Skip to main content
Top
Published in: Systematic Reviews 1/2021

01-12-2021 | Magnetic Resonance Imaging | Protocol

Use of magnetic resonance imaging-guided radiotherapy for breast cancer: a scoping review protocol

Authors: Sarah Elliott, Alexandra Berlangieri, Jason Wasiak, Michael Chao, Farshad Foroudi

Published in: Systematic Reviews | Issue 1/2021

Login to get access

Abstract

Background

In recent years, we have seen the incorporation of magnetic resonance imaging (MRI) simulators into radiotherapy centres and the emergence of the new technology of MR linacs. However, the significant health care resources associated with this advanced technology impact immediate widespread use and availability. There are currently limited studies to demonstrate the clinical effectiveness and inform decision-making on the use of MRI in radiotherapy. The objective of this scoping review is to identify and map the existing evidence surrounding the clinical implementation of MRI-guided radiotherapy in patients with breast cancer. It also aims to identify challenges and knowledge gaps in the literature.

Methods

We will perform a comprehensive search in MEDLINE and EMBASE databases from January 2010 onwards. Grey literature sources will include the WHO International Clinical Trials Registry Platform. We will include systematic reviews, randomised and non-randomised controlled studies published in English. Literature should examine the use of magnetic resonance imaging-guided radiotherapy in adults with breast cancer, regardless of cancer stage or severity. Two reviewers will independently screen all titles, abstracts and full-text reports. Data will be extracted and summarised using qualitative (e.g. content and thematic analysis) methods and presented in tables.

Discussion

The results from this review will consolidate the evidence surrounding MRI-guided radiotherapy for breast cancer, contributing to the development and optimisation of patient selection, simulation, planning, treatment delivery, quality assurance and research, to help improve patient outcomes, cancer care and treatment for women with breast cancer.

Systematic review registration

The protocol is available on Open Science Framework at DOI https://​doi.​org/​10.​17605/​OSF.​IO/​8TEV6
Appendix
Available only for authorised users
Literature
3.
go back to reference Heilat GB, Brennan ME, French J. Update on the management of early-stage breast cancer. AJGP. 2019;48(9):604-608. doi:10.31128/AJGP-03-19-4891 Heilat GB, Brennan ME, French J. Update on the management of early-stage breast cancer. AJGP. 2019;48(9):604-608. doi:10.31128/AJGP-03-19-4891
5.
go back to reference Brunt AM, Haviland JS, Wheatley DA el al. Hypofractionated breast radiotherapy for 1 week versus 3 weeks (FAST-Forward): 5-year efficacy and late normal tissue effects results from a multicentre, non-inferiority, randomised, phase 3 trial. Lancet. 2020;395:1613-26. doi:10.1016/S0140-6736(20)30932-6 Brunt AM, Haviland JS, Wheatley DA el al. Hypofractionated breast radiotherapy for 1 week versus 3 weeks (FAST-Forward): 5-year efficacy and late normal tissue effects results from a multicentre, non-inferiority, randomised, phase 3 trial. Lancet. 2020;395:1613-26. doi:10.1016/S0140-6736(20)30932-6
6.
go back to reference Strand V, Ott OJ, Hildebrandt G, et al. 5-year results of accelerated partial breast irradiation using sole interstitial multicatheter brachytherapy versus whole-breast irradiation with boost after breast-conserving surgery for low-risk invasive and in-situ carcinoma of the female breast: a randomised, phase 3, non-inferiority trial. Lancet. 2016;387:229–38. https://doi.org/10.1016/S0140-6736(15)00471-7.CrossRef Strand V, Ott OJ, Hildebrandt G, et al. 5-year results of accelerated partial breast irradiation using sole interstitial multicatheter brachytherapy versus whole-breast irradiation with boost after breast-conserving surgery for low-risk invasive and in-situ carcinoma of the female breast: a randomised, phase 3, non-inferiority trial. Lancet. 2016;387:229–38. https://​doi.​org/​10.​1016/​S0140-6736(15)00471-7.CrossRef
7.
go back to reference Vaidya JS, Joseph DJ, Tobias JS et al, Targeted intraoperative radiotherapy versus whole breast radiotherapy for breast cancer (TARGIT-A trial): an international, prospective, randomised, non-inferiority phase 3 trial. Lancet. 2010;376:91-102. doi:10.1016/S0140- 6736(10)60837-9 Vaidya JS, Joseph DJ, Tobias JS et al, Targeted intraoperative radiotherapy versus whole breast radiotherapy for breast cancer (TARGIT-A trial): an international, prospective, randomised, non-inferiority phase 3 trial. Lancet. 2010;376:91-102. doi:10.1016/S0140- 6736(10)60837-9
9.
go back to reference Vicini FA, Cecchini RS, White JR, et al. Primary results of NSABP B39/RTOG 0413 (NRG Oncology): A randomized phase III study of conventional whole breast irradiation (WBI) versus partial breast irradiation (PBI) for women with stage 0, I, or II breast cancer. Cancer Research. 2019;79 Suppl 4. doi:10.1158/1538-7445.SABCS18-GS4-04 Vicini FA, Cecchini RS, White JR, et al. Primary results of NSABP B39/RTOG 0413 (NRG Oncology): A randomized phase III study of conventional whole breast irradiation (WBI) versus partial breast irradiation (PBI) for women with stage 0, I, or II breast cancer. Cancer Research. 2019;79 Suppl 4. doi:10.1158/1538-7445.SABCS18-GS4-04
10.
go back to reference Whelan T, Julian J, Levine M et al. RAPID: a randomized trial of accelerated partial breast irradiation using 3-dimensional conformal radiotherapy (3D-CRT). Cancer Research. 2019;79 Suppl 4. doi:10.1158/1538-7445.SABCS18-GS4-03 Whelan T, Julian J, Levine M et al. RAPID: a randomized trial of accelerated partial breast irradiation using 3-dimensional conformal radiotherapy (3D-CRT). Cancer Research. 2019;79 Suppl 4. doi:10.1158/1538-7445.SABCS18-GS4-03
11.
go back to reference Polgar C, Limbergen EV, Potter R, et al. Patient selection for accelerated partial-breast irradiation (APBI) after breast-conserving surgery: Recommendations of the Groupe European de Curietherapie-European Society for Therapeutic Radiology and Oncology (GEC_ESTRO) breast cancer working group based on clinical evidence (2009). Radiother Oncology. 2010;94(3):264–73. https://doi.org/10.1016/j.radonc.2010.01.014.CrossRef Polgar C, Limbergen EV, Potter R, et al. Patient selection for accelerated partial-breast irradiation (APBI) after breast-conserving surgery: Recommendations of the Groupe European de Curietherapie-European Society for Therapeutic Radiology and Oncology (GEC_ESTRO) breast cancer working group based on clinical evidence (2009). Radiother Oncology. 2010;94(3):264–73. https://​doi.​org/​10.​1016/​j.​radonc.​2010.​01.​014.CrossRef
16.
19.
go back to reference Den Hartogh MD, Philippens MEP, Van Dam IE et al. MRI and CT imaging for preoperative target volume delineation breast-conserving therapy. Radiation Oncology. 2014;9:63-717X-9-63 Den Hartogh MD, Philippens MEP, Van Dam IE et al. MRI and CT imaging for preoperative target volume delineation breast-conserving therapy. Radiation Oncology. 2014;9:63-717X-9-63
20.
go back to reference Di Leo G, Trimboli RM, Benedek A, et al. MR imaging for selection of patients for partial breast irradiation: A systematic review and meta-analysis. Radiology. 2015;277(3):716–26.CrossRefPubMed Di Leo G, Trimboli RM, Benedek A, et al. MR imaging for selection of patients for partial breast irradiation: A systematic review and meta-analysis. Radiology. 2015;277(3):716–26.CrossRefPubMed
22.
go back to reference Metcalfe P, Liney GP, Holloway L et al. The potential for an enhanced role for MRI in radiation-therapy treatment planning. Technology in Cancer Research and Treatment. 2013;12(5):429-446. doi:10.77885/tcrt.2012.500342 Metcalfe P, Liney GP, Holloway L et al. The potential for an enhanced role for MRI in radiation-therapy treatment planning. Technology in Cancer Research and Treatment. 2013;12(5):429-446. doi:10.77885/tcrt.2012.500342
25.
go back to reference Corradini S, Alongi F, Andratschke N, et al. MR-guidance in clinical reality: current treatment challenges and future perspectives. Radiat Oncol. 2019;14:92.CrossRefPubMedPubMedCentral Corradini S, Alongi F, Andratschke N, et al. MR-guidance in clinical reality: current treatment challenges and future perspectives. Radiat Oncol. 2019;14:92.CrossRefPubMedPubMedCentral
26.
go back to reference Henke LE, Contreras JA, Green OK et al. Magnetic Resonance Image-Guided Radiotherapy (MRIgRT): A 4.5-year clinical experience. Clinical Oncology. 2018;30:720-727. doi:10.1016/j.clon.2018.08.010 Henke LE, Contreras JA, Green OK et al. Magnetic Resonance Image-Guided Radiotherapy (MRIgRT): A 4.5-year clinical experience. Clinical Oncology. 2018;30:720-727. doi:10.1016/j.clon.2018.08.010
37.
go back to reference Covidence systematic review software, Veritas Health Innovation, Melbourne, Australia; 2013. Available at www.covidence.org Accessed 03 June 2020 Covidence systematic review software, Veritas Health Innovation, Melbourne, Australia; 2013. Available at www.​covidence.​org Accessed 03 June 2020
Metadata
Title
Use of magnetic resonance imaging-guided radiotherapy for breast cancer: a scoping review protocol
Authors
Sarah Elliott
Alexandra Berlangieri
Jason Wasiak
Michael Chao
Farshad Foroudi
Publication date
01-12-2021
Publisher
BioMed Central
Published in
Systematic Reviews / Issue 1/2021
Electronic ISSN: 2046-4053
DOI
https://doi.org/10.1186/s13643-021-01594-9

Other articles of this Issue 1/2021

Systematic Reviews 1/2021 Go to the issue