore JA, Kirchman DL. Chitin degradation proteins produced by the marine bacterium Vibrio Harveyi growing on different forms of chitin. Appl Environ Microbiol. 1997;63:408–13.PubMedPubMedCentral
60.
go back to reference Wieczorek AS, Hetz SA, Kolb S. Microbial responses to chitin and chitosan in oxic and anoxic agricultural soil slurries. Biogeosciences. 2014;11:3339–52.CrossRef Wieczorek AS, Hetz SA, Kolb S. Microbial responses to chitin and chitosan in oxic and anoxic agricultural soil slurries. Biogeosciences. 2014;11:3339–52.CrossRef
61.
go back to reference Gupta V, Prasanna R, Natarajan C, Srivastava AK, Sharma J. Identification, characterization, and regulation of a novel antifungal chitosanase gene (cho) in anabaena spp. Appl Environ Microbiol. 2010;76:2769–77.CrossRefPubMedPubMedCentral Gupta V, Prasanna R, Natarajan C, Srivastava AK, Sharma J. Identification, characterization, and regulation of a novel antifungal chitosanase gene (cho) in anabaena spp. Appl Environ Microbiol. 2010;76:2769–77.CrossRefPubMedPubMedCentral
62.
go back to reference Gupta V, Prasanna R, Srivastava AK, Sharma J. Purification and characterization of a novel antifungal endo-type chitosanase from anabaena fertilissima. Ann Microbiol. 2011;62:1089–98.CrossRef Gupta V, Prasanna R, Srivastava AK, Sharma J. Purification and characterization of a novel antifungal endo-type chitosanase from anabaena fertilissima. Ann Microbiol. 2011;62:1089–98.CrossRef
63.
go back to reference Cutting K, White R, Edmonds M. The safety and efficacy of dressings with silver - addressing clinical concerns. Int Wound J. 2007;4:177–84.CrossRefPubMed Cutting K, White R, Edmonds M. The safety and efficacy of dressings with silver - addressing clinical concerns. Int Wound J. 2007;4:177–84.CrossRefPubMed
65.
go back to reference Stephens S, Clark R, Del Bono M, Snyder R. Designing in vitro, in vivo and clinical evaluations to meet the needs of the patient and clinician: dressing wound adherence. Geneva; 2010. Stephens S, Clark R, Del Bono M, Snyder R. Designing in vitro, in vivo and clinical evaluations to meet the needs of the patient and clinician: dressing wound adherence. Geneva; 2010.
66.
go back to reference Thomas S. Alginate dressings in surgery and wound management--part 1. J Wound Care. 2000;9:56–60.CrossRefPubMed Thomas S. Alginate dressings in surgery and wound management--part 1. J Wound Care. 2000;9:56–60.CrossRefPubMed
67.
go back to reference Thomas S. Alginate dressings in surgery and wound management: part 2. J Wound Care. 2000;9:115–9.CrossRefPubMed Thomas S. Alginate dressings in surgery and wound management: part 2. J Wound Care. 2000;9:115–9.CrossRefPubMed
68.
go back to reference Thomas S. Alginate dressings in surgery and wound management: part 3. J Wound Care. 2000;9:163–6.CrossRefPubMed Thomas S. Alginate dressings in surgery and wound management: part 3. J Wound Care. 2000;9:163–6.CrossRefPubMed
70.
go back to reference Haycocks S, Chadwick P. Using an activated charcoal dressing with silver for malodour, infection and overgranulation in diabetic foot ulcers importance of appropriate dressing selection for diabetic foot ulcers. Diabet Foot J. 2014;17:74–7. Haycocks S, Chadwick P. Using an activated charcoal dressing with silver for malodour, infection and overgranulation in diabetic foot ulcers importance of appropriate dressing selection for diabetic foot ulcers. Diabet Foot J. 2014;17:74–7.
71.
go back to reference Allison C, Lai HC, Hughes C. Co-ordinate expression of virulence genes during swarm-cell differentiation and population migration of Proteus Mirabilis. Mol Microbiol. 1992;6:1583–91.CrossRefPubMed Allison C, Lai HC, Hughes C. Co-ordinate expression of virulence genes during swarm-cell differentiation and population migration of Proteus Mirabilis. Mol Microbiol. 1992;6:1583–91.CrossRefPubMed
72.
73.
go back to reference Lai S, Tremblay J, Déziel E. Swarming motility: a multicellular behaviour conferring antimicrobial resistance. Environ Microbiol. 2009;11:126–36.CrossRefPubMed Lai S, Tremblay J, Déziel E. Swarming motility: a multicellular behaviour conferring antimicrobial resistance. Environ Microbiol. 2009;11:126–36.CrossRefPubMed
76.
go back to reference Wu YL, Liu KS, Yin XT, Fei RM. GlpC gene is responsible for biofilm formation and defense against phagocytes and imparts tolerance to pH and organic solvents in Proteus vulgaris. Genet Mol Res GMR. 2015;14:10619–29.CrossRefPubMed Wu YL, Liu KS, Yin XT, Fei RM. GlpC gene is responsible for biofilm formation and defense against phagocytes and imparts tolerance to pH and organic solvents in Proteus vulgaris. Genet Mol Res GMR. 2015;14:10619–29.CrossRefPubMed
77.
go back to reference Jiang S-S, Liu M-C, Teng L-J, Wang W-B, Hsueh P-R, Liaw S-J. Proteus Mirabilis pmrI, an RppA-regulated gene necessary for polymyxin B resistance, biofilm formation, and urothelial cell invasion. Antimicrob Agents Chemother. 2010;54:1564–71.CrossRefPubMedPubMedCentral Jiang S-S, Liu M-C, Teng L-J, Wang W-B, Hsueh P-R, Liaw S-J. Proteus Mirabilis pmrI, an RppA-regulated gene necessary for polymyxin B resistance, biofilm formation, and urothelial cell invasion. Antimicrob Agents Chemother. 2010;54:1564–71.CrossRefPubMedPubMedCentral
78.
go back to reference Chien C-C, Lin B-C, Biofilm WC-H. Formation and heavy metal resistance by an environmental pseudomonas sp. Biochem Eng J. 2013;78:132–7.CrossRef Chien C-C, Lin B-C, Biofilm WC-H. Formation and heavy metal resistance by an environmental pseudomonas sp. Biochem Eng J. 2013;78:132–7.CrossRef
79.
go back to reference Nocelli N, Bogino PC, Banchio E, Giordano W. Roles of extracellular polysaccharides and biofilm formation in heavy metal resistance of rhizobia. Materials. 2016;9:418.CrossRefPubMedCentral Nocelli N, Bogino PC, Banchio E, Giordano W. Roles of extracellular polysaccharides and biofilm formation in heavy metal resistance of rhizobia. Materials. 2016;9:418.CrossRefPubMedCentral
80.
go back to reference Høiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O. Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents. 2010;35:322–32.CrossRefPubMed Høiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O. Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents. 2010;35:322–32.CrossRefPubMed
81.
go back to reference Li XZ, Nikaido H, Williams KE. Silver-resistant mutants of Escherichia Coli display active efflux of ag+ and are deficient in porins. J Bacteriol. 1997;179:6127–32.CrossRefPubMedPubMedCentral Li XZ, Nikaido H, Williams KE. Silver-resistant mutants of Escherichia Coli display active efflux of ag+ and are deficient in porins. J Bacteriol. 1997;179:6127–32.CrossRefPubMedPubMedCentral
82.
go back to reference Lok C-N, Ho C-M, Chen R, Tam PK-H, Chiu J-F, Che C-M. Proteomic identification of the Cus system as a major determinant of constitutive Escherichia Coli Silver resistance of chromosomal origin. J Proteome Res. 2008;7:2351–6.CrossRefPubMed Lok C-N, Ho C-M, Chen R, Tam PK-H, Chiu J-F, Che C-M. Proteomic identification of the Cus system as a major determinant of constitutive Escherichia Coli Silver resistance of chromosomal origin. J Proteome Res. 2008;7:2351–6.CrossRefPubMed
83.
go back to reference Randall CP, Gupta A, Jackson N, Busse D, O’Neill AJ. Silver resistance in gram-negative bacteria: a dissection of endogenous and exogenous mechanisms. J Antimicrob Chemother. 2015;70:1037–46.PubMedPubMedCentral Randall CP, Gupta A, Jackson N, Busse D, O’Neill AJ. Silver resistance in gram-negative bacteria: a dissection of endogenous and exogenous mechanisms. J Antimicrob Chemother. 2015;70:1037–46.PubMedPubMedCentral
84.
go back to reference Zhang W, Yin K, Li B, Chen LA. Glutathione S-transferase from Proteus Mirabilis involved in heavy metal resistance and its potential application in removal of Hg2+. J Hazard Mater. 2013;261:646–52.CrossRefPubMed Zhang W, Yin K, Li B, Chen LA. Glutathione S-transferase from Proteus Mirabilis involved in heavy metal resistance and its potential application in removal of Hg2+. J Hazard Mater. 2013;261:646–52.CrossRefPubMed
85.
go back to reference Nair PMG, Choi J. Identification, characterization and expression profiles of Chironomus Riparius glutathione S-transferase (GST) genes in response to cadmium and silver nanoparticles exposure. Aquat Toxicol Amst Neth. 2011;101:550–60.CrossRef Nair PMG, Choi J. Identification, characterization and expression profiles of Chironomus Riparius glutathione S-transferase (GST) genes in response to cadmium and silver nanoparticles exposure. Aquat Toxicol Amst Neth. 2011;101:550–60.CrossRef
86.
go back to reference Toptchieva A, Sisson G, Bryden LJ, Taylor DE, Hoffman PS. An inducible tellurite-resistance operon in Proteus Mirabilis. Microbiol Read Engl. 2003;149:1285–95.CrossRef Toptchieva A, Sisson G, Bryden LJ, Taylor DE, Hoffman PS. An inducible tellurite-resistance operon in Proteus Mirabilis. Microbiol Read Engl. 2003;149:1285–95.CrossRef
87.
go back to reference Qin J, Lehr CR, Yuan C, Le XC, McDermott TR, Rosen BP. Biotransformation of arsenic by a Yellowstone thermoacidophilic eukaryotic alga. Proc Natl Acad Sci U S A. 2009;106:5213–7.CrossRefPubMedPubMedCentral Qin J, Lehr CR, Yuan C, Le XC, McDermott TR, Rosen BP. Biotransformation of arsenic by a Yellowstone thermoacidophilic eukaryotic alga. Proc Natl Acad Sci U S A. 2009;106:5213–7.CrossRefPubMedPubMedCentral
88.
go back to reference Qin J, Rosen BP, Zhang Y, Wang G, Franke S, Rensing C. Arsenic detoxification and evolution of trimethylarsine gas by a microbial arsenite S-adenosylmethionine methyltransferase. Proc Natl Acad Sci U S A. 2006;103:2075–80.CrossRefPubMedPubMedCentral Qin J, Rosen BP, Zhang Y, Wang G, Franke S, Rensing C. Arsenic detoxification and evolution of trimethylarsine gas by a microbial arsenite S-adenosylmethionine methyltransferase. Proc Natl Acad Sci U S A. 2006;103:2075–80.CrossRefPubMedPubMedCentral
89.
go back to reference Marchler-Bauer A, Derbyshire MK, Gonzales NR, Lu S, Chitsaz F, Geer LY, et al. CDD: NCBI’s conserved domain database. Nucleic Acids Res. 2015;43:D222–6.CrossRefPubMed Marchler-Bauer A, Derbyshire MK, Gonzales NR, Lu S, Chitsaz F, Geer LY, et al. CDD: NCBI’s conserved domain database. Nucleic Acids Res. 2015;43:D222–6.CrossRefPubMed
90.
go back to reference Srinivasan VB, Vaidyanathan V, Mondal A, Rajamohan G. Role of the two component signal transduction system CpxAR in conferring cefepime and chloramphenicol resistance in Klebsiella Pneumoniae NTUH-K2044. PLoS One. 2012;7:e33777.CrossRefPubMedPubMedCentral Srinivasan VB, Vaidyanathan V, Mondal A, Rajamohan G. Role of the two component signal transduction system CpxAR in conferring cefepime and chloramphenicol resistance in Klebsiella Pneumoniae NTUH-K2044. PLoS One. 2012;7:e33777.CrossRefPubMedPubMedCentral
91.
go back to reference Nawaz M, Sung K, Kweon O, Khan S, Nawaz S, Steele R. Characterisation of novel mutations involved in quinolone resistance in Escherichia Coli isolated from imported shrimp. Int J Antimicrob Agents. 2015;45:471–6.CrossRefPubMed Nawaz M, Sung K, Kweon O, Khan S, Nawaz S, Steele R. Characterisation of novel mutations involved in quinolone resistance in Escherichia Coli isolated from imported shrimp. Int J Antimicrob Agents. 2015;45:471–6.CrossRefPubMed
92.
go back to reference Kubanov A, Vorobyev D, Chestkov A, Leinsoo A, Shaskolskiy B, Dementieva E, et al. Molecular epidemiology of drug-resistant Neisseria gonorrhoeae in Russia (current status, 2015). BMC Infect Dis. 2016;16:389.CrossRefPubMedPubMedCentral Kubanov A, Vorobyev D, Chestkov A, Leinsoo A, Shaskolskiy B, Dementieva E, et al. Molecular epidemiology of drug-resistant Neisseria gonorrhoeae in Russia (current status, 2015). BMC Infect Dis. 2016;16:389.CrossRefPubMedPubMedCentral
93.
go back to reference Jin DJ, Gross CA. Mapping and sequencing of mutations in the Escherichia Coli rpoB gene that lead to rifampicin resistance. J Mol Biol. 1988;202:45–58.CrossRefPubMed Jin DJ, Gross CA. Mapping and sequencing of mutations in the Escherichia Coli rpoB gene that lead to rifampicin resistance. J Mol Biol. 1988;202:45–58.CrossRefPubMed
94.
go back to reference Zhao J, Aoki T. Cloning and nucleotide sequence analysis of a chloramphenicol acetyltransferase gene from vibrio anguillarum. Microbiol Immunol. 1992;36:695–705.CrossRefPubMed Zhao J, Aoki T. Cloning and nucleotide sequence analysis of a chloramphenicol acetyltransferase gene from vibrio anguillarum. Microbiol Immunol. 1992;36:695–705.CrossRefPubMed
95.
go back to reference Bay DC, Rommens KL, Turner RJ. Small multidrug resistance proteins: a multidrug transporter family that continues to grow. Biochim Biophys Acta. 2008;1778:1814–38.CrossRefPubMed Bay DC, Rommens KL, Turner RJ. Small multidrug resistance proteins: a multidrug transporter family that continues to grow. Biochim Biophys Acta. 2008;1778:1814–38.CrossRefPubMed
96.
go back to reference Lee J-Y, Ko KS. Mutations and expression of PmrAB and PhoPQ related with colistin resistance in Pseudomonas Aeruginosa clinical isolates. Diagn Microbiol Infect Dis. 2014;78:271–6.CrossRefPubMed Lee J-Y, Ko KS. Mutations and expression of PmrAB and PhoPQ related with colistin resistance in Pseudomonas Aeruginosa clinical isolates. Diagn Microbiol Infect Dis. 2014;78:271–6.CrossRefPubMed
97.
go back to reference Franke S, Grass G, Rensing C, Nies DH. Molecular analysis of the copper-transporting efflux system CusCFBA of Escherichia Coli. J Bacteriol. 2003;185:3804–12.CrossRefPubMedPubMedCentral Franke S, Grass G, Rensing C, Nies DH. Molecular analysis of the copper-transporting efflux system CusCFBA of Escherichia Coli. J Bacteriol. 2003;185:3804–12.CrossRefPubMedPubMedCentral
98.
go back to reference Nishino K, Nikaido E, Yamaguchi A. Regulation of multidrug efflux systems involved in multidrug and metal resistance of salmonella enterica serovar typhimurium. J Bacteriol. 2007;189:9066–75.CrossRefPubMedPubMedCentral Nishino K, Nikaido E, Yamaguchi A. Regulation of multidrug efflux systems involved in multidrug and metal resistance of salmonella enterica serovar typhimurium. J Bacteriol. 2007;189:9066–75.CrossRefPubMedPubMedCentral
99.
go back to reference Outten FW, Huffman DL, Hale JA, O’Halloran TV. The independent cue and cus systems confer copper tolerance during aerobic and anaerobic growth in Escherichia Coli. J Biol Chem. 2001;276:30670–7.CrossRefPubMed Outten FW, Huffman DL, Hale JA, O’Halloran TV. The independent cue and cus systems confer copper tolerance during aerobic and anaerobic growth in Escherichia Coli. J Biol Chem. 2001;276:30670–7.CrossRefPubMed
100.
Metadata
Title
Genome sequencing and analysis of the first spontaneous Nanosilver resistant bacterium Proteus mirabilis strain SCDR1
Authors
Amr T. M. Saeb
Khalid A. Al-Rubeaan
Mohamed Abouelhoda
Manojkumar Selvaraju
Hamsa T. Tayeb
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Antimicrobial Resistance & Infection Control / Issue 1/2017
Electronic ISSN: 2047-2994
DOI
https://doi.org/10.1186/s13756-017-0277-x

Other articles of this Issue 1/2017

Antimicrobial Resistance & Infection Control 1/2017 Go to the issue