Skip to main content
Top
Published in: Antimicrobial Resistance & Infection Control 1/2017

Open Access 01-12-2017 | Research

Transcriptional analysis of bla NDM-1 and copy number alteration under carbapenem stress

Authors: Deepjyoti Paul, Amitabha Bhattacharjee, Dibyojyoti Bhattacharjee, Debadatta Dhar, Anand Prakash Maurya, Atanu Chakravarty

Published in: Antimicrobial Resistance & Infection Control | Issue 1/2017

Login to get access

Abstract

Background

New Delhi metallo beta-lactamase is known to compromise carbapenem therapy and leading to treatment failure. However, their response to carbapenem stress is not clearly known. Here, we have investigated the transcriptional response of bla NDM-1 and plasmid copy number alteration under carbapenem exposure.

Methods

Three bla NDM-1 harboring plasmids representing three incompatibility types (IncFIC, IncA/C and IncK) were inoculated in LB broth with and without imipenem, meropenem and ertapenem. After each 1 h total RNA was isolated, immediately reverse transcribed into cDNA and quantitative real time PCR was used for transcriptional expression of bla NDM-1. Horizontal transferability and stability of the plasmids encoding bla NDM-1 were also determined. Changes in copy number of bla NDM-1 harboring plasmids under the exposure of different carbapenems were determined by real time PCR. Clonal relatedness among the isolates was determined by pulsed field gel electrophoresis.

Results

Under carbapenem stress over an interval of time there was a sharp variation in the transcriptional expression of bla NDM-1 although it did not follow a specific pattern. All bla NDM-1 carrying plasmids were transferable by conjugation. These plasmids were highly stable and complete loss was observed between 92nd to 96th serial passages when antibiotic pressure was withdrawn. High copy number of bla NDM-1 was found for IncF type plasmids compared to the other replicon types.

Conclusion

This study suggests that the single dose of carbapenem pressure does not significantly influence the expression of bla NDM-1 and also focus on the stability of this gene as well as the change in copy number with respect to the incompatible type of plasmid harboring resistance determinant.
Appendix
Available only for authorised users
Literature
1.
go back to reference Yong D, Toleman MA, Giske CG, Cho HS, Sundman K, Lee K. Characterization of a New Metallo-β-Lactamase Gene, bla NDM-1, and a Novel Erythromycin Esterase Gene Carried on a Unique Genetic Structure in Klebsiella pneumoniae Sequence Type 14 from India. Antimicrob Agents Chemother. 2009;53:5046–54.CrossRefPubMedPubMedCentral Yong D, Toleman MA, Giske CG, Cho HS, Sundman K, Lee K. Characterization of a New Metallo-β-Lactamase Gene, bla NDM-1, and a Novel Erythromycin Esterase Gene Carried on a Unique Genetic Structure in Klebsiella pneumoniae Sequence Type 14 from India. Antimicrob Agents Chemother. 2009;53:5046–54.CrossRefPubMedPubMedCentral
2.
go back to reference Mishra S, Sen MR, Upadhyay S, Bhattacharjee A. Genetic linkage of bla NDM among nosocomial isolates of Acinetobacter baumanii from a tertiary referral hospital in northern India. Int J Antimicrob Agents. 2013;41:452–6.CrossRefPubMed Mishra S, Sen MR, Upadhyay S, Bhattacharjee A. Genetic linkage of bla NDM among nosocomial isolates of Acinetobacter baumanii from a tertiary referral hospital in northern India. Int J Antimicrob Agents. 2013;41:452–6.CrossRefPubMed
4.
go back to reference Bennett PM. Plasmid encoded antibiotic resistance: acquisition and transfer of antibiotic resistance genes in bacteria. Br J Pharmacol. 2008;153:S347–57.CrossRefPubMedPubMedCentral Bennett PM. Plasmid encoded antibiotic resistance: acquisition and transfer of antibiotic resistance genes in bacteria. Br J Pharmacol. 2008;153:S347–57.CrossRefPubMedPubMedCentral
5.
go back to reference Toleman MA, Spencer J, Jones L, Walsh TR. bla NDM-1 is a chimera likely constructed in Acinetobacter baumannii. Antimicrob Agents Chemother. 2012;56:2773–6.CrossRefPubMedPubMedCentral Toleman MA, Spencer J, Jones L, Walsh TR. bla NDM-1 is a chimera likely constructed in Acinetobacter baumannii. Antimicrob Agents Chemother. 2012;56:2773–6.CrossRefPubMedPubMedCentral
6.
go back to reference Wailan AM, Paterson DL, Kennedy K, Ingram PR, Bursle E, Sidjabat HE. Genomic characteristics of NDM-producing Enterobacteriaceae isolates in Australia and their bla NDM genetic contexts. Antimicrob Agents Chemother. 2016;60:136–41.CrossRef Wailan AM, Paterson DL, Kennedy K, Ingram PR, Bursle E, Sidjabat HE. Genomic characteristics of NDM-producing Enterobacteriaceae isolates in Australia and their bla NDM genetic contexts. Antimicrob Agents Chemother. 2016;60:136–41.CrossRef
7.
go back to reference Johnson AP, Woodford N. Global spread of antibiotic resistance: the example of New Delhi metallo-β-lactamase (NDM) mediated carbapenem resistance. J Med Microbiol. 2013;62:499–13.CrossRefPubMed Johnson AP, Woodford N. Global spread of antibiotic resistance: the example of New Delhi metallo-β-lactamase (NDM) mediated carbapenem resistance. J Med Microbiol. 2013;62:499–13.CrossRefPubMed
8.
9.
go back to reference Kumari S, Sen MR, Upadhyay S, Bhattacharjee A. Dissemination of the New Delhi metallo-β-lactamase-1 (NDM-1) among enterobacteriaceae in a tertiary referral hospital in north India. J Antimicrob Chemother. 2011. doi:10.1093/jac/dkr180.PubMed Kumari S, Sen MR, Upadhyay S, Bhattacharjee A. Dissemination of the New Delhi metallo-β-lactamase-1 (NDM-1) among enterobacteriaceae in a tertiary referral hospital in north India. J Antimicrob Chemother. 2011. doi:10.​1093/​jac/​dkr180.PubMed
10.
go back to reference Kumar M, Dutta R, Saxena S, Singhal S. Risk factor analysis in clinical isolates of ESBL and MBL (including NDM-1) producing Escherichia coli and Klebsiella species in a tertiary care hospital. J Clin Diagn Res. 2015;9:8–13. Kumar M, Dutta R, Saxena S, Singhal S. Risk factor analysis in clinical isolates of ESBL and MBL (including NDM-1) producing Escherichia coli and Klebsiella species in a tertiary care hospital. J Clin Diagn Res. 2015;9:8–13.
12.
go back to reference Ranjan A, Shaik S, Mondal A, Nandanwar N, Hussain A, Semmler T, et al. Molecular epidemiology and genome dynamics of New Delhi metallo-β-lactamase producing extraintestinal pathogenic Escherichia coli strains from India. Antimicrob Agents Chemother. 2016;11:6795–805.CrossRef Ranjan A, Shaik S, Mondal A, Nandanwar N, Hussain A, Semmler T, et al. Molecular epidemiology and genome dynamics of New Delhi metallo-β-lactamase producing extraintestinal pathogenic Escherichia coli strains from India. Antimicrob Agents Chemother. 2016;11:6795–805.CrossRef
13.
go back to reference Datta S, Roy S, Chatterjee S, Saha A, Sen B, Pal T et al. A five-year experience of carbapenem resistance in enterobacteriaceae causing neonatal septicaemia: predominance of NDM-1. PLoS ONE 10(9):e0134079. Datta S, Roy S, Chatterjee S, Saha A, Sen B, Pal T et al. A five-year experience of carbapenem resistance in enterobacteriaceae causing neonatal septicaemia: predominance of NDM-1. PLoS ONE 10(9):e0134079.
14.
go back to reference Hussein A, Ranjan A, Nandanwar N, Babbar A, Jadhav S, Ahmed N. Genotypic and phenotypic profiles of Escherichia coli isolates belonging to clinical sequence type 131 (ST131), clinical non-ST131, and fecal non-ST131 lineages from India. Antimicrob Agents Chemother. 2014;58:7240–9.CrossRef Hussein A, Ranjan A, Nandanwar N, Babbar A, Jadhav S, Ahmed N. Genotypic and phenotypic profiles of Escherichia coli isolates belonging to clinical sequence type 131 (ST131), clinical non-ST131, and fecal non-ST131 lineages from India. Antimicrob Agents Chemother. 2014;58:7240–9.CrossRef
15.
go back to reference Paul D, Maurya AP, Chanda DD, Sharma GD, Chakravarty A, Bhattacharjee A. Carriage of bla NDM-1 in Pseudomonas aeruginosa through multiple Inc type plasmids in a tertiary referral hospital of northeast India. Indian J Med Res. 2016;143:826–9.CrossRefPubMedPubMedCentral Paul D, Maurya AP, Chanda DD, Sharma GD, Chakravarty A, Bhattacharjee A. Carriage of bla NDM-1 in Pseudomonas aeruginosa through multiple Inc type plasmids in a tertiary referral hospital of northeast India. Indian J Med Res. 2016;143:826–9.CrossRefPubMedPubMedCentral
17.
go back to reference Woo PCY, Leung PKL, Leung KW, Yuen KY. Identification by 16 s ribosomal RNA gene sequencing of an Enterobacteriaceae species from a bone marrow transplant recipient. J Clin Pathol-Mol Pathol. 2000;53:211–5.CrossRef Woo PCY, Leung PKL, Leung KW, Yuen KY. Identification by 16 s ribosomal RNA gene sequencing of an Enterobacteriaceae species from a bone marrow transplant recipient. J Clin Pathol-Mol Pathol. 2000;53:211–5.CrossRef
19.
go back to reference Swick MC, Morgan-Linnell SK, Carlson KM, Zechiedrich L. Expression of multidrug efflux pump genes acrAB-tolC, mdfA and norE in Escherichia coli clinical isolates as a function of fluroquinolone and multidrug resistance. Antimicrob Agents Chemother. 2011;55:921–4.CrossRefPubMed Swick MC, Morgan-Linnell SK, Carlson KM, Zechiedrich L. Expression of multidrug efflux pump genes acrAB-tolC, mdfA and norE in Escherichia coli clinical isolates as a function of fluroquinolone and multidrug resistance. Antimicrob Agents Chemother. 2011;55:921–4.CrossRefPubMed
20.
go back to reference Versalovic J, Koeuth T, Lupski JR. Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res. 1991;19:6823–31.CrossRefPubMedPubMedCentral Versalovic J, Koeuth T, Lupski JR. Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res. 1991;19:6823–31.CrossRefPubMedPubMedCentral
21.
go back to reference Carattoli A, Bertini A, Villa L, Falbo V, Hopkins KL, Threlfall EJ. Identification of plasmids by PCR-based replicon typing. J Microbiol Methods. 2005;63:219–28.CrossRefPubMed Carattoli A, Bertini A, Villa L, Falbo V, Hopkins KL, Threlfall EJ. Identification of plasmids by PCR-based replicon typing. J Microbiol Methods. 2005;63:219–28.CrossRefPubMed
22.
go back to reference Johnson TJ, Bielak EM, Fortini D, Hansen LH, Hasman H, Debroy C, Nolan LK, Carattoli A. Expansion of the IncX plasmid family for improved identification and typing of novel plasmids in drug resistant enterobacteriaceae. Plasmid. 2012;68:43–50.CrossRefPubMed Johnson TJ, Bielak EM, Fortini D, Hansen LH, Hasman H, Debroy C, Nolan LK, Carattoli A. Expansion of the IncX plasmid family for improved identification and typing of novel plasmids in drug resistant enterobacteriaceae. Plasmid. 2012;68:43–50.CrossRefPubMed
23.
go back to reference Locke JB, Rahawi S, LaMarre J, Mankin LS, Shawa KJ. Genetic Environment and Stability of cfr in Methicillin-resistant Staphylococcus aureus CM05. Antimicrob Agents Chemother. 2012;56:332–40.CrossRefPubMedPubMedCentral Locke JB, Rahawi S, LaMarre J, Mankin LS, Shawa KJ. Genetic Environment and Stability of cfr in Methicillin-resistant Staphylococcus aureus CM05. Antimicrob Agents Chemother. 2012;56:332–40.CrossRefPubMedPubMedCentral
24.
go back to reference Institute CLS. Performance Standards for Antimicrobial Susceptibility Testing; Twenty-First Informational Supplement; M100-S21.CLSI. CLSI: Wayne, USA; 2011. Institute CLS. Performance Standards for Antimicrobial Susceptibility Testing; Twenty-First Informational Supplement; M100-S21.CLSI. CLSI: Wayne, USA; 2011.
25.
go back to reference Tato M, Coque TM, Ruiz-Garbajosa P, Pintado V, Cobo J, Sader HS, et al. Complex clonal and plasmid epidemiology in the first outbreak of enterobacteriaceae infection involving VIM-1 metallo-β-lactamase in Spain: toward endemicity? Clin Infect Dis. 2007;45:1171–8.CrossRefPubMed Tato M, Coque TM, Ruiz-Garbajosa P, Pintado V, Cobo J, Sader HS, et al. Complex clonal and plasmid epidemiology in the first outbreak of enterobacteriaceae infection involving VIM-1 metallo-β-lactamase in Spain: toward endemicity? Clin Infect Dis. 2007;45:1171–8.CrossRefPubMed
26.
go back to reference Cornaglia G, Giamarellou H, Rossolini GM. Metallo-β-lactamases: a last frontier for β-lactams. Lancet Infect Dis. 2011;11:381–93.CrossRefPubMed Cornaglia G, Giamarellou H, Rossolini GM. Metallo-β-lactamases: a last frontier for β-lactams. Lancet Infect Dis. 2011;11:381–93.CrossRefPubMed
28.
go back to reference Liu W, Zou D, Wang X, Li XL, Zhu L, Yin Z, et al. Proteomic analysis of clinical isolate of Stenotrophomonas maltophilia with bla NDM-1, bla L1 and bla L2 β-lactamase genes under imipenem treatment. J Proteome Res. 2012;11:4024–33.CrossRefPubMed Liu W, Zou D, Wang X, Li XL, Zhu L, Yin Z, et al. Proteomic analysis of clinical isolate of Stenotrophomonas maltophilia with bla NDM-1, bla L1 and bla L2 β-lactamase genes under imipenem treatment. J Proteome Res. 2012;11:4024–33.CrossRefPubMed
29.
go back to reference Huang TW, Chen TL, Chen YT, Lauderdale TL, Liao TL, Lee YT, et al. Copy number change of the NDM-1 sequence in a multidrug resistant Klebsiella pneumoniae clinical isolate. Plos One. 2013;8:1–12.CrossRef Huang TW, Chen TL, Chen YT, Lauderdale TL, Liao TL, Lee YT, et al. Copy number change of the NDM-1 sequence in a multidrug resistant Klebsiella pneumoniae clinical isolate. Plos One. 2013;8:1–12.CrossRef
Metadata
Title
Transcriptional analysis of bla NDM-1 and copy number alteration under carbapenem stress
Authors
Deepjyoti Paul
Amitabha Bhattacharjee
Dibyojyoti Bhattacharjee
Debadatta Dhar
Anand Prakash Maurya
Atanu Chakravarty
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Antimicrobial Resistance & Infection Control / Issue 1/2017
Electronic ISSN: 2047-2994
DOI
https://doi.org/10.1186/s13756-017-0183-2

Other articles of this Issue 1/2017

Antimicrobial Resistance & Infection Control 1/2017 Go to the issue