Skip to main content
Top
Published in: International Journal of Pediatric Endocrinology 1/2018

Open Access 01-12-2018 | Research

Continuous Flash Glucose Monitoring in children with Congenital Hyperinsulinism; first report on accuracy and patient experience

Authors: Hussain Alsaffar, Lucy Turner, Zoe Yung, Mohammed Didi, Senthil Senniappan

Published in: International Journal of Pediatric Endocrinology | Issue 1/2018

Login to get access

Abstract

Background

The factory calibrated FreeStyle Libre (FSL) flash glucose monitoring system has been recently introduced for use in patients with diabetes mellitus. There are no reports available regarding its use in patients with congenital hyperinsulinism (CHI). We have assessed the accuracy of FSL compared to the finger prick capillary blood glucose (CBG) over 2 weeks period in patients with CHI and evaluated the parents’ experience of using FSL.

Methods

Four hundred sixty-seven episodes of CBG along with corresponding swipe FSL readings were available from 11 children with CHI (0.5–5 years). A detailed questionnaire was completed by the parents.

Results

The mean variation between the two methods was 0.29 mmol/l (SD ±1.07), higher readings by FSL compared to CBG. The FSL sensors stayed in-situ for an average period of 11.5 days. There was a positive correlation between the two methods (r = 0.7). The FSL tended to overestimate compared to CBG (bias = 0.29 mmol/l; 95% CI: 0.19 to 0.38). Only 70% of values were within the reference standard (±0.83 mmol/l) at glucose concentrations less than 5.6 mmol/l. The overall Mean Absolute Relative Difference (MARD) was 17.9%. Forty two episodes of hypoglycaemia (CBG < 3.5 mmol/l) were noted but FSL identified only 52% of these episodes. The Bland Altman analysis showed the 95% limits of agreement between the two methods ranging from − 1.8 (95% CI: -1.97 to − 1.64) to 2.37 (95% CI: 2.21 to 2.54). Majority of the parents found the glucose trend on FSL to be useful to detect and prevent hypoglycaemic episodes. All parents felt that FSL is a very easy and convenient method to measure the glucose especially during sleep. A significant proportion of parents felt that FSL readings were not accurate and 56% of parents expressed interest to continue using FSL after the trial period.

Conclusion

Noticeable variability between the two methods of measuring the glucose was noted. Despite the ease of using the FSL system, concerns related to accuracy, especially at low glucose values do remain although parents find the glucose trend to be very useful. Further larger trials are needed in CHI patients before FSL is recommended as a routine alternative method for measuring glucose levels.
Literature
1.
go back to reference Senniappan S, Shanti B, James C, Hussain K. Hyperinsulinaemic hypoglycaemia: genetic mechanisms, diagnosis and management. J Inherit Metab Dis. 2012;35(4):589–601.CrossRefPubMed Senniappan S, Shanti B, James C, Hussain K. Hyperinsulinaemic hypoglycaemia: genetic mechanisms, diagnosis and management. J Inherit Metab Dis. 2012;35(4):589–601.CrossRefPubMed
2.
go back to reference Avatapalle HB, Banerjee I, Shah S, Pryce M, Nicholson J, Rigby L, Caine L, Didi M, Skae M, Ehtisham S, Patel L, Padidela R, Cosgrove KE, Dunne MJ, Clayton PE. Abnormal neurodevelopmental outcomes are common in children with transient congenital Hyperinsulinism. Front Endocrinol. 2013;4:60.CrossRef Avatapalle HB, Banerjee I, Shah S, Pryce M, Nicholson J, Rigby L, Caine L, Didi M, Skae M, Ehtisham S, Patel L, Padidela R, Cosgrove KE, Dunne MJ, Clayton PE. Abnormal neurodevelopmental outcomes are common in children with transient congenital Hyperinsulinism. Front Endocrinol. 2013;4:60.CrossRef
3.
go back to reference Pickup JC, Freeman SC, Sutton AJ. Glycaemic control in type 1 diabetes during real time continuous glucose monitoring compared with self-monitoring of blood glucose: meta-analysis of randomised controlled trials using individual patient data. BMJ. 2011;7:343. Pickup JC, Freeman SC, Sutton AJ. Glycaemic control in type 1 diabetes during real time continuous glucose monitoring compared with self-monitoring of blood glucose: meta-analysis of randomised controlled trials using individual patient data. BMJ. 2011;7:343.
4.
go back to reference Bergenstal RM, Tamborlane WV, Ahmann A, Buse JB, Dailey G, Davis SN, Joyce C, Peoples T, Perkins BA, Welsh JB, Willi SM, Wood MA. STAR 3 study group. Effectiveness of sensor-augmented insulin-pump therapy in type 1 diabetes. N Engl J Med. 2010;363(4):311–20.CrossRefPubMed Bergenstal RM, Tamborlane WV, Ahmann A, Buse JB, Dailey G, Davis SN, Joyce C, Peoples T, Perkins BA, Welsh JB, Willi SM, Wood MA. STAR 3 study group. Effectiveness of sensor-augmented insulin-pump therapy in type 1 diabetes. N Engl J Med. 2010;363(4):311–20.CrossRefPubMed
5.
go back to reference Saif M, Kapoor A, Kochar IP, Jindal R. Continuous glucose monitoring system for congenital hyperinsulinemia. Indian Pediatr. 2013;50(4):421–2.CrossRefPubMed Saif M, Kapoor A, Kochar IP, Jindal R. Continuous glucose monitoring system for congenital hyperinsulinemia. Indian Pediatr. 2013;50(4):421–2.CrossRefPubMed
6.
go back to reference Conrad SC, Mastrototaro JJ, Gitelman SE. The use of a continuous glucose monitoring system in hypoglycemic disorders. J Pediatr Endocrinol Metab. 2004;17(3):281–8.CrossRefPubMed Conrad SC, Mastrototaro JJ, Gitelman SE. The use of a continuous glucose monitoring system in hypoglycemic disorders. J Pediatr Endocrinol Metab. 2004;17(3):281–8.CrossRefPubMed
7.
go back to reference Khadilkar KS, Bandgar T, Shivane V, Lila A, Shah N. Current concepts in blood glucose monitoring. Indian J Endocrinol Metab. 2013;17(Suppl 3):S643–9.CrossRefPubMedPubMedCentral Khadilkar KS, Bandgar T, Shivane V, Lila A, Shah N. Current concepts in blood glucose monitoring. Indian J Endocrinol Metab. 2013;17(Suppl 3):S643–9.CrossRefPubMedPubMedCentral
8.
go back to reference Fokkert MJ, Van Dijk PR, Edens MA, Abbes S, De Jong D, Slingerland RJ, Bilo HJG. Performance of the FreeStyle libre flash glucose monitoring system in patients with type 1 and 2 diabetes mellitus. BMJ Open Diabetes Res Care. 2017;5(1, e000320) https://doi.org/10.1136/bmjdrc-2016-000320. Fokkert MJ, Van Dijk PR, Edens MA, Abbes S, De Jong D, Slingerland RJ, Bilo HJG. Performance of the FreeStyle libre flash glucose monitoring system in patients with type 1 and 2 diabetes mellitus. BMJ Open Diabetes Res Care. 2017;5(1, e000320) https://​doi.​org/​10.​1136/​bmjdrc-2016-000320.
11.
go back to reference Aynsley-Green A, Hussain K, Hall J, Saudubray J, Nihoul-Fekete C, De Lonlay-Debeney P, Brunelle F, Otonkoski T, Thornton P, Lindley K. Practical management of hyperinsulinism in infancy. Arch Dis Child Fetal Neonatal Ed. 2000;82(2):F98–F107.CrossRefPubMedPubMedCentral Aynsley-Green A, Hussain K, Hall J, Saudubray J, Nihoul-Fekete C, De Lonlay-Debeney P, Brunelle F, Otonkoski T, Thornton P, Lindley K. Practical management of hyperinsulinism in infancy. Arch Dis Child Fetal Neonatal Ed. 2000;82(2):F98–F107.CrossRefPubMedPubMedCentral
13.
go back to reference Bailey T, Christiansen MP, Klaff LJ, Alva S. The performance and usability of a factory-calibrated flash glucose monitoring system. Diabetes technol ther. 2015;17(11):787–94.CrossRefPubMedPubMedCentral Bailey T, Christiansen MP, Klaff LJ, Alva S. The performance and usability of a factory-calibrated flash glucose monitoring system. Diabetes technol ther. 2015;17(11):787–94.CrossRefPubMedPubMedCentral
14.
go back to reference Monsod TP, Flanagan DE, Rife F, Saenz R, Caprio S, Sherwin RS, Tamborlane WV. Do sensor glucose levels accurately predict plasma glucose concentrations during hypoglycemia and hyperinsulinemia? Diabetes Care. 2002;25(5):889–93.CrossRefPubMed Monsod TP, Flanagan DE, Rife F, Saenz R, Caprio S, Sherwin RS, Tamborlane WV. Do sensor glucose levels accurately predict plasma glucose concentrations during hypoglycemia and hyperinsulinemia? Diabetes Care. 2002;25(5):889–93.CrossRefPubMed
15.
go back to reference Turner L, Alsaffar H, et al. Accuracy and patient experience of the novel flash glucose monitoring system in children and young people with type 1 diabetes mellitus. Endocr Abstr. 2016;45:OC7.4. Turner L, Alsaffar H, et al. Accuracy and patient experience of the novel flash glucose monitoring system in children and young people with type 1 diabetes mellitus. Endocr Abstr. 2016;45:OC7.4.
16.
go back to reference Edge J, Acerini C, Campbell F et al. An alternative sensor-based method for glucose monitoring in children and young people with diabetes. Arch Dis Child Published Online First: 30 January 2017. Arch Dis Child. 2017 Jun;102(6):543-549. Edge J, Acerini C, Campbell F et al. An alternative sensor-based method for glucose monitoring in children and young people with diabetes. Arch Dis Child Published Online First: 30 January 2017. Arch Dis Child. 2017 Jun;102(6):543-549.
Metadata
Title
Continuous Flash Glucose Monitoring in children with Congenital Hyperinsulinism; first report on accuracy and patient experience
Authors
Hussain Alsaffar
Lucy Turner
Zoe Yung
Mohammed Didi
Senthil Senniappan
Publication date
01-12-2018
Publisher
BioMed Central
Published in
International Journal of Pediatric Endocrinology / Issue 1/2018
Electronic ISSN: 1687-9856
DOI
https://doi.org/10.1186/s13633-018-0057-2

Other articles of this Issue 1/2018

International Journal of Pediatric Endocrinology 1/2018 Go to the issue