Skip to main content
Top
Published in: Antimicrobial Resistance & Infection Control 1/2017

Open Access 01-12-2017 | Research

Anti-Candida activity of antimicrobial impregnated central venous catheters

Authors: L. Cobrado, A. Silva-Dias, M. M. Azevedo, A. Rodrigues

Published in: Antimicrobial Resistance & Infection Control | Issue 1/2017

Login to get access

Abstract

Background

Whenever the rate of central line-associated bloodstream infections (CLABSIs) remains high even after the implementation of preventive strategies, the use of chlorhexidine/silver sulfadiazine (CSS) or minocycline/rifampin (MR)-impregnated central venous catheters (CVCs) is currently recommended. Nevertheless, the efficacy of such CVCs against Candida albicans and other emerging non-albicans spp. has been insufficiently studied. This study aims to compare the activity of CSS and MR-impregnated CVCs against the yeasts most frequently isolated from CLABSIs.

Methods

For biofilm formation assays, type strains and clinical isolates of C. albicans, C. glabrata and C. parapsilosis sensu stricto were used. Segments of standard polyurethane, MR and second-generation CSS-CVCs were tested. The biofilm metabolic activity was measured by a semi-quantitative XTT reduction assay.

Results

CSS catheter segments significantly reduced the biofilm metabolic activity by all tested Candida spp., with inhibition ranging from 60% to 100%. The MR catheter segments promoted C. albicans and C. parapsilosis biofilm formation and exhibited an inconspicuous effect against C. glabrata.

Conclusions

Among the recommended antimicrobial CVCs, CSS-CVCs proved to be superior in the inhibition of biofilm formation by the most frequent yeasts causing CLABSIs. Data from this in vitro study may suggest that patients at high risk for invasive candidosis could benefit from the use of CSS-CVCs.
Literature
4.
go back to reference Magill SS, Edwards JR, Fridkin SK. Emerging infections program healthcare-associated I, antimicrobial use prevalence survey T. Survey of health care-associated infections. N Engl J Med. 2014;370:2542–3.CrossRefPubMed Magill SS, Edwards JR, Fridkin SK. Emerging infections program healthcare-associated I, antimicrobial use prevalence survey T. Survey of health care-associated infections. N Engl J Med. 2014;370:2542–3.CrossRefPubMed
5.
go back to reference Raad I, Reitzel R, Jiang Y, Chemaly RF, Dvorak T, Hachem R. Anti-adherence activity and antimicrobial durability of anti-infective-coated catheters against multidrug-resistant bacteria. J Antimicrob Chemother. 2008;62:746–50.CrossRefPubMed Raad I, Reitzel R, Jiang Y, Chemaly RF, Dvorak T, Hachem R. Anti-adherence activity and antimicrobial durability of anti-infective-coated catheters against multidrug-resistant bacteria. J Antimicrob Chemother. 2008;62:746–50.CrossRefPubMed
6.
go back to reference Wenzel RP. Nosocomial Candidemia - risk-factors and attributable mortality. Clin Infect Dis. 1995;20:1531–4.CrossRefPubMed Wenzel RP. Nosocomial Candidemia - risk-factors and attributable mortality. Clin Infect Dis. 1995;20:1531–4.CrossRefPubMed
8.
go back to reference Ingham CJ, Boonstra S, Levels S, de Lange M, Meis JF, Schneeberger PM. Rapid Susceptibility Testing and Microcolony Analysis of Candida spp. Cultured and Imaged on Porous Aluminum Oxide. Plos One. 2012;7:e33818.CrossRefPubMedPubMedCentral Ingham CJ, Boonstra S, Levels S, de Lange M, Meis JF, Schneeberger PM. Rapid Susceptibility Testing and Microcolony Analysis of Candida spp. Cultured and Imaged on Porous Aluminum Oxide. Plos One. 2012;7:e33818.CrossRefPubMedPubMedCentral
10.
go back to reference Pfaller MA, Diekema DJ, Procop GW, Rinaldi MG. Multicenter comparison of the VITEK 2 antifungal susceptibility test with the CLSI broth microdilution reference method for testing amphotericin B, flucytosine, and voriconazole against Candida spp. J Clin Microbiol. 2007;45:3522–8.CrossRefPubMedPubMedCentral Pfaller MA, Diekema DJ, Procop GW, Rinaldi MG. Multicenter comparison of the VITEK 2 antifungal susceptibility test with the CLSI broth microdilution reference method for testing amphotericin B, flucytosine, and voriconazole against Candida spp. J Clin Microbiol. 2007;45:3522–8.CrossRefPubMedPubMedCentral
11.
go back to reference Pfaller MA, Moet GJ, Messer SA, Jones RN, Castanheira M. Candida bloodstream infections: comparison of species distributions and antifungal resistance patterns in community-onset and Nosocomial isolates in the SENTRY antimicrobial surveillance program, 2008-2009. Antimicrob Agents Ch. 2011;55:561–6.CrossRef Pfaller MA, Moet GJ, Messer SA, Jones RN, Castanheira M. Candida bloodstream infections: comparison of species distributions and antifungal resistance patterns in community-onset and Nosocomial isolates in the SENTRY antimicrobial surveillance program, 2008-2009. Antimicrob Agents Ch. 2011;55:561–6.CrossRef
12.
go back to reference Wey SB, Mori M, Pfaller MA, Woolson RF, Wenzel RP. Risk factors for hospital-acquired candidemia. A matched case-control study. Arch Intern Med. 1989;149:2349–53.CrossRefPubMed Wey SB, Mori M, Pfaller MA, Woolson RF, Wenzel RP. Risk factors for hospital-acquired candidemia. A matched case-control study. Arch Intern Med. 1989;149:2349–53.CrossRefPubMed
14.
go back to reference Horn DL, Neofytos D, Anaissie EJ, Fishman JA, Steinbach WJ, Olyaei AJ, et al. Epidemiology and outcomes of Candidemia in 2019 patients: data from the prospective antifungal therapy alliance registry. Clin Infect Dis. 2009;48:1695–703.CrossRefPubMed Horn DL, Neofytos D, Anaissie EJ, Fishman JA, Steinbach WJ, Olyaei AJ, et al. Epidemiology and outcomes of Candidemia in 2019 patients: data from the prospective antifungal therapy alliance registry. Clin Infect Dis. 2009;48:1695–703.CrossRefPubMed
15.
go back to reference Sardi JCO, Scorzoni L, Bernardi T, Fusco-Almeida AM, Giannini MJSM. Candida species: current epidemiology, pathogenicity, biofilm formation, natural antifungal products and new therapeutic options. J Med Microbiol. 2013;62:10–24.CrossRefPubMed Sardi JCO, Scorzoni L, Bernardi T, Fusco-Almeida AM, Giannini MJSM. Candida species: current epidemiology, pathogenicity, biofilm formation, natural antifungal products and new therapeutic options. J Med Microbiol. 2013;62:10–24.CrossRefPubMed
16.
go back to reference Pereira GH, Muller PR, Szeszs MW, Levin AS, Melhem MSC. Five-year evaluation of bloodstream yeast infections in a tertiary hospital: the predominance of non-C. Albicans Candida species. Med Mycol. 2010;48:839–42.CrossRefPubMed Pereira GH, Muller PR, Szeszs MW, Levin AS, Melhem MSC. Five-year evaluation of bloodstream yeast infections in a tertiary hospital: the predominance of non-C. Albicans Candida species. Med Mycol. 2010;48:839–42.CrossRefPubMed
17.
go back to reference O'Grady NP, Alexander M, Burns LA, Dellinger EP, Garland J, Heard SO, et al. Guidelines for the prevention of intravascular catheter-related infections. Clin Infect Dis. 2011;52:e162–93.CrossRefPubMedPubMedCentral O'Grady NP, Alexander M, Burns LA, Dellinger EP, Garland J, Heard SO, et al. Guidelines for the prevention of intravascular catheter-related infections. Clin Infect Dis. 2011;52:e162–93.CrossRefPubMedPubMedCentral
20.
go back to reference Schierholz JM, Fleck C, Beuth J, Pulverer G. The antimicrobial efficacy of a new central venous catheter with long-term broad-spectrum activity. J Antimicrob Chemother. 2000;46:45–50.CrossRefPubMed Schierholz JM, Fleck C, Beuth J, Pulverer G. The antimicrobial efficacy of a new central venous catheter with long-term broad-spectrum activity. J Antimicrob Chemother. 2000;46:45–50.CrossRefPubMed
21.
go back to reference AFE R, Guttler K, Konig DP, Yucel N, Korenkov M, Schierholz JM. Pharmacokinetics of the antimicrobial agents rifampicin and miconazole released from a loaded central venous catheter. J Hosp Infect. 2003;53:129–35.CrossRef AFE R, Guttler K, Konig DP, Yucel N, Korenkov M, Schierholz JM. Pharmacokinetics of the antimicrobial agents rifampicin and miconazole released from a loaded central venous catheter. J Hosp Infect. 2003;53:129–35.CrossRef
22.
go back to reference Fraenkel D, Rickard C, Thomas P, Faoagali J, George N, Ware RA. Prospective, randomized trial of rifampicin-minocycline-coated and silver-platinum-carbon-impregnated central venous catheters. Crit Care Med. 2006;34:668–75.CrossRefPubMed Fraenkel D, Rickard C, Thomas P, Faoagali J, George N, Ware RA. Prospective, randomized trial of rifampicin-minocycline-coated and silver-platinum-carbon-impregnated central venous catheters. Crit Care Med. 2006;34:668–75.CrossRefPubMed
23.
go back to reference Darouiche RO, Berger DH, Khardori N, Robertson CS, Wall MJ, Metzler MH, et al. Comparison of antimicrobial impregnation with tunneling of long-term central venous catheters - a randomized controlled trial. Ann Surg. 2005;242:193–200.CrossRefPubMedPubMedCentral Darouiche RO, Berger DH, Khardori N, Robertson CS, Wall MJ, Metzler MH, et al. Comparison of antimicrobial impregnation with tunneling of long-term central venous catheters - a randomized controlled trial. Ann Surg. 2005;242:193–200.CrossRefPubMedPubMedCentral
24.
go back to reference Leon C, Ruiz-Santana S, Rello J, de la Torre MV, Valles J, Alvarez-Lerma F, et al. Benefits of minocycline and rifampin-impregnated central venous catheters. A prospective, randomized, double-blind, controlled, multicenter trial. Intensive Care Med. 2004;30:1891–9.CrossRefPubMed Leon C, Ruiz-Santana S, Rello J, de la Torre MV, Valles J, Alvarez-Lerma F, et al. Benefits of minocycline and rifampin-impregnated central venous catheters. A prospective, randomized, double-blind, controlled, multicenter trial. Intensive Care Med. 2004;30:1891–9.CrossRefPubMed
25.
go back to reference Pierce CG, Uppuluri P, Tristan AR, Wormley FL Jr, Mowat E, Ramage G, et al. A simple and reproducible 96-well plate-based method for the formation of fungal biofilms and its application to antifungal susceptibility testing. Nat Protoc. 2008;3:1494–500.CrossRefPubMedPubMedCentral Pierce CG, Uppuluri P, Tristan AR, Wormley FL Jr, Mowat E, Ramage G, et al. A simple and reproducible 96-well plate-based method for the formation of fungal biofilms and its application to antifungal susceptibility testing. Nat Protoc. 2008;3:1494–500.CrossRefPubMedPubMedCentral
26.
go back to reference Mermel LA. Prevention of intravascular catheter-related infections. Ann Intern Med. 2000;132:391–402.CrossRefPubMed Mermel LA. Prevention of intravascular catheter-related infections. Ann Intern Med. 2000;132:391–402.CrossRefPubMed
27.
go back to reference Veenstra DL, Saint S, Saha S, Lumley T, Sullivan SD. Efficacy of antiseptic-impregnated central venous catheters in preventing catheter-related bloodstream infection - a meta-analysis. Jama-J Am Med Assoc. 1999;281:261–7.CrossRef Veenstra DL, Saint S, Saha S, Lumley T, Sullivan SD. Efficacy of antiseptic-impregnated central venous catheters in preventing catheter-related bloodstream infection - a meta-analysis. Jama-J Am Med Assoc. 1999;281:261–7.CrossRef
28.
go back to reference Brun-Buisson C, Doyon F, Sollet JP, Cochard JF, Cohen Y, Nitenberg G. Prevention of intravascular catheter-related infection with newer chlorhexidine-silver sulfadiazine-coated catheters: a randomized controlled trial. Intens Care Med. 2004;30:837–43.CrossRef Brun-Buisson C, Doyon F, Sollet JP, Cochard JF, Cohen Y, Nitenberg G. Prevention of intravascular catheter-related infection with newer chlorhexidine-silver sulfadiazine-coated catheters: a randomized controlled trial. Intens Care Med. 2004;30:837–43.CrossRef
29.
go back to reference Ostendorf T, Meinhold A, Harter C, Salwender H, Egerer G, Geiss HK, et al. Chlorhexidine and silver-sulfadiazine coated central venous catheters in haematological patients - a double-blind, randomised, prospective, controlled trial. Support Care Cancer. 2005;13:993–1000.CrossRefPubMed Ostendorf T, Meinhold A, Harter C, Salwender H, Egerer G, Geiss HK, et al. Chlorhexidine and silver-sulfadiazine coated central venous catheters in haematological patients - a double-blind, randomised, prospective, controlled trial. Support Care Cancer. 2005;13:993–1000.CrossRefPubMed
30.
go back to reference Rupp ME, Lisco SJ, Lipsett PA, Ped TM, Keating K, Civetta JM, et al. Effect of a second-generation venous catheter impregnated with chlorhexidine and silver sulfadiazine on central catheter - related infections - a randomized, controlled trial. Ann Intern Med. 2005;143:570–80.CrossRefPubMed Rupp ME, Lisco SJ, Lipsett PA, Ped TM, Keating K, Civetta JM, et al. Effect of a second-generation venous catheter impregnated with chlorhexidine and silver sulfadiazine on central catheter - related infections - a randomized, controlled trial. Ann Intern Med. 2005;143:570–80.CrossRefPubMed
31.
go back to reference Oda T, Hamasaki J, Kanda N, Mikami K. Anaphylactic shock induced by an antiseptic-coated central nervous catheter. Anesthesiology. 1997;87:1242–4.CrossRefPubMed Oda T, Hamasaki J, Kanda N, Mikami K. Anaphylactic shock induced by an antiseptic-coated central nervous catheter. Anesthesiology. 1997;87:1242–4.CrossRefPubMed
32.
go back to reference Stephens R, Mythen M, Kallis P, Davies DWL, Egner W, Rickards A. Two episodes of life-threatening anaphylaxis in the same patient to a chlorhexidine-sulphadiazine-coated central venous catheter. Brit J Anaesth. 2001;87:306–8.CrossRefPubMed Stephens R, Mythen M, Kallis P, Davies DWL, Egner W, Rickards A. Two episodes of life-threatening anaphylaxis in the same patient to a chlorhexidine-sulphadiazine-coated central venous catheter. Brit J Anaesth. 2001;87:306–8.CrossRefPubMed
33.
go back to reference Terazawa E, Shimonaka H, Nagase K, Masue T, Dohi S. Severe anaphylactic reaction due to a chlorhexidine-impregnated central venous catheter. Anesthesiology. 1998;89:1296–8.CrossRefPubMed Terazawa E, Shimonaka H, Nagase K, Masue T, Dohi S. Severe anaphylactic reaction due to a chlorhexidine-impregnated central venous catheter. Anesthesiology. 1998;89:1296–8.CrossRefPubMed
34.
go back to reference Maki DG, Stolz SM, Wheeler S, Mermel LA. Prevention of central venous catheter-related bloodstream infection by use of an antiseptic-impregnated catheter - a randomized, controlled trial. Ann Intern Med. 1997;127:257–66.CrossRefPubMed Maki DG, Stolz SM, Wheeler S, Mermel LA. Prevention of central venous catheter-related bloodstream infection by use of an antiseptic-impregnated catheter - a randomized, controlled trial. Ann Intern Med. 1997;127:257–66.CrossRefPubMed
35.
go back to reference Darouiche RO, Raad II, Heard SO, Thornby JI, Wenker OC, Gabrielli A, et al. A comparison of two antimicrobial-impregnated central venous catheters. New Engl J Med. 1999;340:1–8.CrossRefPubMed Darouiche RO, Raad II, Heard SO, Thornby JI, Wenker OC, Gabrielli A, et al. A comparison of two antimicrobial-impregnated central venous catheters. New Engl J Med. 1999;340:1–8.CrossRefPubMed
36.
go back to reference Raad I, Darouiche R, Hachem R, Mansouri M, Bodey GP. The broad-spectrum activity and efficacy of catheters coated with minocycline and rifampin. J Infect Dis. 1996;173:418–24.CrossRefPubMed Raad I, Darouiche R, Hachem R, Mansouri M, Bodey GP. The broad-spectrum activity and efficacy of catheters coated with minocycline and rifampin. J Infect Dis. 1996;173:418–24.CrossRefPubMed
37.
go back to reference Gaonkar TA, Modak SM. Comparison of microbial adherence to antiseptic and antibiotic central venous catheters using a novel agar subcutaneous infection model. J Antimicrob Chemother. 2003;52:389–96.CrossRefPubMed Gaonkar TA, Modak SM. Comparison of microbial adherence to antiseptic and antibiotic central venous catheters using a novel agar subcutaneous infection model. J Antimicrob Chemother. 2003;52:389–96.CrossRefPubMed
38.
go back to reference Falagas ME, Fragoulis K, Bliziotis IA, Chatzinikolaou I. Rifampicin-impregnated central venous catheters: a meta-analysis of randomized controlled trials. J Antimicrob Chemoth. 2007;59:359–69.CrossRef Falagas ME, Fragoulis K, Bliziotis IA, Chatzinikolaou I. Rifampicin-impregnated central venous catheters: a meta-analysis of randomized controlled trials. J Antimicrob Chemoth. 2007;59:359–69.CrossRef
39.
go back to reference Tambe SM, Sampath L, Modak SM. In vitro evaluation of the risk of developing bacterial resistance to antiseptics and antibiotics used in medical devices. J Antimicrob Chemoth. 2001;47:589–98.CrossRef Tambe SM, Sampath L, Modak SM. In vitro evaluation of the risk of developing bacterial resistance to antiseptics and antibiotics used in medical devices. J Antimicrob Chemoth. 2001;47:589–98.CrossRef
40.
go back to reference Sampath LA, Tambe SM, Modak SM. In vitro and in vivo efficacy of catheters impregnated with antiseptics or antibiotics: evaluation of the risk of bacterial resistance to the antimicrobials in the catheters. Infect Cont Hosp Ep. 2001;22:640–6.CrossRef Sampath LA, Tambe SM, Modak SM. In vitro and in vivo efficacy of catheters impregnated with antiseptics or antibiotics: evaluation of the risk of bacterial resistance to the antimicrobials in the catheters. Infect Cont Hosp Ep. 2001;22:640–6.CrossRef
41.
go back to reference Peeters E, Nelis HJ, Coenye T. Comparison of multiple methods for quantification of microbial biofilms grown in microtiter plates. J Microbiol Methods. 2008;72:157–65.CrossRefPubMed Peeters E, Nelis HJ, Coenye T. Comparison of multiple methods for quantification of microbial biofilms grown in microtiter plates. J Microbiol Methods. 2008;72:157–65.CrossRefPubMed
42.
go back to reference Chandra J, Mukherjee PK, Ghannoum MA. Vitro growth and analysis of Candida biofilms. Nat Protoc. 2008;3:1909–24.CrossRefPubMed Chandra J, Mukherjee PK, Ghannoum MA. Vitro growth and analysis of Candida biofilms. Nat Protoc. 2008;3:1909–24.CrossRefPubMed
43.
go back to reference Hanna H, Bahna P, Reitzel R, Dvorak T, Chaiban G, Hachem R, et al. Comparative in vitro efficacies and antimicrobial durabilities of novel antimicrobial central venous catheters. Antimicrob Agents Ch. 2006;50:3283–8.CrossRef Hanna H, Bahna P, Reitzel R, Dvorak T, Chaiban G, Hachem R, et al. Comparative in vitro efficacies and antimicrobial durabilities of novel antimicrobial central venous catheters. Antimicrob Agents Ch. 2006;50:3283–8.CrossRef
44.
go back to reference Novikov A, Lam MY, Mermel LA, Casey AL, Elliott TS, Nightingale P. Impact of catheter antimicrobial coating on species-specific risk of catheter colonization: a meta-analysis. Antimicrob Resist In. 2012;1:40.CrossRef Novikov A, Lam MY, Mermel LA, Casey AL, Elliott TS, Nightingale P. Impact of catheter antimicrobial coating on species-specific risk of catheter colonization: a meta-analysis. Antimicrob Resist In. 2012;1:40.CrossRef
45.
go back to reference Raad I, Mohamed JA, Reitzel RA, Jiang Y, Raad S, Al Shuaibi M, et al. Improved antibiotic-impregnated catheters with extended-spectrum activity against resistant bacteria and fungi. Antimicrob Agents Chemother. 2012;56:935–41.CrossRefPubMedPubMedCentral Raad I, Mohamed JA, Reitzel RA, Jiang Y, Raad S, Al Shuaibi M, et al. Improved antibiotic-impregnated catheters with extended-spectrum activity against resistant bacteria and fungi. Antimicrob Agents Chemother. 2012;56:935–41.CrossRefPubMedPubMedCentral
46.
go back to reference Yucel N, Lefering R, Maegele M, Max M, Rossaint R, Koch A, et al. Reduced colonization and infection with miconazole-rifampicin modified central venous catheters: a randomized controlled clinical trial. J Antimicrob Chemoth. 2004;54:1109–15.CrossRef Yucel N, Lefering R, Maegele M, Max M, Rossaint R, Koch A, et al. Reduced colonization and infection with miconazole-rifampicin modified central venous catheters: a randomized controlled clinical trial. J Antimicrob Chemoth. 2004;54:1109–15.CrossRef
47.
go back to reference Lorente L, Lecuona M, Ramos MJ, Jimenez A, Mora ML, Sierra A. The use of rifampicin-miconazole-impregnated catheters reduces the incidence of femoral and jugular catheter-related bacteremia. Clin Infect Dis. 2008;47:1171–5.CrossRefPubMed Lorente L, Lecuona M, Ramos MJ, Jimenez A, Mora ML, Sierra A. The use of rifampicin-miconazole-impregnated catheters reduces the incidence of femoral and jugular catheter-related bacteremia. Clin Infect Dis. 2008;47:1171–5.CrossRefPubMed
Metadata
Title
Anti-Candida activity of antimicrobial impregnated central venous catheters
Authors
L. Cobrado
A. Silva-Dias
M. M. Azevedo
A. Rodrigues
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Antimicrobial Resistance & Infection Control / Issue 1/2017
Electronic ISSN: 2047-2994
DOI
https://doi.org/10.1186/s13756-017-0269-x

Other articles of this Issue 1/2017

Antimicrobial Resistance & Infection Control 1/2017 Go to the issue