Skip to main content
Top
Published in: Systematic Reviews 1/2016

Open Access 01-12-2016 | Protocol

Anticipatory and compensatory postural adjustments in people with low back pain: a protocol for a systematic review and meta-analysis

Authors: Michael F. Knox, Lucy S. Chipchase, Siobhan M. Schabrun, Paul W. M. Marshall

Published in: Systematic Reviews | Issue 1/2016

Login to get access

Abstract

Background

Anticipatory (APAs) and compensatory (CPAs) postural adjustments are organised by the central nervous system (CNS) and serve to control postural perturbations. Ineffective APAs and CPAs have been hypothesised to contribute to the persistence of symptoms and disability in people with low back pain (LBP). Despite two decades of research, there is no systematic review investigating APAs and CPAs in people with LBP. Thus, the aim of the current review is to determine if APA and CPA onset or amplitude, as measured by electromyography (EMG), centre of pressure (COP), and kinematics, are altered in people with LBP.

Methods/design

A systematic review and meta-analysis will be conducted. Searches will be conducted in electronic databases for full-text articles published before January 2016 using pre-defined search strategies that utilise combinations of keywords and medical subject heading terms. Two independent reviewers will screen potentially relevant articles for inclusion, extract data, and assess risk of bias for individual studies. Any disagreements will be resolved by a third reviewer. Studies comparing APA onset and amplitude and CPA onset and amplitude measured by EMG, COP, or kinematics between people with LBP and healthy individuals will be included if all aspects of the eligibility criteria are met. Data will be synthesised if studies are homogeneous; otherwise, results will be reviewed narratively.

Discussion

To our knowledge, this is the first systematic review to examine APAs and CPAs, as measured by EMG, COP, and kinematics in people with LBP. The findings of this review may aid in the identification of factors that play a role in the persistence of symptoms and disability and aid in the development of interventions to treat symptoms.

Systematic review registration

PROSPERO CRD42016032815
Appendix
Available only for authorised users
Literature
1.
go back to reference Dagenais S, Caro J, Haldeman S. A systematic review of low back pain cost of illness studies in the United States and internationally. Spine J. 2008;8(1):8–20.CrossRefPubMed Dagenais S, Caro J, Haldeman S. A systematic review of low back pain cost of illness studies in the United States and internationally. Spine J. 2008;8(1):8–20.CrossRefPubMed
2.
go back to reference Airaksinen O, Brox JI, Cedraschi C, Hildebrandt J, Klaber-Moffett J, Kovacs F, et al. Chapter 4: European guidelines for the management of chronic nonspecific low back pain. Eur Spine J. 2006;15 suppl 2:S192–300.CrossRefPubMedPubMedCentral Airaksinen O, Brox JI, Cedraschi C, Hildebrandt J, Klaber-Moffett J, Kovacs F, et al. Chapter 4: European guidelines for the management of chronic nonspecific low back pain. Eur Spine J. 2006;15 suppl 2:S192–300.CrossRefPubMedPubMedCentral
3.
go back to reference Weiner SS, Nordin M. Prevention and management of chronic back pain. Best practice and research. Clin Rheumatol. 2010;24(2):267–79. Weiner SS, Nordin M. Prevention and management of chronic back pain. Best practice and research. Clin Rheumatol. 2010;24(2):267–79.
4.
go back to reference Balagué F, Mannion AF, Pellisé F, Cedraschi C. Non-specific low back pain. Lancet. 2012;379(9814):482–91.CrossRefPubMed Balagué F, Mannion AF, Pellisé F, Cedraschi C. Non-specific low back pain. Lancet. 2012;379(9814):482–91.CrossRefPubMed
5.
go back to reference Cholewicki J, McGill SM. Mechanical stability of the in vivo lumbar spine: implications for injury and chronic low back pain. Clin Biomech. 1996;11(1):1–15.CrossRef Cholewicki J, McGill SM. Mechanical stability of the in vivo lumbar spine: implications for injury and chronic low back pain. Clin Biomech. 1996;11(1):1–15.CrossRef
6.
go back to reference Panjabi MM. The stabilizing system of the spine. Part I. Function, dysfunction, adaptation, and enhancement. J Spinal Disord. 1992;5(4):383–9.CrossRefPubMed Panjabi MM. The stabilizing system of the spine. Part I. Function, dysfunction, adaptation, and enhancement. J Spinal Disord. 1992;5(4):383–9.CrossRefPubMed
7.
go back to reference Latash ML. Neurophysiological basis of movement. 2nd ed. Champaign, IL: Human Kinetics; 2008. Latash ML. Neurophysiological basis of movement. 2nd ed. Champaign, IL: Human Kinetics; 2008.
8.
go back to reference Bouisset S, Richardson J, Zattara M. Do anticipatory postural adjustments occurring in different segments of the postural chain follow the same organisational rule for different task movement velocities, independently of the inertial load value? Exp Brain Res. 2000;132(1):79–86.CrossRefPubMed Bouisset S, Richardson J, Zattara M. Do anticipatory postural adjustments occurring in different segments of the postural chain follow the same organisational rule for different task movement velocities, independently of the inertial load value? Exp Brain Res. 2000;132(1):79–86.CrossRefPubMed
9.
go back to reference Santos MJ, Kanekar N, Aruin AS. The role of anticipatory postural adjustments in compensatory control of posture: 2. Biomechanical analysis. J Electromyogr Kines. 2010;20(3):398–405.CrossRef Santos MJ, Kanekar N, Aruin AS. The role of anticipatory postural adjustments in compensatory control of posture: 2. Biomechanical analysis. J Electromyogr Kines. 2010;20(3):398–405.CrossRef
10.
go back to reference Santos MJ, Kanekar N, Aruin AS. The role of anticipatory postural adjustments in compensatory control of posture: 1. Electromyographic analysis. J Electromyogr Kines. 2010;20(3):388–97.CrossRef Santos MJ, Kanekar N, Aruin AS. The role of anticipatory postural adjustments in compensatory control of posture: 1. Electromyographic analysis. J Electromyogr Kines. 2010;20(3):388–97.CrossRef
11.
12.
go back to reference Park S, Horak FB, Kuo AD. Postural feedback responses scale with biomechanical constraints in human standing. Exp Brain Res. 2004;154(4):417–27.CrossRefPubMed Park S, Horak FB, Kuo AD. Postural feedback responses scale with biomechanical constraints in human standing. Exp Brain Res. 2004;154(4):417–27.CrossRefPubMed
13.
go back to reference Jacobs JV, Fujiwara K, Tomita H, Furune N, Kunita K, Horak FB. Changes in the activity of the cerebral cortex relate to postural response modification when warned of a perturbation. Clin Neurophysiol. 2008;119(6):1431–42.CrossRefPubMedPubMedCentral Jacobs JV, Fujiwara K, Tomita H, Furune N, Kunita K, Horak FB. Changes in the activity of the cerebral cortex relate to postural response modification when warned of a perturbation. Clin Neurophysiol. 2008;119(6):1431–42.CrossRefPubMedPubMedCentral
14.
go back to reference Jacobs JV, Henry SM, Nagle KJ. Low back pain associates with altered activity of the cerebral cortex prior to arm movements that require postural adjustment. Clin Neurophysiol. 2010;121(3):431–40.CrossRefPubMedPubMedCentral Jacobs JV, Henry SM, Nagle KJ. Low back pain associates with altered activity of the cerebral cortex prior to arm movements that require postural adjustment. Clin Neurophysiol. 2010;121(3):431–40.CrossRefPubMedPubMedCentral
15.
go back to reference Tsao H, Galea MP, Hodges PW. Reorganization of the motor cortex is associated with postural control deficits in recurrent low back pain. Brain. 2008;131(8):2161–71.CrossRefPubMed Tsao H, Galea MP, Hodges PW. Reorganization of the motor cortex is associated with postural control deficits in recurrent low back pain. Brain. 2008;131(8):2161–71.CrossRefPubMed
16.
go back to reference Chen YS, Zhou S. Soleus H-reflex and its relation to static postural control. Gait Posture. 2011;33(2):169–78.CrossRefPubMed Chen YS, Zhou S. Soleus H-reflex and its relation to static postural control. Gait Posture. 2011;33(2):169–78.CrossRefPubMed
17.
go back to reference Taube W, Schubert M, Gruber M, Beck S, Faist M, Gollhofer A. Direct corticospinal pathways contribute to neuromuscular control of perturbed stance. J Appl Physiol. 2006;101(2):420–9.CrossRefPubMed Taube W, Schubert M, Gruber M, Beck S, Faist M, Gollhofer A. Direct corticospinal pathways contribute to neuromuscular control of perturbed stance. J Appl Physiol. 2006;101(2):420–9.CrossRefPubMed
18.
go back to reference Hodges PW, Richardson CA. Inefficient muscular stabilization of the lumbar spine associated with low back pain: a motor control evaluation of transversus abdominis. Spine. 1996;21(22):2640–50.CrossRefPubMed Hodges PW, Richardson CA. Inefficient muscular stabilization of the lumbar spine associated with low back pain: a motor control evaluation of transversus abdominis. Spine. 1996;21(22):2640–50.CrossRefPubMed
19.
go back to reference Radebold A, Cholewicki J, Panjabi MM, Patel TC. Muscle response pattern to sudden trunk loading in healthy individuals and in patients with chronic low back pain. Spine. 2000;25(8):947–54.CrossRefPubMed Radebold A, Cholewicki J, Panjabi MM, Patel TC. Muscle response pattern to sudden trunk loading in healthy individuals and in patients with chronic low back pain. Spine. 2000;25(8):947–54.CrossRefPubMed
20.
go back to reference Henry SM, Hitt JR, Jones SL, Bunn JY. Decreased limits of stability in response to postural perturbations in subjects with low back pain. Clin Biomech. 2006;21(9):881–92.CrossRef Henry SM, Hitt JR, Jones SL, Bunn JY. Decreased limits of stability in response to postural perturbations in subjects with low back pain. Clin Biomech. 2006;21(9):881–92.CrossRef
21.
go back to reference Mok NW, Brauer SG, Hodges PW. Postural recovery following voluntary arm movement is impaired in people with chronic low back pain. Gait Posture. 2011;34(1):97–102.CrossRefPubMed Mok NW, Brauer SG, Hodges PW. Postural recovery following voluntary arm movement is impaired in people with chronic low back pain. Gait Posture. 2011;34(1):97–102.CrossRefPubMed
22.
go back to reference Mok NW, Brauer SG, Hodges PW. Failure to use movement in postural strategies leads to increased spinal displacement in low back pain. Spine. 2007;32(19):E537–43.CrossRefPubMed Mok NW, Brauer SG, Hodges PW. Failure to use movement in postural strategies leads to increased spinal displacement in low back pain. Spine. 2007;32(19):E537–43.CrossRefPubMed
23.
go back to reference Mok NW, Brauer SG, Hodges PW. Changes in lumbar movement in people with low back pain are related to compromised balance. Spine. 2011;36(1):E45–52.CrossRefPubMed Mok NW, Brauer SG, Hodges PW. Changes in lumbar movement in people with low back pain are related to compromised balance. Spine. 2011;36(1):E45–52.CrossRefPubMed
26.
go back to reference Reeves B, Deeks J, HIggins J, Wekks G. Chapter 13: including non-randomised studies. In: Higgins J, Green S, editors. Cochrane handbook for systematic reviews of interventions. Chichester: John Wiley & Sons; 2008. p. 391–432. Reeves B, Deeks J, HIggins J, Wekks G. Chapter 13: including non-randomised studies. In: Higgins J, Green S, editors. Cochrane handbook for systematic reviews of interventions. Chichester: John Wiley & Sons; 2008. p. 391–432.
28.
go back to reference Allison GT. Trunk muscle onset detection technique for EMG signals with ECG artefact. J Electromyogr Kines. 2003;13(3):209–16.CrossRef Allison GT. Trunk muscle onset detection technique for EMG signals with ECG artefact. J Electromyogr Kines. 2003;13(3):209–16.CrossRef
29.
go back to reference Mannion AF, Pulkovski N, Schenk P, Hodges PW, Gerber H, Loupas T, et al. A new method for the noninvasive determination of abdominal muscle feedforward activity based on tissue velocity information from tissue Doppler imaging. J Appl Physiol. 2008;104(4):1192–201.CrossRefPubMed Mannion AF, Pulkovski N, Schenk P, Hodges PW, Gerber H, Loupas T, et al. A new method for the noninvasive determination of abdominal muscle feedforward activity based on tissue velocity information from tissue Doppler imaging. J Appl Physiol. 2008;104(4):1192–201.CrossRefPubMed
30.
go back to reference Ruhe A, Fejer R, Walker B. The test-retest reliability of centre of pressure measures in bipedal static task conditions—a systematic review of the literature. Gait Posture. 2010;32(4):436–45.CrossRefPubMed Ruhe A, Fejer R, Walker B. The test-retest reliability of centre of pressure measures in bipedal static task conditions—a systematic review of the literature. Gait Posture. 2010;32(4):436–45.CrossRefPubMed
31.
go back to reference Hodges PW, Bui BH. A comparison of computer-based methods for the determination of onset of muscle contraction using electromyography. Electroen Clin Neuro. 1996;101(6):511–9.CrossRef Hodges PW, Bui BH. A comparison of computer-based methods for the determination of onset of muscle contraction using electromyography. Electroen Clin Neuro. 1996;101(6):511–9.CrossRef
32.
go back to reference Sim J, Wright CC. The kappa statistic in reliability studies: use, interpretation, and sample size requirements. Phys Ther. 2005;85(3):257–68.PubMed Sim J, Wright CC. The kappa statistic in reliability studies: use, interpretation, and sample size requirements. Phys Ther. 2005;85(3):257–68.PubMed
35.
go back to reference Daly AE, Bialocerkowski AE. Does evidence support physiotherapy management of adult complex regional pain syndrome type one? A systematic review. Eur J Pain. 2009;13(4):339–53.CrossRefPubMed Daly AE, Bialocerkowski AE. Does evidence support physiotherapy management of adult complex regional pain syndrome type one? A systematic review. Eur J Pain. 2009;13(4):339–53.CrossRefPubMed
36.
Metadata
Title
Anticipatory and compensatory postural adjustments in people with low back pain: a protocol for a systematic review and meta-analysis
Authors
Michael F. Knox
Lucy S. Chipchase
Siobhan M. Schabrun
Paul W. M. Marshall
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Systematic Reviews / Issue 1/2016
Electronic ISSN: 2046-4053
DOI
https://doi.org/10.1186/s13643-016-0242-4

Other articles of this Issue 1/2016

Systematic Reviews 1/2016 Go to the issue