Skip to main content
Top
Published in: Systematic Reviews 1/2021

Open Access 01-12-2021 | Malaria | Systematic review update

Endectocides as a complementary intervention in the malaria control program: a systematic review

Authors: Fereshteh Ghahvechi Khaligh, Abbas Jafari, Elena Silivanova, Mikhail Levchenko, Bahlol Rahimi, Saber Gholizadeh

Published in: Systematic Reviews | Issue 1/2021

Login to get access

Abstract

Background

Malaria is the most common vector-borne disease transmitted to humans by Anopheles mosquitoes. Endectocides and especially ivermectin will be available as a vector control tool soon. The current review could be valuable for trial design and clinical studies to control malaria transmission.

Methods

PubMed/MEDLINE, Scopus, Web of Science, and Science Direct were searched for original English published papers on (“Malaria chemical control” OR “Malaria elimination” OR “Anopheles vector control” OR “Malaria zooprophylaxis”) AND (“Systemic insecticides” OR “Endectocides” OR “Ivermectin”). The last search was from 19 June 2019 to 31 December 2019. It was updated on 17 November 2020. Two reviewers (SG and FGK) independently reviewed abstracts and full-text articles. Data were extracted by one person and checked by another. As meta-analyses were not possible, a qualitative summary of results was performed.

Results

Thirty-six published papers have used systemic insecticides/endectocides for mosquito control. Most of the studies (56.75%) were done on Anopheles gambiae complex species on doses from 150 μg/kg to 400 μg/kg in several studies. Target hosts for employing systemic insecticides/drugs were animals (44.2%, including rabbit, cattle, pig, and livestock) and humans (32.35%).

Conclusions

Laboratory and field studies have highlighted the potential of endectocides in malaria control. Ivermectin and other endectocides could soon serve as novel malaria transmission control tools by reducing the longevity of Anopheles mosquitoes that feed on treated hosts, potentially decreasing Plasmodium parasite transmission when used as mass drug administration (MDA).
Appendix
Available only for authorised users
Literature
1.
go back to reference WHO. World malaria report 2018. Geneva: World Health Organization; 2018. WHO. World malaria report 2018. Geneva: World Health Organization; 2018.
2.
go back to reference Barber BE, Rajahram GS, Grigg MJ, William T, Anstey NM. World Malaria Report: time to acknowledge Plasmodium knowlesi malaria. Malar J. 2017;16(1):1-3. Barber BE, Rajahram GS, Grigg MJ, William T, Anstey NM. World Malaria Report: time to acknowledge Plasmodium knowlesi malaria. Malar J. 2017;16(1):1-3.
3.
go back to reference Bhatt S, Weiss DJ, Cameron E, Bisanzio D, Mappin B, Dalrymple U, Battle KE, Moyes CL, Henry A, Eckhoff PA, Wenger EA. The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature. 2015;526(7572):207-11. Bhatt S, Weiss DJ, Cameron E, Bisanzio D, Mappin B, Dalrymple U, Battle KE, Moyes CL, Henry A, Eckhoff PA, Wenger EA. The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature. 2015;526(7572):207-11.
4.
go back to reference Teng WC, Kiat HH, Suwanarusk R, Koh HL. Medicinal plants and malaria: applications, trends, and prospects. Florida: CRC Press; 2016. Teng WC, Kiat HH, Suwanarusk R, Koh HL. Medicinal plants and malaria: applications, trends, and prospects. Florida: CRC Press; 2016.
5.
go back to reference Moorthy VS, Hutubessy R, Newman RD, Hombach J. Decision-making on malaria vaccine introduction: the role of cost-effectiveness analyses. Bull World Health Organ. 2012;90:864-6. Moorthy VS, Hutubessy R, Newman RD, Hombach J. Decision-making on malaria vaccine introduction: the role of cost-effectiveness analyses. Bull World Health Organ. 2012;90:864-6.
6.
go back to reference Chaccour CJ, Rabinovich NR. Oral, slow-release ivermectin: biting back at malaria vectors. Trends Parasitol. 2017;1(33):156–8.CrossRef Chaccour CJ, Rabinovich NR. Oral, slow-release ivermectin: biting back at malaria vectors. Trends Parasitol. 2017;1(33):156–8.CrossRef
7.
go back to reference Simon JY. The toxicology and biochemistry of insecticides: 2nd edition. Poca Raton: CRC press; 2011. Simon JY. The toxicology and biochemistry of insecticides: 2nd edition. Poca Raton: CRC press; 2011.
8.
go back to reference Yadav I, Devi NL. Pesticides classification and its impact on human and environment. Environ Sci Eng. 2017;6:140-158 Yadav I, Devi NL. Pesticides classification and its impact on human and environment. Environ Sci Eng. 2017;6:140-158
9.
go back to reference Abbas N, Shad SA, Shah RM. Resistance status of Musca domestica L. populations to neonicotinoids and insect growth regulators in Pakistan poultry facilities. Pak J Zool. 2015;47(6):1663-71. Abbas N, Shad SA, Shah RM. Resistance status of Musca domestica L. populations to neonicotinoids and insect growth regulators in Pakistan poultry facilities. Pak J Zool. 2015;47(6):1663-71.
10.
go back to reference Bass C, Denholm I, Williamson MS, Nauen R. The global status of insect resistance to neonicotinoid insecticides. J Pestic Biochem Physiol. 2015;121:78–87.CrossRef Bass C, Denholm I, Williamson MS, Nauen R. The global status of insect resistance to neonicotinoid insecticides. J Pestic Biochem Physiol. 2015;121:78–87.CrossRef
11.
go back to reference Meredith HR, Furuya-Kanamori L, Yakob L. Optimising systemic insecticide use to improve malaria control. BMJ Glob Health. 2019;4(6):e001776. Meredith HR, Furuya-Kanamori L, Yakob L. Optimising systemic insecticide use to improve malaria control. BMJ Glob Health. 2019;4(6):e001776.
12.
go back to reference Yakob L. Endectocide-treated cattle for malaria control: a coupled entomological-epidemiological model. Parasite Epidemiol Control. 2016;1(1):2–9.CrossRef Yakob L. Endectocide-treated cattle for malaria control: a coupled entomological-epidemiological model. Parasite Epidemiol Control. 2016;1(1):2–9.CrossRef
13.
go back to reference Foy BD, Kobylinski KC, da Silva IM, Rasgon JL, Sylla M. Endectocides for malaria control. Trends Parasitol. 2011;27(10):423–8.CrossRef Foy BD, Kobylinski KC, da Silva IM, Rasgon JL, Sylla M. Endectocides for malaria control. Trends Parasitol. 2011;27(10):423–8.CrossRef
14.
go back to reference Loza A, Talaga A, Herbas G, Canaviri RJ, Cahuasiri T, Luck L, Guibarra A, Goncalves R, Pereira JA, Gomez SA. Systemic insecticide treatment of the canine reservoir of Trypanosoma cruzi induces high levels of lethality in Triatoma infestans, a principal vector of Chagas disease. Parasites Vectors. 2017;10(1):344.CrossRef Loza A, Talaga A, Herbas G, Canaviri RJ, Cahuasiri T, Luck L, Guibarra A, Goncalves R, Pereira JA, Gomez SA. Systemic insecticide treatment of the canine reservoir of Trypanosoma cruzi induces high levels of lethality in Triatoma infestans, a principal vector of Chagas disease. Parasites Vectors. 2017;10(1):344.CrossRef
15.
go back to reference Chagnon M, Kreutzweiser D, Mitchell EA, Morrissey CA, Noome DA, Van der Sluijs JP. Risks of large-scale use of systemic insecticides to ecosystem functioning and services. Environ Sci Pollut Res. 2015;22(1):119–34.CrossRef Chagnon M, Kreutzweiser D, Mitchell EA, Morrissey CA, Noome DA, Van der Sluijs JP. Risks of large-scale use of systemic insecticides to ecosystem functioning and services. Environ Sci Pollut Res. 2015;22(1):119–34.CrossRef
16.
go back to reference Donnelly B, Berrang-Ford L, Ross NA, Michel P. A systematic, realist review of zooprophylaxis for malaria control. Malar J. 2015;14:313.CrossRef Donnelly B, Berrang-Ford L, Ross NA, Michel P. A systematic, realist review of zooprophylaxis for malaria control. Malar J. 2015;14:313.CrossRef
17.
go back to reference Saul A. Zooprophylaxis or zoopotentiation: the outcome of introducing animals on vector transmission is highly dependent on the mosquito mortality while searching. Malar J. 2003;2:32.CrossRef Saul A. Zooprophylaxis or zoopotentiation: the outcome of introducing animals on vector transmission is highly dependent on the mosquito mortality while searching. Malar J. 2003;2:32.CrossRef
18.
go back to reference Imbahale SS, Montana Lopez J, Brew J, Paaijmans K, Rist C, Chaccour C. Mapping the potential use of endectocide-treated cattle to reduce malaria transmission. Sci Rep. 2019;9(1):5826.CrossRef Imbahale SS, Montana Lopez J, Brew J, Paaijmans K, Rist C, Chaccour C. Mapping the potential use of endectocide-treated cattle to reduce malaria transmission. Sci Rep. 2019;9(1):5826.CrossRef
19.
go back to reference Hutton B, Salanti G, Caldwell DM, Chaimani A, Schmid CH, Cameron C, Ioannidis JP, Straus S, Thorlund K, Jansen JP. The PRISMA extension statement for reporting of systematic reviews incorporating network meta-analyses of health care interventions: checklist and explanations. Ann Intern Med. 2015;162(11):777–84.CrossRef Hutton B, Salanti G, Caldwell DM, Chaimani A, Schmid CH, Cameron C, Ioannidis JP, Straus S, Thorlund K, Jansen JP. The PRISMA extension statement for reporting of systematic reviews incorporating network meta-analyses of health care interventions: checklist and explanations. Ann Intern Med. 2015;162(11):777–84.CrossRef
20.
go back to reference Gomez SA, Picado A. Systemic insecticides used in dogs: potential candidates for phlebotomine vector control? Trop Med Int Health. 2017;22(6):755–64.CrossRef Gomez SA, Picado A. Systemic insecticides used in dogs: potential candidates for phlebotomine vector control? Trop Med Int Health. 2017;22(6):755–64.CrossRef
21.
go back to reference McTier TL, Chubb N, Curtis MP, Hedges L, Inskeep GA, Knauer CS, Menon S, Mills B, Pullins A, Zinser EJ. Discovery of sarolaner: a novel, orally administered, broad-spectrum, isoxazoline ectoparasiticide for dogs. Vet Parasitol. 2016;222:3–11. McTier TL, Chubb N, Curtis MP, Hedges L, Inskeep GA, Knauer CS, Menon S, Mills B, Pullins A, Zinser EJ. Discovery of sarolaner: a novel, orally administered, broad-spectrum, isoxazoline ectoparasiticide for dogs. Vet Parasitol. 2016;222:3–11.
22.
go back to reference Weber T, Selzer PM. Isoxazolines: a novel chemotype highly effective on ectoparasites. ChemMedChem. 2016;11(3):270–6.CrossRef Weber T, Selzer PM. Isoxazolines: a novel chemotype highly effective on ectoparasites. ChemMedChem. 2016;11(3):270–6.CrossRef
23.
go back to reference Simon JY. The toxicology and biochemistry of insecticides: 2nd edition. Poca Raton: CRC Press; 2014. Simon JY. The toxicology and biochemistry of insecticides: 2nd edition. Poca Raton: CRC Press; 2014.
24.
go back to reference Leirs H, Larsen K, Lodal J. Palatability and toxicity of fipronil as a systemic insecticide in a bromadiolone rodenticide bait for rat and flea control. Med Vet Entomol. 2001;15(3):299–303. Leirs H, Larsen K, Lodal J. Palatability and toxicity of fipronil as a systemic insecticide in a bromadiolone rodenticide bait for rat and flea control. Med Vet Entomol. 2001;15(3):299–303.
25.
go back to reference Chaccour C, Lines J, Whitty CJ. Effect of ivermectin on Anopheles gambiae mosquitoes fed on humans: the potential of oral insecticides in malaria control. J Infect Dis. 2010;202(1):113-6. Chaccour C, Lines J, Whitty CJ. Effect of ivermectin on Anopheles gambiae mosquitoes fed on humans: the potential of oral insecticides in malaria control. J Infect Dis. 2010;202(1):113-6.
26.
go back to reference Sylla M, Kobylinski KC, Gray M, Chapman PL, Sarr MD, Rasgon JL, Foy BD. Mass drug administration of ivermectin in south-eastern Senegal reduces the survivorship of wild-caught, blood fed malaria vectors. Malari J. 2010;9(1):365. Sylla M, Kobylinski KC, Gray M, Chapman PL, Sarr MD, Rasgon JL, Foy BD. Mass drug administration of ivermectin in south-eastern Senegal reduces the survivorship of wild-caught, blood fed malaria vectors. Malari J. 2010;9(1):365.
27.
go back to reference Butters MP, Kobylinski KC, Deus KM, Da Silva IM, Gray M, Sylla M, Foy BD. Comparative evaluation of systemic drugs for their effects against Anopheles gambiae. Acta Trop. 2012;121(1):34–43.CrossRef Butters MP, Kobylinski KC, Deus KM, Da Silva IM, Gray M, Sylla M, Foy BD. Comparative evaluation of systemic drugs for their effects against Anopheles gambiae. Acta Trop. 2012;121(1):34–43.CrossRef
28.
go back to reference Ouédraogo AL, Bastiaens GJ, Tiono AB, Guelbéogo WM, Kobylinski KC, Ouédraogo A, Barry A, Bougouma EC, Nebie I, Ouattara MS. Efficacy and safety of the mosquitocidal drug ivermectin to prevent malaria transmission after treatment: a double-blind, randomized, clinical trial. Clin Infect Dis. 2015;60(3):357–65. Ouédraogo AL, Bastiaens GJ, Tiono AB, Guelbéogo WM, Kobylinski KC, Ouédraogo A, Barry A, Bougouma EC, Nebie I, Ouattara MS. Efficacy and safety of the mosquitocidal drug ivermectin to prevent malaria transmission after treatment: a double-blind, randomized, clinical trial. Clin Infect Dis. 2015;60(3):357–65.
29.
go back to reference Seaman JA, Alout H, Meyers JI, Stenglein MD, Dabiré RK, Lozano-Fuentes S, Burton TA, Kuklinski WS, Black WC, Foy BD. Age and prior blood feeding of Anopheles gambiae influences their susceptibility and gene expression patterns to ivermectin-containing blood meals. BMC Genomics. 2015;16(1):797. Seaman JA, Alout H, Meyers JI, Stenglein MD, Dabiré RK, Lozano-Fuentes S, Burton TA, Kuklinski WS, Black WC, Foy BD. Age and prior blood feeding of Anopheles gambiae influences their susceptibility and gene expression patterns to ivermectin-containing blood meals. BMC Genomics. 2015;16(1):797.
30.
go back to reference Kobylinski KC, Sylla M, Chapman PL, Sarr MD, Foy BD. Hygiene: Ivermectin mass drug administration to humans disrupts malaria parasite transmission in Senegalese villages. Am J Trop Med Hyg. 2011;85(1):3–5.CrossRef Kobylinski KC, Sylla M, Chapman PL, Sarr MD, Foy BD. Hygiene: Ivermectin mass drug administration to humans disrupts malaria parasite transmission in Senegalese villages. Am J Trop Med Hyg. 2011;85(1):3–5.CrossRef
31.
go back to reference Kobylinski KC, Escobedo-Vargas KS, Lopez-Sifuentes VM, Durand S, Smith ES, Baldeviano GC, Gerbasi RV, Ballard S-B, Stoops CA, Vásquez GM. Ivermectin susceptibility, sporontocidal effect, and inhibition of time to re-feed in the Amazonian malaria vector Anopheles darlingi. Malar J. 2017;16(1):474. Kobylinski KC, Escobedo-Vargas KS, Lopez-Sifuentes VM, Durand S, Smith ES, Baldeviano GC, Gerbasi RV, Ballard S-B, Stoops CA, Vásquez GM. Ivermectin susceptibility, sporontocidal effect, and inhibition of time to re-feed in the Amazonian malaria vector Anopheles darlingi. Malar J. 2017;16(1):474.
32.
go back to reference Chaccour C, Barrio ÁI, Royo AGG, Urbistondo DM, Slater H, Hammann F, Del Pozo JL. Screening for an ivermectin slow-release formulation suitable for malaria vector control. Malar J. 2015;14(1):102. Chaccour C, Barrio ÁI, Royo AGG, Urbistondo DM, Slater H, Hammann F, Del Pozo JL. Screening for an ivermectin slow-release formulation suitable for malaria vector control. Malar J. 2015;14(1):102.
33.
go back to reference Chaccour C, Abizanda G, Irigoyen A, Del Pozo JL. Pilot study of a slow-release ivermectin formulation for malaria control in a pig model. Antimicrobial Agents Chemother. 2017;61(3):e02104–16.CrossRef Chaccour C, Abizanda G, Irigoyen A, Del Pozo JL. Pilot study of a slow-release ivermectin formulation for malaria control in a pig model. Antimicrobial Agents Chemother. 2017;61(3):e02104–16.CrossRef
34.
go back to reference Chaccour CJ, Ngha’bi K, Abizanda G, Barrio AI, Aldaz A, Okumu F, Slater H, Del Pozo JL, Killeen G. Targeting cattle for malaria elimination: marked reduction of Anopheles arabiensis survival for over six months using a slow-release ivermectin implant formulation. Parasit Vectors. 2018;11(1):287. Chaccour CJ, Ngha’bi K, Abizanda G, Barrio AI, Aldaz A, Okumu F, Slater H, Del Pozo JL, Killeen G. Targeting cattle for malaria elimination: marked reduction of Anopheles arabiensis survival for over six months using a slow-release ivermectin implant formulation. Parasit Vectors. 2018;11(1):287.
35.
go back to reference Fritz ML, Walker ED. Miller JR. Lethal and sublethal effects of avermectin/milbemycin parasiticides on the African malaria vector, Anopheles Arabiensis. J Med Entomol. 2012;49(2):326–31. Fritz ML, Walker ED. Miller JR. Lethal and sublethal effects of avermectin/milbemycin parasiticides on the African malaria vector, Anopheles Arabiensis. J Med Entomol. 2012;49(2):326–31.
36.
go back to reference Poché RM, Burruss D, Polyakova L, Poché DM, Garlapati RB. Treatment of livestock with systemic insecticides for control of Anopheles arabiensis in western Kenya. Malar J. 2015;14(1):351. Poché RM, Burruss D, Polyakova L, Poché DM, Garlapati RB. Treatment of livestock with systemic insecticides for control of Anopheles arabiensis in western Kenya. Malar J. 2015;14(1):351.
37.
go back to reference Lozano-Fuentes S, Kading RC, Hartman DA, Okoth E, Githaka N, Nene V, Poché RM. Evaluation of a topical formulation of eprinomectin against Anopheles arabiensis when administered to Zebu cattle (Bos indicus) under field conditions. Malar J. 2016;15(1):324. Lozano-Fuentes S, Kading RC, Hartman DA, Okoth E, Githaka N, Nene V, Poché RM. Evaluation of a topical formulation of eprinomectin against Anopheles arabiensis when administered to Zebu cattle (Bos indicus) under field conditions. Malar J. 2016;15(1):324.
38.
go back to reference Lyimo IN, Kessy ST, Mbina KF, Daraja AA, Mnyone LL. Ivermectin-treated cattle reduces blood digestion, egg production and survival of a free-living population of Anopheles arabiensis under semi-field condition in south-eastern Tanzania. Malar J. 2017;16(1):239. Lyimo IN, Kessy ST, Mbina KF, Daraja AA, Mnyone LL. Ivermectin-treated cattle reduces blood digestion, egg production and survival of a free-living population of Anopheles arabiensis under semi-field condition in south-eastern Tanzania. Malar J. 2017;16(1):239.
39.
go back to reference Tenywa FC, Kambagha A, Saddler A, Maia MF. The development of an ivermectin-based attractive toxic sugar bait (ATSB) to target Anopheles arabiensis. Malar J. 2017;16(1):338. Tenywa FC, Kambagha A, Saddler A, Maia MF. The development of an ivermectin-based attractive toxic sugar bait (ATSB) to target Anopheles arabiensis. Malar J. 2017;16(1):338.
40.
go back to reference Ramadan NM. Effect of feeding on blood of rabbits treated with ivermectin on female Adults of Anopheles arabiensis Patton (Diptera: Culicidae), 2018 (Doctoral dissertation, University of Gezira). Ramadan NM. Effect of feeding on blood of rabbits treated with ivermectin on female Adults of Anopheles arabiensis Patton (Diptera: Culicidae), 2018 (Doctoral dissertation, University of Gezira).
41.
go back to reference Pooda HS, Rayaisse J-B, de Sale Hien DF, Lefèvre T, Yerbanga SR, Bengaly Z, Dabiré RK, Belem AM, Sidibé I, Solano P. Administration of ivermectin to peridomestic cattle: a promising approach to target the residual transmission of human malaria. Malar J. 2015;14(1):496. Pooda HS, Rayaisse J-B, de Sale Hien DF, Lefèvre T, Yerbanga SR, Bengaly Z, Dabiré RK, Belem AM, Sidibé I, Solano P. Administration of ivermectin to peridomestic cattle: a promising approach to target the residual transmission of human malaria. Malar J. 2015;14(1):496.
42.
go back to reference Pampiglione S, Majori G, Petrangeli G, Romi R. Hygiene: Avermectins, MK-933 and MK-936, for mosquito control. Trans R Soc Trop Med. 1985;79(6):797–9.CrossRef Pampiglione S, Majori G, Petrangeli G, Romi R. Hygiene: Avermectins, MK-933 and MK-936, for mosquito control. Trans R Soc Trop Med. 1985;79(6):797–9.CrossRef
43.
go back to reference Pinilla YT, Lopes SC, Sampaio VS, Andrade FS, Melo GC, Orfanó AS, Secundino NF, Guerra MG, Lacerda MV, Kobylinski KC. Promising approach to reducing Malaria transmission by ivermectin: sporontocidal effect against Plasmodium vivax in the South American vectors Anopheles aquasalis and Anopheles darlingi. PLoS Negl Trop Dis. 2018;12(2):e0006221. Pinilla YT, Lopes SC, Sampaio VS, Andrade FS, Melo GC, Orfanó AS, Secundino NF, Guerra MG, Lacerda MV, Kobylinski KC. Promising approach to reducing Malaria transmission by ivermectin: sporontocidal effect against Plasmodium vivax in the South American vectors Anopheles aquasalis and Anopheles darlingi. PLoS Negl Trop Dis. 2018;12(2):e0006221.
44.
go back to reference Sampaio VS, Beltrán TP, Kobylinski KC, Melo GC, Lima JB, Silva SG, Rodriguez ÍC, Silveira H, Guerra MG, Bassat Q. Filling gaps on ivermectin knowledge: effects on the survival and reproduction of Anopheles aquasalis, a Latin American malaria vector. Malar J. 2016;15(1):491. Sampaio VS, Beltrán TP, Kobylinski KC, Melo GC, Lima JB, Silva SG, Rodriguez ÍC, Silveira H, Guerra MG, Bassat Q. Filling gaps on ivermectin knowledge: effects on the survival and reproduction of Anopheles aquasalis, a Latin American malaria vector. Malar J. 2016;15(1):491.
45.
go back to reference Firooziyan S, Djadid ND, Gholizadeh S. Speculation on the possibility for introducing Anopheles stephensi as a species complex: preliminary evidence based on odorant binding protein 1 intron I sequence. Malar J. 2018;17(1):366. Firooziyan S, Djadid ND, Gholizadeh S. Speculation on the possibility for introducing Anopheles stephensi as a species complex: preliminary evidence based on odorant binding protein 1 intron I sequence. Malar J. 2018;17(1):366.
46.
go back to reference Gholizadeh S, Djadid ND, Nouroozi B, Bekmohammadi. Molecular phylogenetic analysis of Anopheles and Cellia subgenus anophelines (Diptera: Culicidae) in temperate and tropical regions of Iran. Acta Trop. 2013;126(1):63–74. Gholizadeh S, Djadid ND, Nouroozi B, Bekmohammadi. Molecular phylogenetic analysis of Anopheles and Cellia subgenus anophelines (Diptera: Culicidae) in temperate and tropical regions of Iran. Acta Trop. 2013;126(1):63–74.
47.
go back to reference Gholizadeh S, Firooziyan S, Ladonni H, Hajipirloo HM, Djadid ND, Hosseini A, Raz A. The Anopheles stephensi odorant binding protein 1 (AsteObp1) gene: a new molecular marker for biological forms diagnosis. Acta Trop. 2015;146:101–13. Gholizadeh S, Firooziyan S, Ladonni H, Hajipirloo HM, Djadid ND, Hosseini A, Raz A. The Anopheles stephensi odorant binding protein 1 (AsteObp1) gene: a new molecular marker for biological forms diagnosis. Acta Trop. 2015;146:101–13.
48.
go back to reference Roadmappers I. A roadmap for the development of ivermectin as a complementary malaria vector control tool. Am J Trop Med Hyg. 2020;102(2 s):3–24.CrossRef Roadmappers I. A roadmap for the development of ivermectin as a complementary malaria vector control tool. Am J Trop Med Hyg. 2020;102(2 s):3–24.CrossRef
Metadata
Title
Endectocides as a complementary intervention in the malaria control program: a systematic review
Authors
Fereshteh Ghahvechi Khaligh
Abbas Jafari
Elena Silivanova
Mikhail Levchenko
Bahlol Rahimi
Saber Gholizadeh
Publication date
01-12-2021
Publisher
BioMed Central
Published in
Systematic Reviews / Issue 1/2021
Electronic ISSN: 2046-4053
DOI
https://doi.org/10.1186/s13643-021-01578-9

Other articles of this Issue 1/2021

Systematic Reviews 1/2021 Go to the issue