Skip to main content
Top
Published in: Antimicrobial Resistance & Infection Control 1/2017

Open Access 01-12-2017 | Case report

Pseudomonas Endocarditis with an unstable phenotype: the challenges of isolate characterization and Carbapenem stewardship with a partial review of the literature

Authors: Emil Lesho, Erik Snesrud, Yoon Kwak, Ana Ong, Rosslyn Maybank, Maryrose Laguio-Vila, Ann R. Falsey, Mary Hinkle

Published in: Antimicrobial Resistance & Infection Control | Issue 1/2017

Login to get access

Abstract

Background

Pseudomonas endocarditis is exceedingly rare, especially in patients without predisposing risks. We present such a case that included unexpected switches in antibacterial resistance profiles in two Pseudomonas aeruginosa (PA) strains with the same whole-genome sequence. The case also involved diagnostic and treatment challenges, such as issues with automated testing platforms, choosing the optimal aminoglycoside, minimizing unnecessary carbapenem exposure, and the need for faster, more informative laboratory tests.

Case presentation

On hospital day one (HD-1) a cefepime and piperacillin-tazobactam (FEP-TZP)-susceptible P. aeruginosa was isolated from the bloodstream of a 62-year-old man admitted for evaluation of possible endocarditis and treated with gentamicin and cefepime. On HD-2, his antibiotic regimen was changed to tobramycin and cefepime. On HD-11, he underwent aortic valve replacement, and P. aeruginosa was isolated from the explanted valve. Unexpectedly, it was FEP-TZP-resistant, so cefepime was switched to meropenem. On HD-14, in preparation for whole-genome sequencing (WGS), valve and blood isolates were removed from cryo-storage, re-cultured, and simultaneously tested with the same platforms, reagents, and inoculations previously used. Curiously, the valve isolate was now FEP-TZP-susceptible. WGS revealed that both isolates were phylogenetically identical, differing by a single nucleotide in a chemotaxis-encoding gene. They also contained the same resistance genes (bla ADC35, aph(3′)-II, bla OXA-50, catB7, fosA).

Conclusion

Repeated testing on alternate platforms and WGS did not definitively determine the resistance mechanism(s), which in this case, is most likely unstable de-repression of a chromosomal AmpC β-lactamase, porin alterations, or efflux upregulation, with reversion to baseline (non-efflux) transcription. Although sub-culture on specialized media to select for less fit (more resistant) colonies, followed by transcriptome analysis, and multiple sequence alignment, might have revealed the mechanism and better informed the optimal choice of β-lactam, such approaches are neither rapid, nor feasible for hospital laboratories. In this era of escalating drug resistance and dwindling antibiotics, use of the most potent anti-pseudomonals must be balanced with stewardship. Clinicians need access to validated genomic correlates of resistance, and faster, more informative diagnostics. Therefore, we placed these isolates and their sequences in the public domain for inclusion in the Pseudomonas pan-genome and database projects for further countermeasure development.
Literature
1.
go back to reference Morpeth S, Murdoch D, Cabell C, Karchmer AW, Pappas P, Levine D, et al. Non-HACEK gram-negative bacillus endocarditis. Ann Intern Med. 2007;147:829–35.CrossRefPubMed Morpeth S, Murdoch D, Cabell C, Karchmer AW, Pappas P, Levine D, et al. Non-HACEK gram-negative bacillus endocarditis. Ann Intern Med. 2007;147:829–35.CrossRefPubMed
2.
go back to reference Reyes MP, Ali A, Mendes RE, Biedenbach DJ. Resurgence of Pseudomonas endocarditis in Detroit, 2006-2008. Medicine (Baltimore). 2009;88:294–301.CrossRef Reyes MP, Ali A, Mendes RE, Biedenbach DJ. Resurgence of Pseudomonas endocarditis in Detroit, 2006-2008. Medicine (Baltimore). 2009;88:294–301.CrossRef
3.
go back to reference Baddour LM, Wilson WR, Bayer AS, Fowler VG Jr, Tleyjeh IM, Rybak MJ, et al. Infective Endocarditis in adults: diagnosis, antimicrobial therapy, and Management of Complications: a scientific statement for healthcare professionals from the American Heart Association. Circulation. 2015;132:1435–86.CrossRefPubMed Baddour LM, Wilson WR, Bayer AS, Fowler VG Jr, Tleyjeh IM, Rybak MJ, et al. Infective Endocarditis in adults: diagnosis, antimicrobial therapy, and Management of Complications: a scientific statement for healthcare professionals from the American Heart Association. Circulation. 2015;132:1435–86.CrossRefPubMed
4.
go back to reference Li G, Shen M, Le S, Tan Y, Li M, Zhao X, et al. Genomic analyses of multidrug resistant Pseudomonas aeruginosa PA1 resequenced by single-molecule real-time sequencing. Biosci Rep. 2016;36:e00418.CrossRefPubMedPubMedCentral Li G, Shen M, Le S, Tan Y, Li M, Zhao X, et al. Genomic analyses of multidrug resistant Pseudomonas aeruginosa PA1 resequenced by single-molecule real-time sequencing. Biosci Rep. 2016;36:e00418.CrossRefPubMedPubMedCentral
5.
go back to reference Benson DA, Clark K. Karsch-Mizachi, Lipman DJ, Ostell J. Sayers EW GenBank Nucleic Acids Res. 2015;43:D30–5.CrossRefPubMed Benson DA, Clark K. Karsch-Mizachi, Lipman DJ, Ostell J. Sayers EW GenBank Nucleic Acids Res. 2015;43:D30–5.CrossRefPubMed
6.
go back to reference Winsor GL, Griffiths EJ, Lo R, Dhillon BK, Shay JA, Brinkman FS. Enhanced annotations and features for comparing thousands of Pseudomonas genomes in the Pseudomonas genome database. Nucleic Acids Res. 2016;44:D646–53.CrossRefPubMed Winsor GL, Griffiths EJ, Lo R, Dhillon BK, Shay JA, Brinkman FS. Enhanced annotations and features for comparing thousands of Pseudomonas genomes in the Pseudomonas genome database. Nucleic Acids Res. 2016;44:D646–53.CrossRefPubMed
7.
go back to reference Lu S, Le S, Li G, Shen M, Tan Y, Zhao X, et al. Complete genome sequence of Pseudomonas aeruginosa PA1, isolated from a patient with a respiratory tract infection. Genome Announce. 2015;3:e01453–15. Lu S, Le S, Li G, Shen M, Tan Y, Zhao X, et al. Complete genome sequence of Pseudomonas aeruginosa PA1, isolated from a patient with a respiratory tract infection. Genome Announce. 2015;3:e01453–15.
8.
go back to reference Ellington MJ, Ekelund O, Aarestrup FM, Canton R, Doumith M, Giske C, et al. The role of whole genome sequencing in antimicrobial susceptibility testing of bacteria: report from the EUCAST subcommittee. Clinical Microbiol Infect. 2017;23:2–22.CrossRef Ellington MJ, Ekelund O, Aarestrup FM, Canton R, Doumith M, Giske C, et al. The role of whole genome sequencing in antimicrobial susceptibility testing of bacteria: report from the EUCAST subcommittee. Clinical Microbiol Infect. 2017;23:2–22.CrossRef
9.
go back to reference McGann P, Courvalin P, Snesrud E, Clifford RJ, Yoon EJ, Onmus-Leone F, et al. Amplification of aminoglycoside resistance gene aphA1 in Acinetobacter baumannii results in tobramycin therapy failure. MBio. 2014;5:e00915.CrossRefPubMedPubMedCentral McGann P, Courvalin P, Snesrud E, Clifford RJ, Yoon EJ, Onmus-Leone F, et al. Amplification of aminoglycoside resistance gene aphA1 in Acinetobacter baumannii results in tobramycin therapy failure. MBio. 2014;5:e00915.CrossRefPubMedPubMedCentral
10.
go back to reference McGann P, Snesrud E, Ong A, Appalla L, Koren M, Kwak Y, et al. War wound treatment complications due to transfer of an IncN plasmid harboring blaOXA-181 from Morganella morganii to CTX-M-27-producing ST131 Escherichia coli. Antimicrob Agents Chemother. 2015;59:3556–62.CrossRefPubMedPubMedCentral McGann P, Snesrud E, Ong A, Appalla L, Koren M, Kwak Y, et al. War wound treatment complications due to transfer of an IncN plasmid harboring blaOXA-181 from Morganella morganii to CTX-M-27-producing ST131 Escherichia coli. Antimicrob Agents Chemother. 2015;59:3556–62.CrossRefPubMedPubMedCentral
11.
go back to reference Luyt C-E, Aubry A, Lu Q, Micaelo M, Bréchot N, Brossier F, et al. Imipenem, meropenem or doripenem to treat patients with Pseudomonas aeruginosa ventilator-associated pneumonia. Antimicrob Agents Chemother. 2014;58:1372–80.CrossRefPubMedPubMedCentral Luyt C-E, Aubry A, Lu Q, Micaelo M, Bréchot N, Brossier F, et al. Imipenem, meropenem or doripenem to treat patients with Pseudomonas aeruginosa ventilator-associated pneumonia. Antimicrob Agents Chemother. 2014;58:1372–80.CrossRefPubMedPubMedCentral
12.
go back to reference Tsuda M, Iino T. Transductional analysis of the flagellar genes in Pseudomonas aeruginosa. J Bacteriol. 1983;153:1018–26.PubMedPubMedCentral Tsuda M, Iino T. Transductional analysis of the flagellar genes in Pseudomonas aeruginosa. J Bacteriol. 1983;153:1018–26.PubMedPubMedCentral
13.
go back to reference Kato J, Nakamura T, Kuroda A, Ohtake H. Cloning and characterization of chemotaxis genes in Pseudomonas aeruginosa. Biosci Biotechnol Biochem. 1999;63:155–61.CrossRefPubMed Kato J, Nakamura T, Kuroda A, Ohtake H. Cloning and characterization of chemotaxis genes in Pseudomonas aeruginosa. Biosci Biotechnol Biochem. 1999;63:155–61.CrossRefPubMed
14.
go back to reference Pasteran F, Faccone D, Gomez S, DeBunder S, Spinelli F, Rapoport M, et al. Detection of an international multiresistant clone belonging to sequence type 654 involved in the dissemination of KPC-producing Pseudomonas aeruginosa in Argentina. J Antimicrob Chemother. 2012;67:1291–3.CrossRefPubMed Pasteran F, Faccone D, Gomez S, DeBunder S, Spinelli F, Rapoport M, et al. Detection of an international multiresistant clone belonging to sequence type 654 involved in the dissemination of KPC-producing Pseudomonas aeruginosa in Argentina. J Antimicrob Chemother. 2012;67:1291–3.CrossRefPubMed
15.
go back to reference Touati M, Diene SM, Dekhil M, Djahoudi A, Racherache A, Rolain JM. Dissemination of a class I integron carrying VIM-2 carbapenemase in Pseudomonas aeruginosa clinical isolates from a hospital intensive care unit in Annaba. Algeria Antimicrob Agents Chemother. 2013;57:2426–7.CrossRefPubMed Touati M, Diene SM, Dekhil M, Djahoudi A, Racherache A, Rolain JM. Dissemination of a class I integron carrying VIM-2 carbapenemase in Pseudomonas aeruginosa clinical isolates from a hospital intensive care unit in Annaba. Algeria Antimicrob Agents Chemother. 2013;57:2426–7.CrossRefPubMed
16.
go back to reference Klockgether J, Munder A, Neugebauer J, Davenport CF, Stanke F, Larbig KD, et al. Genome diversity of Pseudomonas aeruginosa PAO1 laboratory strains. J Bacteriol. 2010;192:1113–21.CrossRefPubMed Klockgether J, Munder A, Neugebauer J, Davenport CF, Stanke F, Larbig KD, et al. Genome diversity of Pseudomonas aeruginosa PAO1 laboratory strains. J Bacteriol. 2010;192:1113–21.CrossRefPubMed
17.
go back to reference Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P, Hickey MJ, et al. Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature. 2000;406:959–64.CrossRefPubMed Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P, Hickey MJ, et al. Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature. 2000;406:959–64.CrossRefPubMed
18.
go back to reference Fyfe JA, Govan JR. Alginate synthesis in mucoid Pseudomonas aeruginosa: a chromosomal locus involved in control. J Gen Microbiol. 1980;119:443–50.PubMed Fyfe JA, Govan JR. Alginate synthesis in mucoid Pseudomonas aeruginosa: a chromosomal locus involved in control. J Gen Microbiol. 1980;119:443–50.PubMed
19.
go back to reference Yin Y, Withers TR, Govan JR, Johnson SL, Yu HD. Draft genome sequence of a stable mucoid strain of Pseudomonas aeruginosa PAO581 with a mucA25 mutation. Genome Announc. 2013;1:e00834–13.PubMedPubMedCentral Yin Y, Withers TR, Govan JR, Johnson SL, Yu HD. Draft genome sequence of a stable mucoid strain of Pseudomonas aeruginosa PAO581 with a mucA25 mutation. Genome Announc. 2013;1:e00834–13.PubMedPubMedCentral
20.
go back to reference McCallum SJ, Gallagher MJ, Corkill JE, Hart CA, Ledson MJ, Walshaw MJ. Spread of an epidemic Pseudomonas aeruginosa strain from a patient with cystic fibrosis (CF) to non-CF relatives. Thorax. 2002;57:559–60.CrossRefPubMedPubMedCentral McCallum SJ, Gallagher MJ, Corkill JE, Hart CA, Ledson MJ, Walshaw MJ. Spread of an epidemic Pseudomonas aeruginosa strain from a patient with cystic fibrosis (CF) to non-CF relatives. Thorax. 2002;57:559–60.CrossRefPubMedPubMedCentral
21.
go back to reference Carter ME, Fothergill JL, Walshaw MJ, Rajakumar K, Kadioglu A, Winstanley C. A subtype of a Pseudomonas aeruginosa cystic fibrosis epidemic strain exhibits enhanced virulence in a murine model of acute respiratory infection. J Infect Dis. 2010;202:935–42.CrossRefPubMed Carter ME, Fothergill JL, Walshaw MJ, Rajakumar K, Kadioglu A, Winstanley C. A subtype of a Pseudomonas aeruginosa cystic fibrosis epidemic strain exhibits enhanced virulence in a murine model of acute respiratory infection. J Infect Dis. 2010;202:935–42.CrossRefPubMed
22.
go back to reference Al-Aloul M, Crawley J, Winstanley C, Hart CA, Ledson MJ, Walshaw MJ. Increased morbidity associated with chronic infection by an epidemic Pseudomonas aeruginosa strain in CF patients. Thorax. 2004;59:334–6.CrossRefPubMedPubMedCentral Al-Aloul M, Crawley J, Winstanley C, Hart CA, Ledson MJ, Walshaw MJ. Increased morbidity associated with chronic infection by an epidemic Pseudomonas aeruginosa strain in CF patients. Thorax. 2004;59:334–6.CrossRefPubMedPubMedCentral
23.
go back to reference Wnorowska U, Niemirowicz K, Myint M, Diamond SL, Wroblewska M, Savage PB. Bactericidal activities of cathelicidin LL-37 and select cationic lipids against the hypervirulent Pseudomonas aeruginosa strain LESB58. Antimicrob Agents Chemother. 2015;59:3808–15.CrossRefPubMedPubMedCentral Wnorowska U, Niemirowicz K, Myint M, Diamond SL, Wroblewska M, Savage PB. Bactericidal activities of cathelicidin LL-37 and select cationic lipids against the hypervirulent Pseudomonas aeruginosa strain LESB58. Antimicrob Agents Chemother. 2015;59:3808–15.CrossRefPubMedPubMedCentral
24.
go back to reference Fothergill JL, Walshaw MJ, Winstanley C. Transmissible strains of Pseudomonas aeruginosa in cystic fibrosis lung infections. Eur Respir J. 2012;40:227–38.CrossRefPubMed Fothergill JL, Walshaw MJ, Winstanley C. Transmissible strains of Pseudomonas aeruginosa in cystic fibrosis lung infections. Eur Respir J. 2012;40:227–38.CrossRefPubMed
25.
go back to reference Drusano GL, Bonomo RA, Bahniuk N, Bulitta JB, Vanscoy B, Defiglio H, et al. Resistance emergence mechanism and mechanism of resistance suppression by tobramycin for cefepime for Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2012;56:231–42.CrossRefPubMedPubMedCentral Drusano GL, Bonomo RA, Bahniuk N, Bulitta JB, Vanscoy B, Defiglio H, et al. Resistance emergence mechanism and mechanism of resistance suppression by tobramycin for cefepime for Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2012;56:231–42.CrossRefPubMedPubMedCentral
26.
go back to reference Lister PD, Wolter DJ, Hanson ND. Antibacterial-resistant Pseudomonas Aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin Microbiol Rev. 2009;22:582–610.CrossRefPubMedPubMedCentral Lister PD, Wolter DJ, Hanson ND. Antibacterial-resistant Pseudomonas Aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin Microbiol Rev. 2009;22:582–610.CrossRefPubMedPubMedCentral
27.
go back to reference Louie A, Liu W, VanGuilder M, Neely MN, Schumitzky A, Jelliffe R, et al. Combination treatment with meropenem plus levofloxacin is synergistic against Pseudomonas aeruginosa infection in a murine model of pneumonia. J Infect Dis. 2015;211:1326–33.CrossRefPubMed Louie A, Liu W, VanGuilder M, Neely MN, Schumitzky A, Jelliffe R, et al. Combination treatment with meropenem plus levofloxacin is synergistic against Pseudomonas aeruginosa infection in a murine model of pneumonia. J Infect Dis. 2015;211:1326–33.CrossRefPubMed
28.
go back to reference Camargo JF, Simkins J, Beduschi T, Tekin A, Aragon L, Pérez-Cardona A, et al. Successful treatment of carbapenemase-producing pandrug-resistant Klebsiella pneumoniae bacteremia. Antimicrob Agents Chemother. 2015;59:5903–8.CrossRefPubMedPubMedCentral Camargo JF, Simkins J, Beduschi T, Tekin A, Aragon L, Pérez-Cardona A, et al. Successful treatment of carbapenemase-producing pandrug-resistant Klebsiella pneumoniae bacteremia. Antimicrob Agents Chemother. 2015;59:5903–8.CrossRefPubMedPubMedCentral
29.
go back to reference Ang JY, Abdel-Haq N, Zhu F, Thabit AK, Nicolau DP, Satlin MJ, et al. Multidrug-resistant Pseudomonas aeruginosa infection in a child with cystic fibrosis. Antimicrob Agents Chemother. 2016;60:5627–30.CrossRefPubMedPubMedCentral Ang JY, Abdel-Haq N, Zhu F, Thabit AK, Nicolau DP, Satlin MJ, et al. Multidrug-resistant Pseudomonas aeruginosa infection in a child with cystic fibrosis. Antimicrob Agents Chemother. 2016;60:5627–30.CrossRefPubMedPubMedCentral
30.
go back to reference Hong MC, Hsu DI, Bounthavong M. Ceftolozane/tazobactam: a novel antipseudomonal cephalosporin and beta-lactamase-inhibitor combination. Infect Drug Resist. 2013;6:215–23.PubMedPubMedCentral Hong MC, Hsu DI, Bounthavong M. Ceftolozane/tazobactam: a novel antipseudomonal cephalosporin and beta-lactamase-inhibitor combination. Infect Drug Resist. 2013;6:215–23.PubMedPubMedCentral
31.
go back to reference Farrell DJ, Flamm RD, Sader HS, Jones RN. Antimonial activity of ceftolozane-tazobactam tested against Enterobacteriaceae and Pseudomonas aeruginosa with various resistance patterns isolated in U.S. hospitals (2011-2012). Antimicrob Agents Chemother. 2013;57:6305–10.CrossRefPubMedPubMedCentral Farrell DJ, Flamm RD, Sader HS, Jones RN. Antimonial activity of ceftolozane-tazobactam tested against Enterobacteriaceae and Pseudomonas aeruginosa with various resistance patterns isolated in U.S. hospitals (2011-2012). Antimicrob Agents Chemother. 2013;57:6305–10.CrossRefPubMedPubMedCentral
32.
go back to reference Edimiani A. Cefepime: a reappraisal in an era of increasing antimicrobial resistance. Expert Rev Anti-Infect Ther. 2008;6:805–24.CrossRef Edimiani A. Cefepime: a reappraisal in an era of increasing antimicrobial resistance. Expert Rev Anti-Infect Ther. 2008;6:805–24.CrossRef
33.
go back to reference Rodríguez-Martínez JM, Poirel L, Nordmann P. Extended-spectrum cephalosporinases in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2009;53:1766–71.CrossRefPubMedPubMedCentral Rodríguez-Martínez JM, Poirel L, Nordmann P. Extended-spectrum cephalosporinases in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2009;53:1766–71.CrossRefPubMedPubMedCentral
34.
go back to reference Aubert D, Poirel L, Chevalier J, Leotard S, Pages JM, Nordmann P. Oxacillinase-mediated resistance to cefepime and susceptibility to ceftazidime in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2001;45:1615–20.CrossRefPubMedPubMedCentral Aubert D, Poirel L, Chevalier J, Leotard S, Pages JM, Nordmann P. Oxacillinase-mediated resistance to cefepime and susceptibility to ceftazidime in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2001;45:1615–20.CrossRefPubMedPubMedCentral
35.
go back to reference Hocquet D, Nordmann P, El Garch F, Gabanne L, Plesiat P. Involvement of the MexXY-OprM efflux system in emergence of cefepime resistance in clinical strains of Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2006;50:1347–51.CrossRefPubMedPubMedCentral Hocquet D, Nordmann P, El Garch F, Gabanne L, Plesiat P. Involvement of the MexXY-OprM efflux system in emergence of cefepime resistance in clinical strains of Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2006;50:1347–51.CrossRefPubMedPubMedCentral
36.
go back to reference Rizek C, Fu L, Dos Santos LC, Leite G, Ramos J, Rossi F, et al. Characterization of carbapenem-resistant Pseudomonas aeruginosa clinical isolates, carrying multiple genes coding for this antibiotic resistance. Ann Clin Microbiol Antimicrob. 2014;13:43.CrossRefPubMedPubMedCentral Rizek C, Fu L, Dos Santos LC, Leite G, Ramos J, Rossi F, et al. Characterization of carbapenem-resistant Pseudomonas aeruginosa clinical isolates, carrying multiple genes coding for this antibiotic resistance. Ann Clin Microbiol Antimicrob. 2014;13:43.CrossRefPubMedPubMedCentral
37.
go back to reference Sader HS, Fritsche TR, Jones RN. Accuracy of three automated systems (micro scan WalkAway, VITEK, and VITEK 2) for susceptibility testing of Pseudomonas aeruginosa against five broad-spectrum beta-lactam agents. J Clin Microbiol. 2006;44:1101–4.CrossRefPubMedPubMedCentral Sader HS, Fritsche TR, Jones RN. Accuracy of three automated systems (micro scan WalkAway, VITEK, and VITEK 2) for susceptibility testing of Pseudomonas aeruginosa against five broad-spectrum beta-lactam agents. J Clin Microbiol. 2006;44:1101–4.CrossRefPubMedPubMedCentral
38.
go back to reference Tores E, Villanueva R, Bou G. Comparison of different methods of determining beta-lactam susceptibility in clinical strains of Pseudomonas aeruginosa. J Med Microbiol. 2009;58:625–9.CrossRef Tores E, Villanueva R, Bou G. Comparison of different methods of determining beta-lactam susceptibility in clinical strains of Pseudomonas aeruginosa. J Med Microbiol. 2009;58:625–9.CrossRef
39.
go back to reference Drusano GL, Louie A, MacGowan A, Hope W. Suppression of emergence of resistance in pathogenic bacteria: keeping our powder dry, part 1. Antimicrob Agents Chemother. 2015;60:1183–93.CrossRefPubMed Drusano GL, Louie A, MacGowan A, Hope W. Suppression of emergence of resistance in pathogenic bacteria: keeping our powder dry, part 1. Antimicrob Agents Chemother. 2015;60:1183–93.CrossRefPubMed
40.
go back to reference Zhou J, Dong Y, Zhao X, Lee S, Amin A, Ramaswamy S, et al. Selection of antibiotic-resistant bacterial mutants: allelic diversity among fluoroquinolone-resistant mutants. J Infect Dis. 2000;182:517–25.CrossRefPubMed Zhou J, Dong Y, Zhao X, Lee S, Amin A, Ramaswamy S, et al. Selection of antibiotic-resistant bacterial mutants: allelic diversity among fluoroquinolone-resistant mutants. J Infect Dis. 2000;182:517–25.CrossRefPubMed
41.
go back to reference Sindelar G, Zhao X, Liew A, Dong Y, Lu T, Zhou J, et al. Mutation prevention concentration as a measure of fluoroquinolone potency against mycobacteria. Antimicrob Agents Chemother. 2000;44:3337–43.CrossRefPubMedPubMedCentral Sindelar G, Zhao X, Liew A, Dong Y, Lu T, Zhou J, et al. Mutation prevention concentration as a measure of fluoroquinolone potency against mycobacteria. Antimicrob Agents Chemother. 2000;44:3337–43.CrossRefPubMedPubMedCentral
42.
go back to reference Lesho E. How next generation sequencing might not transform infectious disease practice. Clin Infect Dis. 2016;62:1052–3.CrossRefPubMed Lesho E. How next generation sequencing might not transform infectious disease practice. Clin Infect Dis. 2016;62:1052–3.CrossRefPubMed
43.
go back to reference Kahlmeter G, Brown D. Are breakpoints for phenotypic susceptibility testing no longer needed? Clinical Microbiol Infect. 2017;23:1.CrossRef Kahlmeter G, Brown D. Are breakpoints for phenotypic susceptibility testing no longer needed? Clinical Microbiol Infect. 2017;23:1.CrossRef
44.
go back to reference Pak TR, Kasarskis A. How next-generation sequencing and multiscale data analysis will transform infectious disease management. Clin Infect Dis. 2015;61:1695–702.PubMedPubMedCentral Pak TR, Kasarskis A. How next-generation sequencing and multiscale data analysis will transform infectious disease management. Clin Infect Dis. 2015;61:1695–702.PubMedPubMedCentral
45.
go back to reference Lesho E, Clifford R, Onmus-Leone F, Appalla L, Snesrud E, Kwak Y, et al. The challenges of implementing next generation sequencing across a large healthcare system, and the molecular epidemiology and antibiotic susceptibilities of carbapenemase-producing bacteria in the healthcare system of the U.S. Department of Defense. PLoS One. 2016;11:e0155770.CrossRefPubMedPubMedCentral Lesho E, Clifford R, Onmus-Leone F, Appalla L, Snesrud E, Kwak Y, et al. The challenges of implementing next generation sequencing across a large healthcare system, and the molecular epidemiology and antibiotic susceptibilities of carbapenemase-producing bacteria in the healthcare system of the U.S. Department of Defense. PLoS One. 2016;11:e0155770.CrossRefPubMedPubMedCentral
46.
go back to reference Oechslin F, Piccardi P, Mancini S, Gabard J, Moreillon P, Entenza JM, et al. Synergistic interaction between phage therapy and antibiotics clears Pseudomonas aeruginosa infection in endocarditis and reduces virulence. J Infect Dis. 2017;215:703–12.PubMed Oechslin F, Piccardi P, Mancini S, Gabard J, Moreillon P, Entenza JM, et al. Synergistic interaction between phage therapy and antibiotics clears Pseudomonas aeruginosa infection in endocarditis and reduces virulence. J Infect Dis. 2017;215:703–12.PubMed
47.
go back to reference Stratton CW. Phages, fitness, virulence, and synergy: a novel approach for the therapy of infections caused by Pseudomonas aeruginosa. J Infect Dis. 2017;215:668–70.PubMed Stratton CW. Phages, fitness, virulence, and synergy: a novel approach for the therapy of infections caused by Pseudomonas aeruginosa. J Infect Dis. 2017;215:668–70.PubMed
Metadata
Title
Pseudomonas Endocarditis with an unstable phenotype: the challenges of isolate characterization and Carbapenem stewardship with a partial review of the literature
Authors
Emil Lesho
Erik Snesrud
Yoon Kwak
Ana Ong
Rosslyn Maybank
Maryrose Laguio-Vila
Ann R. Falsey
Mary Hinkle
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Antimicrobial Resistance & Infection Control / Issue 1/2017
Electronic ISSN: 2047-2994
DOI
https://doi.org/10.1186/s13756-017-0245-5

Other articles of this Issue 1/2017

Antimicrobial Resistance & Infection Control 1/2017 Go to the issue